1
|
Alawa B, Singh S, Chakma S, Kishor R, Stålsby Lundborg C, Diwan V. Development of novel biochar adsorbent using agricultural waste biomass for enhanced removal of ciprofloxacin from water: Insights into the isotherm, kinetics, and thermodynamic analysis. CHEMOSPHERE 2025; 375:144252. [PMID: 40020449 DOI: 10.1016/j.chemosphere.2025.144252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/30/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Increase in the antibiotic's usage and mis-management in antibiotics' disposal has led to the occurrence of antibiotic residues in the surface water bodies. These residues may pose considerable risks to the human as well as aquatic organisms owing to the enhancement in antimicrobial resistance among microbes. Hence, precautionary measures are need of the hour to curtail the occurrence of antibiotic compounds in water. In addition, rampant burning of agricultural waste in India causes considerable air pollution. Considering this, a novel adsorbent has been developed from agricultural waste biomass, viz. wheat straw (WS), through calcination (CWS), followed by chemical activation (AWS). These adsorbents were employed for the removal of ciprofloxacin (CIP) from water. Removal efficiency of 90% (for CWS) and 98% (for AWS) could be achieved at neutral pH in room temperature conditions. The maximum adsorption capacity of ciprofloxacin on synthesized adsorbent was evaluated as 14.51 mg g-1. Experimental findings were further explored to get the insights of isotherm, kinetics, and thermodynamics involved in the process. It was found that Langmuir model (with R2 value of 0.985) provided a better fit than the other isotherm models. Kinetics and thermodynamic studies revealed that adsorption process followed the pseudo second order linear kinetic model (with R2 value of 0.999) with endothermic and spontaneous sorption of ciprofloxacin on developed adsorbent. Thus, wheat straw waste may suitably be used as adsorbent for the removal of antibiotics from water.
Collapse
Affiliation(s)
- Bablu Alawa
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR - National Institute for Research in Environmental Health (NIREH), Bhopal, 462 030, India
| | - Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR - National Institute for Research in Environmental Health (NIREH), Bhopal, 462 030, India; Faculty of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462 066, India
| | - Rupak Kishor
- Department of Chemical Engineering, Maulana Azad National Institute of Technology (MANIT), Bhopal, 462 003, India
| | | | - Vishal Diwan
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR - National Institute for Research in Environmental Health (NIREH), Bhopal, 462 030, India; Department of Global Public Health, Karolinska Institutet (KI), Stockholm, 171 77, Sweden; Faculty of Medical Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
2
|
Tian R, Wang C, Jiang W, Janaswamy S, Yang G, Ji X, Lyu G. Biodegradable, Strong, and Hydrophobic Regenerated Cellulose Films Enriched with Esterified Lignin Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309651. [PMID: 38530065 DOI: 10.1002/smll.202309651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Indexed: 03/27/2024]
Abstract
The scientific community is pursuing significant efforts worldwide to develop environmentally viable film materials from biomass, particularly transparent, high-performance regenerated cellulose (RC) films, to replace traditional plastics. However, the inferior mechanical performance and hydrophilic nature of RC films are generally not suitable for use as a substitute for plastics in practical applications. Herein, lignin homogenization is used to synthesize high-performance composite films. The esterified lignin nanoparticles (ELNPs) with dispersible and binding advantages are prepared through esterification and nanometrization. In the presence of ELNPs, RC films exhibit a higher tensile strength (110.4 MPa), hydrophobic nature (103.6° water contact angle, 36.6% water absorption at 120 min, and 1.127 × 10-12 g cm cm-2 s-1 Pa-1 water vapor permeability), and exciting optical properties (high visible and low ultraviolet transmittance). The films further display antioxidant activity, oxygen barrier ability, and thermostability. The films completely biodegrade at 12 and 30% soil moisture. Overall, this study offers new insights into lignin valorization and regenerated cellulose composite films as novel bioplastic materials.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Weikun Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| |
Collapse
|
3
|
Park J, Kil YS, Ryoo GH, Jin CH, Hong MJ, Kim JB, Jung CH, Nam JW, Han AR. Phytochemical profile and anti-inflammatory activity of the hull of γ-irradiated wheat mutant lines ( Triticum aestivum L.). Front Nutr 2023; 10:1334344. [PMID: 38188878 PMCID: PMC10771830 DOI: 10.3389/fnut.2023.1334344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Wheat (Triticum aestivum Linn.; Poaceae) is the second most cultivated food crop among all global cereal crop production. The high carbohydrate content of its grains provides energy, multiple nutrients, and dietary fiber. After threshing, a substantial amount of wheat hull is produced, which serves as the non-food component of wheat. For the valorization of these by-products as a new resource from which functional components can be extracted, the hull from the seeds of cultivated wheat mutant lines bred after γ-irradiation were collected. Untargeted metabolite analysis of the hull of the original cultivar (a crossbreeding cultivar., Woori-mil × D-7) and its 983 mutant lines were conducted using ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry technique. A total of 55 molecules were tentatively identified, including 21 compounds found in the Triticum species for the first time and 13 compounds not previously described. Among them, seven flavonolignans with a diastereomeric structure, isolated as a single compound from the hull of T. aestivum in our previous study, were used as the standards in the metabolite analysis. The differences in their collision cross-section values were shown to contribute to the clear distinction between tricine-lignan stereoisomers. To select functionally active agents with anti-inflammatory activity among the identified compounds, the wheat hull samples were evaluated for their inhibitory effect on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. As a result of multivariate analysis based on the results of chemical and biological profiles of the wheat hull samples, 10 metabolites were identified as key markers, contributing to the distinction between active and inactive mutant lines. Considering that one of the four key markers attributed to anti-inflammatory activity has been identified to be a flavonolignan, the wheat hull could be a valuable source of diverse tricin-lignan type compounds and used as a natural health-promoting product in food supplements.
Collapse
Affiliation(s)
- Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|