1
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Elele U, Nekahi A, Arshad A, McAulay K, Fofana I. Sensitivity Analysis of Intensity-Modulated Plastic Optical Fiber Sensors for Effective Aging Detection in Rapeseed Transformer Oil. SENSORS (BASEL, SWITZERLAND) 2023; 23:9796. [PMID: 38139642 PMCID: PMC10748025 DOI: 10.3390/s23249796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
As the focus tilts toward online detection methodologies for transformer oil aging, bypassing challenges associated with traditional offline methods, such as sample contamination and misinterpretation, fiber optic sensors are gaining traction due to their compact nature, cost-effectiveness, and resilience to electromagnetic disturbances that are typical in high-voltage environments. This study delves into the sensitivity analysis of intensity-modulated plastic optical fiber sensors. The investigation encompasses key determinants such as the influence of optical source wavelengths, noise response dynamics, ramifications of varying sensing lengths, and repeatability assessments. Our findings highlight that elongating sensing length detrimentally affects both linearity response and repeatability, largely attributed to a diminished resistance to noise. Additionally, the choice of the optical source wavelength proved to be a critical variable in assessing sensor sensitivity.
Collapse
Affiliation(s)
- Ugochukwu Elele
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 OBA, UK; (U.E.); (A.A.); (K.M.)
| | - Azam Nekahi
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 OBA, UK; (U.E.); (A.A.); (K.M.)
| | - Arshad Arshad
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 OBA, UK; (U.E.); (A.A.); (K.M.)
| | - Kate McAulay
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 OBA, UK; (U.E.); (A.A.); (K.M.)
| | - Issouf Fofana
- Department of Applied Sciences, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
| |
Collapse
|
3
|
Guliy OI, Karavaeva OA, Smirnov AV, Eremin SA, Bunin VD. Optical Sensors for Bacterial Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:9391. [PMID: 38067765 PMCID: PMC10708710 DOI: 10.3390/s23239391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Analytical devices for bacterial detection are an integral part of modern laboratory medicine, as they permit the early diagnosis of diseases and their timely treatment. Therefore, special attention is directed to the development of and improvements in monitoring and diagnostic methods, including biosensor-based ones. A promising direction in the development of bacterial detection methods is optical sensor systems based on colorimetric and fluorescence techniques, the surface plasmon resonance, and the measurement of orientational effects. This review shows the detecting capabilities of these systems and the promise of electro-optical analysis for bacterial detection. It also discusses the advantages and disadvantages of optical sensor systems and the prospects for their further improvement.
Collapse
Affiliation(s)
- Olga I. Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Olga A. Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Andrey V. Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;
| | - Sergei A. Eremin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | | |
Collapse
|
4
|
Pang R, Wang Z, Li J, Chen K. Polymorphs of Nb 2O 5 Compound and Their Electrical Energy Storage Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6956. [PMID: 37959554 PMCID: PMC10647839 DOI: 10.3390/ma16216956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Niobium pentoxide (Nb2O5), as an important dielectric and semiconductor material, has numerous crystal polymorphs, higher chemical stability than water and oxygen, and a higher melt point than most metal oxides. Nb2O5 materials have been extensively studied in electrochemistry, lithium batteries, catalysts, ionic liquid gating, and microelectronics. Nb2O5 polymorphs provide a model system for studying structure-property relationships. For example, the T-Nb2O5 polymorph has two-dimensional layers with very low steric hindrance, allowing for rapid Li-ion migration. With the ever-increasing energy crisis, the excellent electrical properties of Nb2O5 polymorphs have made them a research hotspot for potential applications in lithium-ion batteries (LIBs) and supercapacitors (SCs). The basic properties, crystal structures, synthesis methods, and applications of Nb2O5 polymorphs are reviewed in this article. Future research directions related to this material are also briefly discussed.
Collapse
Affiliation(s)
- Rui Pang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China;
| | - Zhiqiang Wang
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China;
| | - Jinkai Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China;
| | - Kunfeng Chen
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China;
| |
Collapse
|
5
|
Gkili C, Deligiannakis K, Lappa E, Papoulia C, Sazou D. Electrodeposition of Polyaniline on Tantalum: Redox Behavior, Morphology and Capacitive Properties. Molecules 2023; 28:7286. [PMID: 37959706 PMCID: PMC10648180 DOI: 10.3390/molecules28217286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Polyaniline (PANI) is among the most widely studied conducting polymers due to its potential technological applications in various fields. Recently, PANI-based hybrid materials have played an important role in the development of energy storage and conversion systems. The aim of the present work is the investigation of the simultaneous electrochemical growth of PANI and Ta2O5 on the Ta substrate and the characterization of the morphology, redox behavior and pseudocapacitive properties of the resulting micro- or nanostructured composite thin films. A well-adherent conductive Ta2O5-PANI composite film was first formed using cyclic voltammetry on Ta that facilitates the on-top electrodeposition of single PANI via an autocatalytic mechanism. The electrochemical characterization of the Ta|Ta2O5-PANI|PANI electrodes reveals unique redox properties of PANI not shown previously upon using PANI electrodeposition on Ta. Scanning electron microscopy shows that the morphology of the electrodeposited films comprises nano- or microspheres that may develop into nano- or microrods when the polymerization proceeds. Preliminary evaluation of the capacitive properties of the Ta|Ta2O5-PANI|PANI electrode shows adequately high specific capacitance values as high as 1130 F g-1 (at 9.2 mA cm-2), depending on the electrochemical parameters, as well as adequate stability (~80% retention after 100 cycles), indicating their potential application as energy storage devices.
Collapse
Affiliation(s)
- Chrysanthi Gkili
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (K.D.); (E.L.)
| | - Konstantinos Deligiannakis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (K.D.); (E.L.)
| | - Eirini Lappa
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (K.D.); (E.L.)
| | - Chrysanthi Papoulia
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitra Sazou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (K.D.); (E.L.)
| |
Collapse
|
6
|
Basyooni-M. Kabatas MA, En-nadir R, Rahmani K, Eker YR. Positive and Negative Photoconductivity in Ir Nanofilm-Coated MoO 3 Bias-Switching Photodetector. MICROMACHINES 2023; 14:1860. [PMID: 37893298 PMCID: PMC10609430 DOI: 10.3390/mi14101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
In this study, we delved into the influence of Ir nanofilm coating thickness on the optical and optoelectronic behavior of ultrathin MoO3 wafer-scale devices. Notably, the 4 nm Ir coating showed a negative Hall voltage and high carrier concentration of 1.524 × 1019 cm-3 with 0.19 nm roughness. Using the Kubelka-Munk model, we found that the bandgap decreased with increasing Ir thickness, consistent with Urbach tail energy suggesting a lower level of disorder. Regarding transient photocurrent behavior, all samples exhibited high stability under both dark and UV conditions. We also observed a positive photoconductivity at bias voltages of >0.5 V, while at 0 V bias voltage, the samples displayed a negative photoconductivity behavior. This unique aspect allowed us to explore self-powered negative photodetectors, showcasing fast response and recovery times of 0.36/0.42 s at 0 V. The intriguing negative photoresponse that we observed is linked to hole self-trapping/charge exciton and Joule heating effects.
Collapse
Affiliation(s)
- Mohamed A. Basyooni-M. Kabatas
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
- Department of Nanotechnology and Advanced Materials, Graduate School of Applied and Natural Science, Selçuk University, Konya 42030, Türkiye
| | - Redouane En-nadir
- Laboratory of Solid-State Physics, Faculty of Sciences Dhar el Mahraz, University Sidi Mohammed Ben Abdellah, P.O. Box 1796, Atlas Fez 30 000, Morocco;
| | - Khalid Rahmani
- Department of Physics, Ecole Normale Supérieure (ENS), Mohammed V University, P.O. Box 8007, Rabat, Morocco;
| | - Yasin Ramazan Eker
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Türkiye
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Türkiye
| |
Collapse
|
7
|
Liao S, Chen Q, Ma H, Huang J, Sui J, Zhang H. A Liquid Crystal-Modulated Metastructure Sensor for Biosensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:7122. [PMID: 37631661 PMCID: PMC10458214 DOI: 10.3390/s23167122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
In this paper, a liquid crystal-modulated metastructure sensor (MS) is proposed that can detect the refractive index (RI) of a liquid and change the detection range under different applied voltages. The regulation of the detection range is based on the different bias states of the liquid crystal at different voltages. By changing the sample in the cavity that is to be detected, the overall electromagnetic characteristics of the device in the resonant state are modified, thus changing the position of the absorption peaks so that different RI correspond to different absorption peaks, and finally realizing the sensing detection. The refractive index unit is denoted as RIU. The range of the refractive index detection is 1.414-2.828 and 2.121-3.464, and the corresponding absorption peak variation range is 0.8485-1.028 THz and 0.7295-0.8328 THz, with a sensitivity of 123.8 GHz/RIU and 75.6 GHz/RIU, respectively. In addition, an approach to optimizing resonant absorption peaks is explored, which can suppress unwanted absorption generated during the design process by analyzing the energy distribution and directing the current flow on the substrate. Four variables that have a more obvious impact on performance are listed, and the selection and change trend of the numerical values are focused on, fully considering the errors that may be caused by manufacturing and actual use. At the same time, the incident angle and polarization angle are also included in the considered range, and the device shows good stability at these angles. Finally, the influence of the number of resonant rings on the sensing performance is also discussed, and its conclusion has guiding value for optimizing the sensing demand. This new liquid crystal-modulated MS has the advantages of a small size and high sensitivity and is expected to be used for bio-detection, sensing, and so on. All results in this work were obtained with the aid of simulations based on the finite element method.
Collapse
Affiliation(s)
| | | | | | | | | | - Haifeng Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
8
|
Chen Z, Li H, Xie M, Zhao F, Han S. Label-Free Electrochemical Aptasensor for Sensitive Detection of Malachite Green Based on AuNPs/MWCNTs@TiO 2 Nanocomposites. Int J Mol Sci 2023; 24:10594. [PMID: 37445772 DOI: 10.3390/ijms241310594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study proposes a label-free aptamer biosensor for the sensitive detection of malachite green(MG) using gold nanoparticles/multi-walled carbon nanotubes @ titanium dioxide(AuNPs/MWCNTs@TiO2). The nanocomposite provides a large surface area and good electrical conductivity, improving current transfer and acting as a platform for aptamer immobilization. The aptamer and the complementary chain(cDNA) are paired by base complementary to form the recognition element and fixed on the AuNPs by sulfhydryl group, which was modified on the cDNA. Since DNA is negatively charged, the redox probe in the electrolyte is less exposed to the electrode surface under the repulsion of the negative charge, resulting in a low-electrical signal level. When MG is present, the aptamer is detached from the cDNA and binds to MG, the DNA on the electrode surface is reduced, and the rejection of the redox probe is weakened, which leads to an enhanced electrical signal and enables the detection of MG concentration by measuring the change in the electrical signal. Under the best experimental conditions, the sensor demonstrates a good linear relationship for the detection of MG from 0.01 to 1000 ng/mL, the limit of detection (LOD)is 8.68 pg/mL. This sensor is stable, specific, and reproducible, allowing for the detection of various small-molecule pollutants by changing the aptamer, providing an effective method for detecting small-molecule pollutants.
Collapse
Affiliation(s)
- Zanlin Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haiming Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Miaojia Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
9
|
Lehmann S, Kraft FA, Gerken M. Spatially Resolved Protein Binding Kinetics Analysis in Microfluidic Photonic Crystal Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:5637. [PMID: 37420803 DOI: 10.3390/s23125637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
Organ-on-a-Chip systems are emerging as an important in vitro analysis method for drug screening and medical research. For continuous biomolecular monitoring of the cell culture response, label-free detection within the microfluidic system or in the drainage tube is promising. We study photonic crystal slabs integrated with a microfluidic chip as an optical transducer for label-free biomarker detection with a non-contact readout of binding kinetics. This work analyzes the capability of same-channel reference for protein binding measurements by using a spectrometer and 1D spatially resolved data evaluation with a spatial resolution of 1.2 μm. A cross-correlation-based data-analysis procedure is implemented. First, an ethanol-water dilution series is used to obtain the limit of detection (LOD). The median of all row LODs is (2.3±0.4)×10-4 RIU with 10 s exposure time per image and (1.3±0.24)×10-4 RIU with 30 s exposure time. Next, we used a streptavidin-biotin binding process as a test system for binding kinetics. Time series of optical spectra were recorded while constantly injecting streptavidin in DPBS at concentrations of 1.6 nM, 3.3 nM, 16.6 nM and 33.3 nM into one channel half as well as the whole channel. The results show that localized binding within a microfluidic channel is achieved under laminar flow. Furthermore, binding kinetics are fading out at the microfluidic channel edge due to the velocity profile.
Collapse
Affiliation(s)
- Stefanie Lehmann
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| | - Fabio Aldo Kraft
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| | - Martina Gerken
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| |
Collapse
|