1
|
Wang L, Dai Z, Bi J, Chen Y, Wang Z, Sun Z, Ji Z, Wang H, Zhang Y, Wang L, Mao J, Yang J. Polydopamine-functionalized calcium-deficient hydroxyapatite 3D-printed scaffold with sustained doxorubicin release for synergistic chemo-photothermal therapy of osteosarcoma and accelerated bone regeneration. Mater Today Bio 2024; 29:101253. [PMID: 39399244 PMCID: PMC11470592 DOI: 10.1016/j.mtbio.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Interior bone-tissue regeneration and rapid tumor recurrence post-resection are critical challenges in osteosarcoma and other bone cancers. Conventional bone tissue engineering scaffolds lack inhibitory effects on bone tumor recurrence. Herein, multifunctional scaffolds (named DOX/PDA@CDHA) were designed through the spontaneous polymerization of Dopamine (PDA) on the surface of Calcium Deficient Hydroxyapatite (CDHA) scaffolds, followed by in situ loading of the chemotherapeutic drug Doxorubicin (DOX). The PDA coating endowed the scaffolds with significant photothermal properties, while the gradual release of DOX provided an effective chemotherapeutic effect. The on-demand release of DOX at tumor sites, triggered by dual stimulation (near-infrared (NIR) light and the acidic pH typical of tumor microenvironments), specifically targets cancer cells, thereby mitigating systemic side effects. These unique characteristics facilitated effective osteosarcoma eradication both in vitro and in vivo. Moreover, the scaffold's composition, which mimics the mineral phase of natural bone and is enhanced by PDA's biocompatibility, promotes critical osteogenic and angiogenic processes. This facilitates not only tumor eradication but also the regeneration of healthy bone tissue. Collectively, this study presents a potent candidate for the regeneration of bone defects induced by osteosarcoma.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Zihan Dai
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Jianqiang Bi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
| | - Ziyu Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, PR China
| | - Zhenqian Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Zhongjie Ji
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Yan Zhang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, PR China
| | - Limei Wang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, PR China
| | - Junjie Mao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Junxing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| |
Collapse
|
2
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 PMCID: PMC11528123 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Höppel A, Bahr O, Ebert R, Wittmer A, Seidenstuecker M, Carolina Lanzino M, Gbureck U, Dembski S. Cu-doped calcium phosphate supraparticles for bone tissue regeneration. RSC Adv 2024; 14:32839-32851. [PMID: 39429940 PMCID: PMC11483895 DOI: 10.1039/d4ra04769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Calcium phosphate (CaP) minerals have shown great promise as bone replacement materials due to their similarity to the mineral phase of natural bone. In addition to biocompatibility and osseointegration, the prevention of infection is crucial, especially due to the high concern of antibiotic resistance. In this context, a controlled drug release as well as biodegradation are important features which depend on the porosity of CaP. An increase in porosity can be achieved by using nanoparticles (NPs), which can be processed to supraparticles, combining the properties of nano- and micromaterials. In this study, Cu-doped CaP supraparticles were prepared to improve the bone substitute properties while providing antibacterial effects. In this context, a modified sol-gel process was used for the synthesis of CaP NPs, where a Ca/P molar ratio of 1.10 resulted in the formation of crystalline β-tricalcium phosphate (β-TCP) after calcination at 1000 °C. In the next step, CaP NPs with Cu2+ (0.5-15.0 wt%) were processed into supraparticles by a spray drying method. Cu release experiments of the different Cu-doped CaP supraparticles demonstrated a long-term sustained release over 14 days. The antibacterial properties of the supraparticles were determined against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, where complete antibacterial inhibition was achieved using a Cu concentration of 5.0 wt%. In addition, cell viability assays of the different CaP supraparticles with human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) exhibited high biocompatibility with particle concentrations of 0.01 mg mL-1 over 72 hours.
Collapse
Affiliation(s)
- Anika Höppel
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg 97070 Würzburg Germany
| | - Olivia Bahr
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg 97074 Würzburg Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg 97074 Würzburg Germany
| | - Annette Wittmer
- Medical Center University of Freiburg, Faculty of Medicine, Institute for Microbiology and Hygiene 79104 Freiburg Germany
| | - Michael Seidenstuecker
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg 79106 Freiburg Germany
| | - M Carolina Lanzino
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IFKB), University of Stuttgart 70569 Stuttgart Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg 97070 Würzburg Germany
| | - Sofia Dembski
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg 97070 Würzburg Germany
- Fraunhofer Institute for Silicate Research ISC 97082 Würzburg Germany
| |
Collapse
|
4
|
Ukaeje OC, Bandyopadhyay BC. Titanium Dioxide Promotes the Growth and Aggregation of Calcium Phosphate and Monosodium Urate Mixed Crystals. CRYSTALS 2024; 14:11. [PMID: 38287972 PMCID: PMC10824510 DOI: 10.3390/cryst14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The increased utilization of titanium dioxide (TiO2) nanoparticles (TNPs) in various industrial and consumer products has raised concerns regarding its harmful effect due to its accumulation within the different systems of the human body. Here, we focused on the influence of TNPs on the growth and aggregation of two crucial crystalline substances, calcium phosphate (CaP) and monosodium urate (MSU), particularly its implications in gout disease. In this study, we adopted microscopic techniques and generated kinetic models to examine the interactions between TNPs, CaP and MSU, and crystallization, under controlled laboratory conditions. Our findings reveal that TNPs not only facilitate the growth of these crystals but also promote their co-aggregations. Crystal dissolution kinetics also exhibit that an increase in TNPs concentration corresponds to a reduction in the dissolution rate of CaP and MSU crystals in presence of the dissoluting agent hydroxycitrate (Hcit). These observations suggest that TNPs can stabilize CaP+MSU mixed crystals, which underscores the significance of TNPs' exposure in the pathogenesis of gout disease.
Collapse
Affiliation(s)
- Onyebuchi C Ukaeje
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| |
Collapse
|
5
|
Zhao Z, Sun Y, Qiao Q, Weir MD, Schneider A, Masri R, Lynch CD, Zhang N, Zhang K, Bai Y, Xu H. Calvaria defect regeneration via human periodontal ligament stem cells and prevascularized scaffolds in athymic rats. J Dent 2023; 138:104690. [PMID: 37666466 DOI: 10.1016/j.jdent.2023.104690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Vascularization plays an important role in dental and craniofacial regenerations. Human periodontal ligament stem cells (hPDLSCs) are a promising cell source and, when co-cultured with human umbilical vein endothelial cells (hUVECs), could promote vascularization. The objectives of this study were to develop a novel prevascularized hPDLSC-hUVEC-calcium phosphate construct, and investigate the osteogenic and angiogenic efficacy of this construct with human platelet lysate (hPL) in cranial defects in rats for the first time. METHODS hPDLSCs and hUVECs were co-cultured on calcium phosphate cement (CPC) scaffolds with hPL. Cell proliferation, angiogenic gene expression, angiogenesis, alkaline phosphatase activity, and cell-synthesized minerals were determined. Bone and vascular regenerations were investigated in rat critical-sized cranial defects in vivo. RESULTS hPDLSC-hUVEC-CPC-hPL group had 2-fold greater angiogenic expressions and cell-synthesized mineral synthesis than hPDLSC-hUVEC-CPC group (p < 0.05). Microcapillary-like structures were formed on scaffolds in vitro. hPDLSC-hUVEC-CPC-hPL group had more vessels than hPDLSC-hUVEC-CPC group (p < 0.05). In cranial defects in rats, hPDLSC-hUVEC-CPC-hPL group regenerated new bone amount that was 2.1 folds and 4.0 folds, respectively, that of hPDLSC-hUVEC-CPC group and CPC control (p < 0.05). New blood vessel density of hPDLSC-hUVEC-CPC-hPL group was 2 folds and 7.9 folds, respectively, that of hPDLSC-hUVEC-CPC group and CPC control (p < 0.05). CONCLUSION The hPL pre-culture method is promising to enhance bone regeneration via prevascularized CPC. Novel hPDLSC-hUVEC-CPC-hPL prevascularized construct increased new bone formation and blood vessel density by 4-8 folds over CPC control. CLINICAL SIGNIFICANCE Novel hPDLSC-hUVEC-hPL-CPC prevascularized construct greatly increased bone and vascular regeneration in vivo and hence is promising for a wide range of craniofacial applications.
Collapse
Affiliation(s)
- Zeqing Zhao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yaxi Sun
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingchen Qiao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Radi Masri
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Christopher D Lynch
- Restorative Dentistry, University Dental School and Hospital, University College Cork, Wilton, Cork, Ireland
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Hockin Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Kaimonov MR, Safronova TV. Materials in the Na 2O-CaO-SiO 2-P 2O 5 System for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5981. [PMID: 37687671 PMCID: PMC10488989 DOI: 10.3390/ma16175981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
Calcium phosphate materials and materials based on silicon dioxide have been actively studied for more than 50 years due to their high biocompatibility and bioactivity. Hydroxyapatite and tricalcium phosphate are the most known among calcium phosphate materials, and Bioglass 45S5 is the most known material in the Na2O-CaO-SiO2-P2O5 system. Each of these materials has its application limits; however, some of them can be eliminated by obtaining composites based on calcium phosphate and bioglass. In this article, we provide an overview of the role of silicon and its compounds, including Bioglass 45S5, consider calcium phosphate materials, talk about the limits of each material, demonstrate the potential of the composites based on them, and show the other ways of obtaining composite ceramics in the Na2O-CaO-SiO2-P2O5 system.
Collapse
Affiliation(s)
- Maksim R. Kaimonov
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
| | - Tatiana V. Safronova
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| |
Collapse
|
7
|
Lacan I, Moldovan M, Sarosi C, Cuc S, Pastrav M, Petean I, Ene R. Mechanical Properties and Liquid Absorption of Calcium Phosphate Composite Cements. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5653. [PMID: 37629944 PMCID: PMC10456573 DOI: 10.3390/ma16165653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Calcium phosphate cements present increased biocompatibility due to their chemical composition being similar to that of the hydroxyapatite in the hard tissues of the living body. It has certain limitations due to its poor mechanical properties, such as low tensile strength and increased brittleness. Thus, the optimal way to improve properties is through the design of novel composite cements. The purpose was fulfilled using a 25% hydroxyethyl methacrylate (HEMA) mixed with 3% urethane dimethacrzlate (UDMA) base matrix with various ratios of polyethylene glycol (PEG 400) and polycaprolactone (PCL). Mineral filler is based on tricalcium phosphate (TCP) with different chitosan ratio used as bio-response enhancer additive. Four mixtures were prepared: S0-unfilled polymer matrix; S1 with 50% TCP filler; S2 with 50% chitosan + TCP filler; and S3 with 17.5% chitosan + TCP mixed with 17.5% nano hydroxyapatite (HA). The mechanical properties testing revealed that the best compressive strength was obtained by S2, followed by S3, and the worst value was obtained for the unfilled matrix. The same tendency was observed for tensile and flexural strength. These results show that the novel filler system increases the mechanical resistance of the TCP composite cements. Liquid exposure investigation reveals a relative constant solubility of the used filler systems during 21 days of exposure: the most soluble fillers being S3 and S2 revealing that the additivated TCP is more soluble than without additives ones. Thus, the filler embedding mode into the polymer matrix plays a key role in the liquid absorption. It was observed that additive filler enhances the hydrophobicity of UDMA monomer, with the matrix resulting in the lowest liquid absorption values, while the non-additivated samples are more absorbent due to the prevalence of hydrolytic aliphatic groups within PEG 400. The higher liquid absorption was obtained on the first day of immersion, and it progressively decreased with exposure time due to the relative swelling of the surface microstructural features. The obtained results are confirmed by the microstructural changes monitored by SEM microscopy. S3 and S2 present a very uniform and compact filler distribution, while S1 presents local clustering of the TCP powder at the contact with the polymer matrix. The liquid exposure revealed significant pore formation in S0 and S1 samples, while S3 and S2 proved to be more resistant against superficial erosion, proving the best resistance against liquid penetration.
Collapse
Affiliation(s)
- Ioana Lacan
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
| | - Marioara Moldovan
- Department of Polymer Composites, Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Codruta Sarosi
- Department of Polymer Composites, Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Stanca Cuc
- Department of Polymer Composites, Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Mihaela Pastrav
- Department of Orthodontics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 31 Avram Iancu Street, 400117 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, University Babes-Bolyai, 11 Arany János Street, 400028 Cluj-Napoca, Romania;
| | - Razvan Ene
- 14 Department, Orthopedics, Anesthesia and Intensive Care, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
- Orthopedics and Traumatology Department, Bucharest Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|