1
|
Samardak AY, Sobirov MI, Rogachev KA, Shishelov AF, Lembikov AO, Ognev NA, Leyko GA, Ognev AV, Samardak AS. Fabrication and Magnetic Behavior of Jellyfish-Like Ni Nanowires Synthesized Using Bilayered Nanoporous Anodic Alumina Templates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401270. [PMID: 38716737 DOI: 10.1002/smll.202401270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Indexed: 10/04/2024]
Abstract
The potential to produce nanostructures with intricate shapes in large quantities holds promise for a range of applications in the fields of nanoelectronics and biomedicine. Here a method for fabricating jellyfish-like Ni nanowires (JFNWs) using bilayered nanoporous anodic alumina templates with through pores of varying diameters in each layer is presented. To assess the capabilities of this method, samples are created with different voltages during the second step of anodization, resulting in distinct geometrical characteristics of the second layer of the template, and subsequently synthesize Ni JFNWs. By employing magnetometry and first-order reversal curve (FORC) method, the magnetic properties are examined and a significant alteration in their magnetic behavior, attributed to the differing shapes of the JFNWs and the magnetostatic interactions within the array, is observed. The study utilizes magnetic force microscopy to evaluate the stray magnetic fields generated by the individual JFNWs and unveils their unusual and asymmetric distribution. Through simulations based on the experimental data, the study analyzes the field- and current-induced domain wall movement in a single JFNW and their array. The findings reveal non-trivial micromagnetic configurations in these structures, including a remarkable 'corkscrew' state, and allow for an examination of the process of magnetization switching.
Collapse
Affiliation(s)
- Aleksei Yu Samardak
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Mukhammad I Sobirov
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Kirill A Rogachev
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Aleksandr F Shishelov
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Alexey O Lembikov
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Nikita A Ognev
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Grigoriy A Leyko
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Alexey V Ognev
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, 690922, Russia
- Sakhalin State University, Yuzhno-Sakhalinsk, 693000, Russia
| | - Alexander S Samardak
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, 690922, Russia
- Sakhalin State University, Yuzhno-Sakhalinsk, 693000, Russia
| |
Collapse
|
2
|
Osama L, Handal HT, El-Sayed SAM, Elzayat EM, Mabrouk M. Fabrication and Optimisation of Alumina Nanoporous Membranes for Drug Delivery Applications: A Comparative Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1078. [PMID: 38998683 PMCID: PMC11243695 DOI: 10.3390/nano14131078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
Neurodegenerative disorders cause most physical and mental disabilities, and therefore require effective treatment. The blood-brain barrier (BBB) prevents drug molecules from crossing from the blood to the brain, making brain drug delivery difficult. Implantable devices could provide sustained and regulated medication to solve this problem. Two electrolytes (0.3 M oxalic acid and 0.3 M sulphuric acid) were used to anodise Al2O3 nanoporous membranes, followed by a third anodisation in concentrated H2SO4 to separate the through-hole membranes from the aluminium substrate. FTIR, AFM, and SEM/EDX were used to characterise the membranes' structure and morphology. The effects of the anodisation time and electrolyte type on the AAO layer pore density, diameter, interpore distance, and thickness were examined. As a model drug for neurodegenerative disorders, donepezil hydrochloride (DHC) was loaded onto thin alumina nanoporous membranes. The DHC release profiles were characterised at two concentrations using a UV-Vis spectrophotometer. Oxalic acid membranes demonstrated an average pore diameter of 39.6-32.5 nm, which was two times larger than sulphuric acid membranes (22.6-19.7 nm). After increasing the anodisation time from 3 to 5 h, all of the membranes showed a reduction in pore diameter that was stable regardless of the electrolyte type or period. Drug release from oxalic acid-fabricated membranes was controlled and sustained for over 2 weeks. Thus, nanoporous membranes as implantable drug delivery systems could improve neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Lamyaa Osama
- Refractories, Ceramics and Building Materials Department, National Research Center, 33El Bohouth St. (Former EL Tahrir St.), Dokki, Giza P.O. Box 12622, Egypt
| | - Hala T Handal
- Inorganic Chemistry Department, National Research Center, Cairo P.O. Box 12622, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, National Research Center, 33El Bohouth St. (Former EL Tahrir St.), Dokki, Giza P.O. Box 12622, Egypt
| | - Emad M Elzayat
- Biotechnology Department, Faculty of Science, Cairo University, Giza P.O. Box 12613, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Center, 33El Bohouth St. (Former EL Tahrir St.), Dokki, Giza P.O. Box 12622, Egypt
- Academy of Scientific Research and Technology (ASRT), Cairo P.O. Box 11516, Egypt
| |
Collapse
|
3
|
Kaviti AK, Akkala SR, Jeremias M, Pohorely M, Sikarwar VS. Submerged nanoporous anodized alumina structure for solar-powered desalination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43186-43197. [PMID: 38890254 DOI: 10.1007/s11356-024-33971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Development of nanoporous structures utilizing a single step of anodization technique is well recognized as a cost-effective and straightforward approach for several applications. In the current work, anodized alumina was developed with nanoporous structure by utilizing oxalic acid as an electrolyte with a continuous voltage of 40 V. The formed nanoporous structure was subjected to desalination application because of its high absorbance of broadband solar spectrum energy. The desalination setup consists of two solar stills namely conventional and modified. The developed structure is placed in the modified still to examine its performance. It was observed that the structure distributing heat to surrounding water by absorbing photon energy from the sun through the nanopores and giving an efficient pathway to the water vapours for developing effective desalination. The nanoporous structure having ~ 45 nm average diameter. Furthermore, the band gap energy of nanoporous structure was found to be ~ 2.5 eV (absorption spectrum fitting) and ~ 2.8 eV (Tauc plot). The nanoporous structure possess the visible light spectra in solar region which helps the band gaps of nanoporous structure to provide an additional supply of energy for generating more water to evaporate. Moreover, the Urbach energy of the structure is 0.5 eV which reveals less defects in the modified still. The overall distillate yield of modified still was increased to 21% in contrast to conventional. Water quality analysis was also carried out before and after the desalination experiments, and the results were within acceptable limits set by World Health Organization (WHO).
Collapse
Affiliation(s)
- Ajay Kumar Kaviti
- Centre for Solar Energy Materials, VNRVJIET, Hyderabad, 500090, India.
- Department of Mechanical Engineering, VNRVJIET, Hyderabad, 500090, India.
| | - Siva Ram Akkala
- Centre for Solar Energy Materials, VNRVJIET, Hyderabad, 500090, India
- Department of Mechanical Engineering, VNRVJIET, Hyderabad, 500090, India
| | - Michal Jeremias
- Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 1782/3, 182 00, Prague 8, Czech Republic
| | - Michael Pohorely
- Department of Power Engineering, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Vineet Singh Sikarwar
- Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 1782/3, 182 00, Prague 8, Czech Republic
- Department of Power Engineering, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
4
|
Varga M, Galdun L, Vronka M, Diko P, Heczko O, Varga R. Electrodeposited Heusler Alloys-Based Nanowires for Shape Memory and Magnetocaloric Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:407. [PMID: 38255575 PMCID: PMC10817646 DOI: 10.3390/ma17020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
In this article, the downsizing of functional Heusler alloys is discussed, focusing on the published results dealing with Heusler alloy nanowires. The theoretical information inspired the fabrication of novel nanowires that are presented in the results section of the article. Three novel nanowires were fabricated with the compositions of Ni66Fe21Ga13, Ni58Fe28In14, and Ni50Fe31Sn19. The Ni66Fe21Ga13 nanowires were fabricated, aiming to improve the stoichiometry of previous functional Ni-Fe-Ga Heusler nanomaterials with a functional behavior above room temperature. They exhibit a phase transition at the temperature of ≈375 K, which results in a magnetocaloric response of |ΔSM| ≈ 0.12 J·kg-1·K-1 at the magnetic field change of only μ0ΔH = 1 T. Novel Heusler alloy Ni58Fe28In14 nanowires, as well as Ni50Fe31Sn19 nanowires, are analyzed for the first time, and their magnetic properties are discussed, introducing a simple electrochemical approach for the fabrication of nanodimensional alloys from mutually immiscible metals.
Collapse
Affiliation(s)
- Michal Varga
- Faculty of Materials, Metallurgy and Recycling, Technical University of Kosice, Letna 9, 040 01 Kosice, Slovakia;
| | - Ladislav Galdun
- Centre for Progressive Materials, Technology, and Innovation Park, Pavol Jozef Safarik University in Kosice, Tr. SNP 1, 040 11 Kosice, Slovakia;
| | - Marek Vronka
- FZU—Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Prague, Czech Republic; (M.V.)
| | - Pavel Diko
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia;
| | - Oleg Heczko
- FZU—Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Prague, Czech Republic; (M.V.)
| | - Rastislav Varga
- Centre for Progressive Materials, Technology, and Innovation Park, Pavol Jozef Safarik University in Kosice, Tr. SNP 1, 040 11 Kosice, Slovakia;
| |
Collapse
|
5
|
Manzoor S, Qasim F, Ashraf MW, Tayyaba S, Tariq N, Herrera-May AL, Delgado-Alvarado E. Simulation and Analysis of Anodized Aluminum Oxide Membrane Degradation. SENSORS (BASEL, SWITZERLAND) 2023; 23:9792. [PMID: 38139637 PMCID: PMC10747657 DOI: 10.3390/s23249792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization of membrane geometry and fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step anodization process. Computational strength modeling and analysis of the membrane with specified parameters were performed using the ANSYS structural module. A fuzzy simulation was performed for the numerical analysis of flux through the membrane. The membrane was then incorporated with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration process have been studied. Scanning electron microscope (SEM) micrographs of membranes have been obtained before and after the filtration cycles. The SEM results indicate membrane fouling after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are suitable for the separation and purification of various fluids. However, after several filtration cycles, the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy for maximizing filtration efficiency and reducing energy costs for the filtration process by using a layered membrane setup.
Collapse
Affiliation(s)
- Saher Manzoor
- Department of Electronics, Institute of Physics, GC University Lahore, Lahore 54000, Pakistan; (S.M.); (F.Q.)
| | - Faheem Qasim
- Department of Electronics, Institute of Physics, GC University Lahore, Lahore 54000, Pakistan; (S.M.); (F.Q.)
| | - Muhammad Waseem Ashraf
- Department of Electronics, Institute of Physics, GC University Lahore, Lahore 54000, Pakistan; (S.M.); (F.Q.)
| | - Shahzadi Tayyaba
- Department of Information Sciences, Division of Science and Technology, University of Education, Township Campus, Lahore 54000, Pakistan
| | - Nimra Tariq
- Department of Physics and Mathematics, Faculty of Sciences, The Superior University Lahore, Lahore 54000, Pakistan;
| | - Agustín L. Herrera-May
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Rio 94294, Mexico; (A.L.H.-M.); (E.D.-A.)
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Rio 94294, Mexico; (A.L.H.-M.); (E.D.-A.)
| |
Collapse
|
6
|
Zhou X, Shevate R, Huang D, Cao T, Shen X, Hu S, Mane AU, Elam JW, Kim JH, Elimelech M. Ceramic thin-film composite membranes with tunable subnanometer pores for molecular sieving. Nat Commun 2023; 14:7255. [PMID: 37945562 PMCID: PMC10636005 DOI: 10.1038/s41467-023-42495-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Ceramic membranes are a promising alternative to polymeric membranes for selective separations, given their ability to operate under harsh chemical conditions. However, current fabrication technologies fail to construct ceramic membranes suitable for selective molecular separations. Herein, we demonstrate a molecular-level design of ceramic thin-film composite membranes with tunable subnanometer pores for precise molecular sieving. Through burning off the distributed carbonaceous species of varied dimensions within hybrid aluminum oxide films, we created membranes with tunable molecular sieving. Specifically, the membranes created with methanol showed exceptional selectivity toward monovalent and divalent salts. We attribute this observed selectivity to the dehydration of the large divalent ions within the subnanometer pores. As a comparison, smaller monovalent ions can rapidly permeate with an intact hydration shell. Lastly, the flux of neutral solutes through each fabricated aluminum oxide membrane was measured for the demonstration of tunable separation capability. Overall, our work provides the scientific basis for the design of ceramic membranes with subnanometer pores for molecular sieving using atomic layer deposition.
Collapse
Affiliation(s)
- Xuechen Zhou
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Rahul Shevate
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, USA
| | - Dahong Huang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Tianchi Cao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Xin Shen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Shu Hu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Anil U Mane
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, USA
| | - Jeffrey W Elam
- Applied Materials Division, Argonne National Laboratory, Lemont, IL, USA
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Skobliakov AV, Kolesnikov DS, Kantsyrev AV, Golubev AA, Ilyicheva MV, Gritsuk AN, Grabovskii EV. Single-pass method for reconstruction of extreme UV spectra. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:113102. [PMID: 37971321 DOI: 10.1063/5.0169625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
This work is devoted to the development of a method for the reconstruction of plasma extreme UV (EUV) spectra recorded by a three frame grazing incidence spectrograph (GIS-3D). The spectrograph provides registration of radiation reflected from the diffraction grating (DG) on a three-frame detector based on a microchannel plate with a scintillator screen and registration on a CCD camera, with an exposure time of one frame of ∼1.5 ns. DG has a gold-coated spherical concave form with a radius of curvature of 2 m and dimensions of 30 × 40 × 10 mm3. In this case, radiation is incident on the DG at a grazing angle of 2°; the DG period is 1.66 µm. The new single-pass method for the reconstruction of plasma EUV spectra was developed, which solves the inverse problem of decomposing experimental signals into separate contributions from each of the diffraction orders, followed by the reconstruction of the true plasma spectrum. Using the developed method, the possibility of finding a close approximation to the shape of a DG groove profile based on a priori information about the recorded spectra was demonstrated. In order to test and demonstrate the efficiency of this method, several experimental EUV spectra obtained at the Z-pinch facility Angara-5-1 with a current of ∼3-4 MA through loads made of either tungsten wires or polypropylene fibers were reconstructed. In addition, to test the single-pass method, the transmittance of EUV in cold aluminum was measured in the wavelength range of 3-35 nm, and it has a good match with the Henke database.
Collapse
Affiliation(s)
- A V Skobliakov
- Troitsk Institute for Innovation and Fusion Research, Moscow 108840, Russia
| | - D S Kolesnikov
- Troitsk Institute for Innovation and Fusion Research, Moscow 108840, Russia
| | - A V Kantsyrev
- Troitsk Institute for Innovation and Fusion Research, Moscow 108840, Russia
| | - A A Golubev
- Troitsk Institute for Innovation and Fusion Research, Moscow 108840, Russia
| | - M V Ilyicheva
- Troitsk Institute for Innovation and Fusion Research, Moscow 108840, Russia
| | - A N Gritsuk
- Troitsk Institute for Innovation and Fusion Research, Moscow 108840, Russia
| | - E V Grabovskii
- Troitsk Institute for Innovation and Fusion Research, Moscow 108840, Russia
| |
Collapse
|
8
|
Qasim F, Ashraf MW, Tayyaba S, Tariq MI, Herrera-May AL. Simulation, Fabrication and Microfiltration Using Dual Anodic Aluminum Oxide Membrane. MEMBRANES 2023; 13:825. [PMID: 37887997 PMCID: PMC10608613 DOI: 10.3390/membranes13100825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Microfluidic devices have gained subsequent attention due to their controlled manipulation of fluid for various biomedical applications. These devices can be used to study the behavior of fluid under several micrometer ranges within the channel. The major applications are the filtration of fluid, blood filtration and bio-medical analysis. For the filtration of water, as well as other liquids, the micro-filtration based microfluidic devices are considered as potential candidates to fulfill the desired conditions and requirements. The micro pore membrane can be designed and fabricated in such a way that it maximizes the removal of impurities from fluid. The low-cost micro-filtration method has been reported to provide clean fluid for biomedical applications and other purposes. In the work, anodic-aluminum-oxide-based membranes have been fabricated with different pore sizes ranging from 70 to 500 nm. A soft computing technique like fuzzy logic has been used to estimate the filtration parameters. Then, the finite-element-based analysis system software has been used to study the fluid flow through the double membrane. Then, filtration is performed by using a dual membrane and the clogging of the membrane has been studied after different filtration cycles using characterization like a scanning electron microscope. The filtration has been done to purify the contaminated fluid which has impurities like bacteria and protozoans. The membranes have been tested after each cycle to verify the results. The decrease in permeance with respect to the increase in the velocity of the fluid and the permeate volume per unit clearly depicts the removal of containments from the fluid after four and eight cycles of filtration. The results clearly show that the filtration efficiency can be improved by increasing the number of cycles and adding a dual membrane in the micro-fluidic device. The results show the potential of dual anodic aluminum oxide membranes for the effective filtration of fluids for biomedical applications, thereby offering a promising solution to address current challenges.
Collapse
Affiliation(s)
- Faheem Qasim
- Department of Electronics, Institute of Physics, GC University Lahore, Lahore 54000, Pakistan
| | - Muhammad Waseem Ashraf
- Department of Electronics, Institute of Physics, GC University Lahore, Lahore 54000, Pakistan
| | - Shahzadi Tayyaba
- Department of Information Sciences, Division of Science and Technology, Township Campus, University of Education, Lahore 54000, Pakistan;
| | - Muhammad Imran Tariq
- Department of Computer Science, Superior University Lahore, Lahore 54000, Pakistan;
| | - Agustín L. Herrera-May
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico;
| |
Collapse
|
9
|
Cigane U, Palevicius A, Janusas G. A Free-Standing Chitosan Membrane Prepared by the Vibration-Assisted Solvent Casting Method. MICROMACHINES 2023; 14:1419. [PMID: 37512730 PMCID: PMC10386678 DOI: 10.3390/mi14071419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Much attention has been paid to the surface modification of artificial skin barriers for the treatment of skin tissue damage. Chitosan is one of the natural materials that could be characterized by its biocompatibility. A number of methods for the preparation of chitosan membranes have been described in scientific articles, including solvent casting methods. This study investigates an improved technology to produce chitosan membranes. Thus, chitosan membranes were prepared using a vibration-assisted solvent casting method. First, aqueous acetic acid was used to pretreat chitosan. Then, free-standing chitosan membranes were prepared by solvent casting on nanoporous anodized aluminum oxide (AAO) membrane templates, allowing for the solvent to evaporate. Using finite element methods, a study was obtained showing the influence of chitosan solutions of different concentrations on the fluid flow into nanopores using high-frequency excitation. The height of the nanopillars and the surface area of the chitosan membrane were also evaluated. In this study, the surface area of the chitosan membrane was found to increase by 15, 10 and 6 times compared to the original flat surface area. The newly produced nanopillared chitosan membranes will be applicable in the fabrication of skin barriers due to the longer nanopillars on their surface and the larger surface area.
Collapse
Affiliation(s)
- Urte Cigane
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Street 56, 51424 Kaunas, Lithuania
| | - Arvydas Palevicius
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Street 56, 51424 Kaunas, Lithuania
| | - Giedrius Janusas
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Street 56, 51424 Kaunas, Lithuania
| |
Collapse
|
10
|
Schabikowski M, Kowalczyk P, Karczmarska A, Gawdzik B, Wypych A, Kramkowski K, Wrzosek K, Laskowski Ł. Aluminium(III) Oxide-The Silent Killer of Bacteria. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010401. [PMID: 36615599 PMCID: PMC9822385 DOI: 10.3390/molecules28010401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
In this article, we describe the antimicrobial properties of pristine anodised aluminium oxide matrices-the material many consider biologically inert. During a typical anodisation process, chromium and chlorine compounds are used for electropolishing and the removal of the first-step aluminium oxide. Matrices without the use of those harmful compounds were also fabricated and tested for comparison. The antibacterial tests were conducted on four strains of Escherichia coli: K12, R2, R3 and R4. The properties of the matrices were also compared to the three types of antibiotics: ciprofloxacin, bleomycin and cloxacillin using the Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. Moreover, DNA was isolated from the analysed bacteria which was additionally digested with formamidopyrimidine-DNA glycosylase (Fpg) protein from the group of repair glycosases. These enzymes are markers of modified oxidised bases in nucleic acids produced during oxidative stress in cells. Preliminary cellular studies, MIC and MBC tests and digestion with Fpg protein after modification of bacterial DNA suggest that these compounds may have greater potential as antibacterial agents than the aforementioned antibiotics. The described composites are highly specific for the analysed model Escherichia coli strains and may be used in the future as new substitutes for commonly used antibiotics in clinical and nosocomial infections in the progressing pandemic era. The results show much stronger antibacterial properties of the functionalised membranes on the action of bacterial membranes in comparison to the antibiotics in the Fpg digestion experiment. This is most likely due to the strong induction of oxidative stress in the cell through the breakdown of the analysed bacterial DNA.
Collapse
Affiliation(s)
- Mateusz Schabikowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
- Correspondence: (M.S.); (P.K.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
- Correspondence: (M.S.); (P.K.)
| | | | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Aleksandra Wypych
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Karol Wrzosek
- Department of Heart Diseases, The Medical Center of Postgraduate Education, 01-813 Warszawa, Poland
| | - Łukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
| |
Collapse
|
11
|
Cigane U, Palevicius A, Jurenas V, Pilkauskas K, Janusas G. Development and Analysis of Electrochemical Reactor with Vibrating Functional Element for AAO Nanoporous Membranes Fabrication. SENSORS (BASEL, SWITZERLAND) 2022; 22:8856. [PMID: 36433453 PMCID: PMC9695578 DOI: 10.3390/s22228856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nanoporous anodic aluminum oxide (AAO) is needed for a variety of purposes due to its unique properties, including high hardness, thermal stability, large surface area, and light weight. Nevertheless, the use of AAO in different applications is limited because of its brittleness. A new design of an electrochemical reactor with a vibrating element for AAO nanoporous membranes fabrication is proposed. The vibrating element in the form of a piezoceramic ring was installed inside the developed reactor, which allows to create a high-frequency excitation. Furthermore, mixing and vibration simulations in the novel reactor were carried out using ANSYS 17 and COMSOL Multiphysics 5.4 software, respectively. By theoretical calculations, the possibility to excite the vibrations of five resonant modes at different frequencies in the AAO membrane was shown. The theoretical results were experimentally confirmed. Five vibration modes at close to the theoretical frequencies were obtained in the novel reactor. Moreover, nanoporous AAO membranes were synthesized. The novel aluminum anodization technology results in AAO membranes with 82.6 ± 10 nm pore diameters and 43% porosity at 3.1 kHz frequency excitation and AAO membranes with 86.1 ± 10 nm pore diameters and 46% porosity at 4.1 kHz frequency excitation. Furthermore, the chemical composition of the membrane remained unchanged, and the hardness decreased. Nanoporous AAO has become less brittle but hard enough to be used for template synthesis.
Collapse
Affiliation(s)
- Urte Cigane
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania
| | - Arvydas Palevicius
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania
| | - Vytautas Jurenas
- Institute of Mechatronics, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania
| | - Kestutis Pilkauskas
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania
| | - Giedrius Janusas
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania
| |
Collapse
|
12
|
Kosasang O, Rattanawong S, Chumphongphan S. Influence of Anodization Condition on Hydrophobicity, Morphology, and Corrosion Resistance of 17-4PH Stainless Steel. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2022. [DOI: 10.3103/s1068375522040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
The Interrelation of Synthesis Conditions and Wettability Properties of the Porous Anodic Alumina Membranes. NANOMATERIALS 2022; 12:nano12142382. [PMID: 35889606 PMCID: PMC9320104 DOI: 10.3390/nano12142382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023]
Abstract
The results of studies on the wettability properties and preparation of porous anodic alumina (PAA) membranes with a 3.3 ± 0.2 μm thickness and a variety of pore sizes are presented in this article. The wettability feature results, as well as the fabrication processing characteristics and morphology, are presented. The microstructure effect of these surfaces on wettability properties is analyzed in comparison to outer PAA surfaces. The interfacial contact angle was measured for amorphous PAA membranes as-fabricated and after a modification technique (pore widening), with pore sizes ranging from 20 to 130 nm. Different surface morphologies of such alumina can be obtained by adjusting synthesis conditions, which allows the surface properties to change from hydrophilic (contact angle is approximately 13°) to hydrophobic (contact angle is 100°). This research could propose a new method for designing functional surfaces with tunable wettability. The potential applications of ordinary alumina as multifunctional films are demonstrated.
Collapse
|
14
|
Manzoor S, Tayyaba S, Ashraf MW. Simulation, analysis, fabrication and characterization of tunable AAO membrane for microfluidic filtration. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-219309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Microfluidic filtration is an essential process in many biomedical applications. Micro or nanoporous membranes are used for colloidal retention. During the membrane filtration process visualization of various phenomena is challenging. Theoretical models have been proposed to visualize the transport mechanism. In this work, ANSYS Fluent is used for 3D designing of the microfluidic system and Fuzzy simulations are used to study flow rate and velocity, to get the maximum benefit from Anodized Aluminium oxide membrane in practical applications. The proposed method exploits relations between driving force, membrane area, and fluid flow. After optimization of parameters for the filtration, the AAO membrane with desired pore diameter was fabricated using the two-step anodization method. Scanning electron microscope is used for characterization of fabricated AAO membrane. The simulated and theoretical results using computer-based programs are then compared for manipulation of flow rate during the filtration process. Along with the manipulation of flow rate from nanoporous membrane other challenges faced during the filtration process are also highlighted with possible solutions.
Collapse
Affiliation(s)
- Saher Manzoor
- Department of Physics, GC University Lahore, Lahore, Pakistan
| | - Shahzadi Tayyaba
- Department of Computer Engineering, The University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
15
|
Silver-Doped Anodic Alumina with Antimicrobial Properties—Synthesis and Characterization. METALS 2022. [DOI: 10.3390/met12030474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incessant need for the elimination of pathogenic viruses and multi-drug resistant bacteria has been a critical issue during recent decades, and requires the creation of new antimicrobial materials. Our study describes the production of silver-modified anodic alumina substrates by two methods, and estimation of their bactericidal activity. Aluminum oxide coatings were obtained via an anodization process of low-purity aluminum in an acidic bath for different time periods. The realization of silver infiltration into the pores of the alumina layers was carried out employing two different routes—electrochemical deposition, and in situ thermal reduction. The obtained films were characterized using scanning electron microscopy (SEM). Changes in the surface morphology and thickness of the initial oxide structures after hot water sealing procedure were observed. The presence of silver inside the pores of the alumina layers was also assessed. It was found that silver electrodeposition resulted in greater surface saturation. Large silver accumulations were observed on the thinner anodic films which experienced electroplating for longer time periods. Finally, the antibacterial activity of the modified alumina structures against Gram-negative (Escherichia coli) and Gram-positive (Bacillus cereus) bacteria was evaluated. The results demonstrate that silver deposits acquired by the electrochemical technique improve the bactericidal efficiency of the anodic aluminum oxide (AAO) layers. On the contrary, alumina structures with chemically embedded Ag particles did not show significant antibacterial properties. Overall, the present studies demonstrate that biological activity of silver-doped AAO films depends on the techniques used for their modification.
Collapse
|
16
|
Anodic Alumina Membranes: From Electrochemical Growth to Use as Template for Fabrication of Nanostructured Electrodes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The great success of anodic alumina membranes is due to their morphological features coupled to both thermal and chemical stability. The electrochemical fabrication allows accurate control of the porous structure: in fact, the membrane morphological characteristics (pore length, pore diameter and cell density) can be controlled by adjusting the anodizing parameters (bath, temperature, voltage and time). This article deals with both the fabrication and use of anodic alumina membranes. In particular, we will show the specific role of the addition of aluminum ions to phosphoric acid-based anodizing solution in modifying the morphology of anodic alumina membranes. Anodic alumina membranes were obtained at −1 °C in aqueous solutions of 0.4 M H3PO4 added with different amounts of Al(OH)3. For sake of completeness, the formation of PAA in pure 0.4 M H3PO4 in otherwise identical conditions was also investigated. We found that the presence of Al(OH)3 in solution highly affects the morphology of the porous layer. In particular, at high Al(OH)3 concentration (close to saturation) more compact porous layers were formed with narrow pores separated by thick oxide. The increase in the electric charge from 20 to 160 C cm−2 also contributes to modifying the morphology of porous oxide. The obtained anodic alumina membranes were used as a template to fabricate a regular array of PdCo alloy nanowires that is a valid alternative to Pt for hydrogen evolution reaction. The PdCo alloy was obtained by electrodeposition and we found that the composition of the nanowires depends on the concentration of two metals in the deposition solution.
Collapse
|
17
|
Eliciting Specific Electrochemical Reaction Behavior by Rational Design of a Red Phosphorus Electrode for Sodium-Ion Batteries. NANOMATERIALS 2021; 11:nano11113053. [PMID: 34835817 PMCID: PMC8625586 DOI: 10.3390/nano11113053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Due to the demand to upgrade from lithium-ion batteries (LIB), sodium-ion batteries (SIB) have been paid considerable attention for their high-energy, cost-effective, and sustainable battery system. Red phosphorus is one of the most promising anode candidates for SIBs, with a high theoretical specific capacity of 2596 mAh g−1 and in the discharge potential range of 0.01–0.8 V; however, it suffers from a low electrical conductivity, a substantial expansion of volume (~300%), and sluggish electron/ion kinetics. Herein, we have designed a well-defined electrode, which consists of red phosphorus, nanowire arrays encapsulated in the vertically aligned carbon nanotubes (P@C NWs), which were fabricated via a two-step, anodized-aluminum oxide template. The designed anode achieved a high specific capacity of 2250 mAh g−1 (87% of the theoretical capacity), and a stepwise analysis of the reaction behavior between sodium and red phosphorus was demonstrated, both of which have not been navigated in previous studies. We believe that our rational design of the red phosphorus electrode elicited the specific reaction mechanism revealed by the charge–discharge profiles, rendered excellent electrical conductivity, and accommodated volume expansion through the effective nano-architecture, thereby suggesting an efficient structure for the phosphorus anode to advance in the future.
Collapse
|
18
|
Tishkevich D, Vorobjova A, Shimanovich D, Kaniukov E, Kozlovskiy A, Zdorovets M, Vinnik D, Turutin A, Kubasov I, Kislyuk A, Dong M, Sayyed MI, Zubar T, Trukhanov A. Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1775. [PMID: 34361161 PMCID: PMC8308109 DOI: 10.3390/nano11071775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022]
Abstract
High-quality and compact arrays of Ni nanowires with a high ratio (up to 700) were obtained by DC electrochemical deposition into porous anodic alumina membranes with a distance between pores equal to 105 nm. The nanowire arrays were examined using scanning electron microscopy, X-ray diffraction analysis and vibration magnetometry at 300 K and 4.2 K. Microscopic and X-ray diffraction results showed that Ni nanowires are homogeneous, with smooth walls and mostly single-crystalline materials with a 220-oriented growth direction. The magnetic properties of the samples (coercivity and squareness) depend more on the length of the nanowires and the packing factor (the volume fraction of the nanowires in the membrane). It is shown that the dipolar interaction changes the demagnetizing field during a reversal magnetization of the Ni nanowires, and the general effective field of magnetostatic uniaxial shape anisotropy. The effect of magnetostatic interaction between ultra-long nanowires (with an aspect ratio of >500) in samples with a packing factor of ≥37% leads to a reversal magnetization state, in which a "curling"-type model of nanowire behavior is realized.
Collapse
Affiliation(s)
- Daria Tishkevich
- Laboratory of Magnetic Films Physics, Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
- Laboratory of Single Crystal Growth, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Alla Vorobjova
- Department of Micro and Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (A.V.); (D.S.)
| | - Dmitry Shimanovich
- Department of Micro and Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (A.V.); (D.S.)
| | - Egor Kaniukov
- Department of Technology of Electronic Materials, Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology, «MISIS», 119049 Moscow, Russia; (E.K.); (A.T.); (I.K.); (A.K.)
| | - Artem Kozlovskiy
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Nur-Sultan 010000, Kazakhstan; (A.K.); (M.Z.)
- Laboratory of Solid State Physics, Institute of Nuclear Physics, Almaty 050032, Kazakhstan
| | - Maxim Zdorovets
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Nur-Sultan 010000, Kazakhstan; (A.K.); (M.Z.)
- Laboratory of Solid State Physics, Institute of Nuclear Physics, Almaty 050032, Kazakhstan
- Department of Intelligent Information Technologies, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620075 Yekaterinburg, Russia
| | - Denis Vinnik
- Laboratory of Single Crystal Growth, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Andrei Turutin
- Department of Technology of Electronic Materials, Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology, «MISIS», 119049 Moscow, Russia; (E.K.); (A.T.); (I.K.); (A.K.)
- Department of Physics and I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ilya Kubasov
- Department of Technology of Electronic Materials, Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology, «MISIS», 119049 Moscow, Russia; (E.K.); (A.T.); (I.K.); (A.K.)
| | - Alexander Kislyuk
- Department of Technology of Electronic Materials, Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology, «MISIS», 119049 Moscow, Russia; (E.K.); (A.T.); (I.K.); (A.K.)
| | - Mengge Dong
- Department of Resource and Environment, Northeastern University, Shenyang 110819, China;
| | - M. I. Sayyed
- Department of Physics, Faculty of Science, Isra University, Amman 11622, Jordan;
- Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University (IAU), Dammam 31441, Saudi Arabia
| | - Tatiana Zubar
- Laboratory of Magnetic Films Physics, Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
- Laboratory of Single Crystal Growth, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Alex Trukhanov
- Laboratory of Magnetic Films Physics, Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
- Laboratory of Single Crystal Growth, South Ural State University, 454080 Chelyabinsk, Russia;
| |
Collapse
|
19
|
Lin YT, Wang LK, Cheng YT, Lee CK, Tsai HE. Molecularly Imprinted Polymer/Anodic Aluminum Oxide Nanocomposite Sensing Electrode for Low-Concentration Troponin T Detection for Patient Monitoring Applications. ACS Sens 2021; 6:2429-2435. [PMID: 34101435 DOI: 10.1021/acssensors.1c00738] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Various clinical studies have shown that myocardial troponin T (cTnT) is highly correlated with acute myocardial infarction (AMI). A highly sensitive molecularly imprinted polymer (MIP) sensing electrode for the detection of cTnT in patients' blood serum can enable cost-effective, rapid, and real-time testing for patients requiring intensive care. However, the existing MIP-based sensing electrode does not perform well for low-concentration detection of cTnT (<0.2 ng/mL). In this study, a new type of sensing electrode, an anodic aluminum oxide molecularly imprinted (MIP/AAO) nanocomposite electrode is developed. By incorporating the AAO structure, i.e., one-dimensional (1D) pillars, through a semiconductor-compatible process, the new electrode exhibits a great performance improvement, higher sensitivity of 1.08 × 10-4 and 4.25 × 10-4 in the low (<0.03 ng/mL)- and high-concentration regions, respectively, and a lower limit of detection (LoD) of 5.34 pg/mL. Because the composite electrode can maintain a linear characteristic in the measurement range of low-concentration cTnT, it can effectively improve the accuracy and reduce the error in cTnT measurement. In addition, the novel sensing electrode exhibits good reusability and specificity.
Collapse
Affiliation(s)
- Yu-Tsan Lin
- Microsystems Integration Laboratory, Institute of Electronics Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300, ROC
| | - Liang-Kai Wang
- Microsystems Integration Laboratory, Institute of Electronics Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300, ROC
| | - Yu-Ting Cheng
- Microsystems Integration Laboratory, Institute of Electronics Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300, ROC
| | - Chih-Kuo Lee
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan, ROC
- Department of Internal Medicine and Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Hsiao-En Tsai
- Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan 300, ROC
- Department of Internal Medicine and Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
20
|
Feng S, Ji W. Advanced Nanoporous Anodic Alumina-Based Optical Sensors for Biomedical Applications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.678275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Close-packed hexagonal array nanopores are widely used both in research and industry. A self-ordered nanoporous structure makes anodic aluminum oxide (AAO) one of the most popular nanomaterials. This paper describes the main formation mechanisms for AAO, the AAO fabrication process, and optical sensor applications. The paper is focused on four types of AAO-based optical biosensor technology: surface-Enhanced Raman Scattering (SERS), surface Plasmon Resonance (SPR), reflectometric Interference Spectroscopy (RIfS), and photoluminescence Spectroscopy (PL). AAO-based optical biosensors feature very good selectivity, specificity, and reusability.
Collapse
|
21
|
Pligovka A, Poznyak A, Norek M. Optical Properties of Porous Alumina Assisted Niobia Nanostructured Films-Designing 2-D Photonic Crystals Based on Hexagonally Arranged Nanocolumns. MICROMACHINES 2021; 12:589. [PMID: 34063841 PMCID: PMC8223973 DOI: 10.3390/mi12060589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/20/2023]
Abstract
Three types of niobia nanostructured films (so-called native, planarized, and column-like) were formed on glass substrates by porous alumina assisted anodizing in a 0.2 M aqueous solution of oxalic acid in a potentiostatic mode at a 53 V and then reanodizing in an electrolyte containing 0.5 M boric acid and 0.05 M sodium tetraborate in a potentiodynamic mode by raising the voltage to 230 V, and chemical post-processing. Anodic behaviors, morphology, and optical properties of the films have been investigated. The interference pattern of native film served as the basis for calculating the effective refractive index which varies within 1.75-1.54 in the wavelength range 190-1100 nm. Refractive index spectral characteristics made it possible to distinguish a number of absorbance bands of the native film. Based on the analysis of literature data, the identified oxide absorbance bands were assigned. The effective refractive index of native film was also calculated using the effective-medium models, and was in the range of 1.63-1.68. The reflectance spectra of all films show peaks in short- and long-wave regions. The presence of these peaks is due to the periodically varying refractive index in the layers of films in two dimensions. FDTD simulation was carried out and the morphology of a potential 2-D photonic crystal with 92% (wavelength 462 nm) reflectance, based on the third type of films, was proposed.
Collapse
Affiliation(s)
- Andrei Pligovka
- Research and Development Laboratory 4.10 “Nanotechnologies”, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus;
- Department of Micro- and Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus
| | - Alexander Poznyak
- Research and Development Laboratory 4.10 “Nanotechnologies”, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus;
- Department of Electronic Technology and Engineering, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus
| | - Małgorzata Norek
- Institute of Materials Science and Engineering, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland;
| |
Collapse
|
22
|
One-Dimensional (1D) Nanostructured Materials for Energy Applications. MATERIALS 2021; 14:ma14102609. [PMID: 34067754 PMCID: PMC8156553 DOI: 10.3390/ma14102609] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/12/2023]
Abstract
At present, the world is at the peak of production of traditional fossil fuels. Much of the resources that humanity has been consuming (oil, coal, and natural gas) are coming to an end. The human being faces a future that must necessarily go through a paradigm shift, which includes a progressive movement towards increasingly less polluting and energetically viable resources. In this sense, nanotechnology has a transcendental role in this change. For decades, new materials capable of being used in energy processes have been synthesized, which undoubtedly will be the cornerstone of the future development of the planet. In this review, we report on the current progress in the synthesis and use of one-dimensional (1D) nanostructured materials (specifically nanowires, nanofibers, nanotubes, and nanorods), with compositions based on oxides, nitrides, or metals, for applications related to energy. Due to its extraordinary surface-volume relationship, tunable thermal and transport properties, and its high surface area, these 1D nanostructures have become fundamental elements for the development of energy processes. The most relevant 1D nanomaterials, their different synthesis procedures, and useful methods for assembling 1D nanostructures in functional devices will be presented. Applications in relevant topics such as optoelectronic and photochemical devices, hydrogen production, or energy storage, among others, will be discussed. The present review concludes with a forecast on the directions towards which future research could be directed on this class of nanostructured materials.
Collapse
|
23
|
He HC, Chen YF, Wang SF, Shen MH, Lin YL, Chang CW, Sugiyama T, Chen JT. Laser-assisted nanowetting (LAN): Hierarchical Nanocomposites containing polymer/gold nanorods on breath figure films. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Abstract
Sulfuric acid anodization is one of the common methods used to improve corrosion resistance of aluminum alloys. Organic acids can be added to the sulfuric acid electrolyte in order to improve the properties of the anodized aluminum produced. In this study, the use of gallic acid as an additive to the sulfuric acid anodization of AA1100 was explored. The effect of varying anodization current density and gallic acid concentration on the properties of anodized aluminum samples was observed using electrochemical impedance spectroscopy, linear polarization, and scanning electron microscopy. It was observed that the corrosion resistance of samples anodized in gallic-sulfuric acid solution at 10 mA·cm−2 is lower than samples anodized in sulfuric acid. It was also observed that higher anodization current density can lead to lower corrosion resistances for aluminum samples anodized in gallic-sulfuric acid solution. However, samples anodized at 5 mA·cm−2 and at a gallic acid concentration of 5 g·L−1 showed better corrosion performance than the samples anodized in sulfuric acid only. This suggests that the use of low amounts of gallic acid as an additive for sulfuric acid anodization can lead to better corrosion resistances for anodized aluminum.
Collapse
|
25
|
Low-Cost Nanostructured Coating of Anodic Aluminium Oxide Synthesized in Sulphuric Acid as Electrolyte. COATINGS 2021. [DOI: 10.3390/coatings11030309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The anodic oxidation of aluminium is an electrochemical technique that allows obtaining nanostructures with easily adjustable morphology depending on the synthesis variables, for its application in medicine, engineering, biotechnology, electronics, etc. In this work, low-cost aluminium oxide nanostructured films were synthesized and morphologically characterized using two anodization steps in sulphuric acid, varying the concentration and temperature of the electrolyte and anodization voltage. The order of the porous matrix, pore diameter, interpore distance, pore density, thickness, and porosity were measured and statistically analyzed. The results showed that under the proposed conditions it is possible to synthesize low-cost nanoporous aluminium oxide films, with a short-range ordering, being the best ordering conditions 10 °C and 0.3 M sulphuric acid at 20 V and 5 °C and 2 M sulphuric acid at 15 V. Furthermore, it was determined that the pore diameter and the interpore distance vary proportionally with the voltage, that the pore density decreases with the voltage and increases with the concentration of the electrolyte, and that the thickness of the oxide film increases with electrolyte concentration, temperature, and anodization voltage.
Collapse
|
26
|
Dielectric study of nanoporous alumina fabricated by two-step anodization technique. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Dutta D, Markhoff J, Suter N, Rezwan K, Brüggemann D. Effect of Collagen Nanofibers and Silanization on the Interaction of HaCaT Keratinocytes and 3T3 Fibroblasts with Alumina Nanopores. ACS APPLIED BIO MATERIALS 2021; 4:1852-1862. [DOI: 10.1021/acsabm.0c01538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Deepanjalee Dutta
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Jana Markhoff
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Naiana Suter
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
28
|
Cheng Q, Qin Y, Gianchandani YB. A Bidirectional Knudsen Pump with a 3D-Printed Thermal Management Platform. MICROMACHINES 2021; 12:mi12010058. [PMID: 33418966 PMCID: PMC7825326 DOI: 10.3390/mi12010058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/02/2022]
Abstract
This paper reports on a bidirectional Knudsen pump (KP) with a 3D-printed thermal management platform; the pump is intended principally for microscale gas chromatography applications. Knudsen pumps utilize thermal transpiration, where non-viscous flow is created against a temperature gradient; no moving parts are necessary. Here, a specialized design leverages 3D direct metal laser sintering and provides thermal management that minimizes loss from a joule heater located on the outlet side of KP, while maintaining convective cooling on the inlet side. The 3D-KP design is integrative and compact, and is specifically intended to simplify assembly. The 3D-KP pumping area is ≈1.1 cm2; with the integrated heat sink, the structure has a footprint of 64.2 × 64.2 mm2. Using mixed cellulose ester (MCE) membranes with a 25 nm average pore diameter and 525 μm total membrane thickness as the pumping media, the 3D-KP achieves a maximum flow rate of 0.39 sccm and blocking pressure of 818.2 Pa at 2 W input power. The operating temperature is 72.2 °C at ambient room temperature. In addition to MCE membranes, anodic aluminum oxide (AAO) membranes are evaluated as the pumping media; these AAO membranes can accommodate higher operating temperatures than MCE membranes. The 3D-KP with AAO membranes with 0.2 μm average pore diameter and 531 μm total membrane thickness achieves a maximum flow rate of 0.75 sccm and blocking pressure of 496.1 Pa at 9.8 W at an operating temperature of 191.2 °C.
Collapse
Affiliation(s)
- Qisen Cheng
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (Q.C.); (Y.Q.); (Y.B.G.)
| | - Yutao Qin
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (Q.C.); (Y.Q.); (Y.B.G.)
| | - Yogesh B. Gianchandani
- Center for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (Q.C.); (Y.Q.); (Y.B.G.)
| |
Collapse
|
29
|
Kim H, Gao S, Hahm MG, Ahn CW, Jung HY, Jung YJ. Graphitic Nanocup Architectures for Advanced Nanotechnology Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1862. [PMID: 32957578 PMCID: PMC7558418 DOI: 10.3390/nano10091862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The synthesis of controllable hollow graphitic architectures can engender revolutionary changes in nanotechnology. Here, we present the synthesis, processing, and possible applications of low aspect ratio hollow graphitic nanoscale architectures that can be precisely engineered into morphologies of (1) continuous carbon nanocups, (2) branched carbon nanocups, and (3) carbon nanotubes-carbon nanocups hybrid films. These complex graphitic nanocup-architectures could be fabricated by using a highly designed short anodized alumina oxide nanochannels, followed by a thermal chemical vapor deposition of carbon. The highly porous film of nanocups is mechanically flexible, highly conductive, and optically transparent, making the film attractive for various applications such as multifunctional and high-performance electrodes for energy storage devices, nanoscale containers for nanogram quantities of materials, and nanometrology.
Collapse
Affiliation(s)
- Hyehee Kim
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA; (H.K.); (S.G.)
| | - Sen Gao
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA; (H.K.); (S.G.)
| | - Myung Gwan Hahm
- Department of Materials Science and Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, Korea;
| | - Chi Won Ahn
- National Nanofab Center, KAIST, 291 Daehak-Ro, Yusung-Gu, Daejeon 34141, Korea;
| | - Hyun Young Jung
- Department of Energy Engineering, Gyeongnam National University of Science and Technology, Jinju-si, Gyeongnam 52725, Korea;
| | - Yung Joon Jung
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA; (H.K.); (S.G.)
- National Nanofab Center, KAIST, 291 Daehak-Ro, Yusung-Gu, Daejeon 34141, Korea;
| |
Collapse
|
30
|
Stroyuk O, Raievska O, Zahn DRT. Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Adv 2020; 10:34059-34087. [PMID: 35519070 PMCID: PMC9056768 DOI: 10.1039/d0ra05580h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
We provide a critical review of the current state of the synthesis and applications of nano- and micro-tubes of layered graphitic carbon nitride. This emerging material has a huge potential for light-harvesting applications, including light sensing, artificial photosynthesis, selective photocatalysis, hydrogen storage, light-induced motion, membrane technologies, and can become a major competitor for such established materials as carbon and titania dioxide nanotubes. Graphitic carbon nitride tubes (GCNTs) combine visible-light sensitivity, high charge carrier mobility, and exceptional chemical/photochemical stability, imparting this material with unrivaled photocatalytic activities in photosynthetic processes, such as water splitting and carbon dioxide reduction. The unique geometric GCNT structure and versatility of possible chemical modifications allow new photocatalytic applications of GCNTs to be envisaged including selective photocatalysts of multi-electron processes as well as light-induced and light-directed motion of GCNT-based microswimmers. Closely-packed arrays of aligned GCNTs show great promise as multifunctional membrane materials for the light energy conversion and storage, light-driven pumping of liquids, selective adsorption, and electrochemical applications. These emerging applications require synthetic routes to GCNTs with highly controlled morphological parameters and composition to be available. We recognize three major strategies for the GCNT synthesis including templating, supramolecular assembling of precursors, and scrolling of nano-/microsheets, and outline promising routes for further progress of these approaches in the light of the most important emerging applications of GCNTs.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN) Immerwahrstr. 2 91058 Erlangen Germany
- L.V. Pysarzhevsky Institute of Physical Chemistry, Nat. Acad. of Science of Ukraine 03028 Kyiv Ukraine
| | - Oleksandra Raievska
- L.V. Pysarzhevsky Institute of Physical Chemistry, Nat. Acad. of Science of Ukraine 03028 Kyiv Ukraine
- Semiconductor Physics, Chemnitz University of Technology D-09107 Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology D-09107 Chemnitz Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology D-09107 Chemnitz Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology D-09107 Chemnitz Germany
| |
Collapse
|
31
|
Mohan A, Ulmer U, Hurtado L, Loh J, Li YF, Tountas AA, Krevert C, Chan C, Liang Y, Brodersen P, Sain MM, Ozin GA. Hybrid Photo- and Thermal Catalyst System for Continuous CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33613-33620. [PMID: 32609486 DOI: 10.1021/acsami.0c06232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterogeneous thermal catalytic processes are vital for industrial production of fuels, fertilizers, and other chemicals necessary for sustaining human life. However, these processes are highly energy-intensive, requiring a vast consumption of fossil fuels. An emerging class of heterogeneous catalysts that are thermally driven but also exhibit a photochemically enhanced rate can potentially reduce process energy intensity by partially substituting conventional heat (where fossil fuels are needed) with solar energy. Such catalyst systems have yet to be practically utilized. Here, we demonstrate a compact electrically heated photo- and thermal annular reactor module to reduce CO2 to CO, via the reverse water gas shift reaction. A first-principles-based design approach was taken in developing a SiO2 on an Al photo- and thermal catalyst system for the model photo- and thermal indium oxide hydroxide (In2O3-x(OH)y) catalysts. A 5-fold light enhancement in the CO production rate and over 70 h of stable CO production were achieved. This represents the highest light enhancement effect reported for this model photocatalyst to date. The reactor presented herein allows continuous operation and a significant reduction of 31% in heater power consumption when provided with an additional 2 suns of irradiation, demonstrating the strong photo- and thermal-harvesting performances of the catalyst system developed in this work.
Collapse
Affiliation(s)
- Abhinav Mohan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, ON M5S 3G8, Canada
| | - Ulrich Ulmer
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S 3H6, Canada
| | - Lourdes Hurtado
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S 3H6, Canada
| | - Joel Loh
- Department of Electrical & Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada
| | - Young Feng Li
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S 3H6, Canada
| | - Athanasios A Tountas
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Carola Krevert
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S 3H6, Canada
| | - Chakyu Chan
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S 3H6, Canada
| | - Yilei Liang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Peter Brodersen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Mohini M Sain
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, ON M5S 3G8, Canada
| | - Geoffrey A Ozin
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
32
|
Białek E, Włodarski M, Norek M. Influence of Anodization Temperature on Geometrical and Optical Properties of Porous Anodic Alumina(PAA)-Based Photonic Structures. MATERIALS 2020; 13:ma13143185. [PMID: 32708744 PMCID: PMC7411978 DOI: 10.3390/ma13143185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
In this work, the influence of a wide range anodizing temperature (5–30 °C) on the growth and optical properties of PAA-based distributed Bragg reflector (DBR) was studied. It was demonstrated that above 10 °C both structural and photonic properties of the DBRs strongly deteriorates: the photonic stop bands (PSBs) decay, broaden, and split, which is accompanied by the red shift of the PSBs. However, at 30 °C, new bands in transmission spectra appear including one strong and symmetric peak in the mid-infrared (MIR) spectral region. The PSB in the MIR region is further improved by a small modification of the pulse sequence which smoothen and sharpen the interfaces between consecutive low and high refractive index layers. This is a first report on PAA-based DBR with a good quality PSB in MIR. Moreover, it was shown that in designing good quality DBRs a steady current recovery after subsequent application of high potential (UH) pulses is more important than large contrast between low and high potential pulses (UH-UL contrast). Smaller UH-UL contrast helps to better control the current evolution during pulse anodization. Furthermore, the lower PSB intensity owing to the smaller UH-UL contrast can be partially compensated by the higher anodizing temperature.
Collapse
Affiliation(s)
- Ewelina Białek
- Institute of Materials Science and Engineering, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Str. gen Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Maksymilian Włodarski
- Institute of Optoelectronics, Military University of Technology, Str. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Małgorzata Norek
- Institute of Materials Science and Engineering, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Str. gen Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
33
|
Patel Y, Janusas G, Palevicius A, Vilkauskas A. Development of Nanoporous AAO Membrane for Nano Filtration Using the Acoustophoresis Method. SENSORS 2020; 20:s20143833. [PMID: 32660052 PMCID: PMC7412301 DOI: 10.3390/s20143833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
Abstract
A concept of a nanoporous anodic aluminum oxide (AAO) membrane as a vibro-active micro/nano-filter in a micro hydro mechanical system for the filtration, separation, and manipulation of bioparticles is reported in this paper. For the fabrication of a nanoporous AAO, a two-step mild anodization (MA) and hard anodization (HA) technique was used. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to analyze the surface morphology of nanoporous AAO. A nanoporous structure with a pore diameter in the range of 50–90 nm, an interpore distance of 110 nm, and an oxide layer thickness of 0.12 mm with 60.72% porosity was obtained. Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDS) were employed to evaluate AAO chemical properties. The obtained results showed that the AAO structure is of hexagonal symmetry and showed where Al2O3 is dominant. The hydrophobic properties of the nanoporous surface were characterized by water contact angle measurement. It was observed that the surface of the nanoporous AAO membrane is hydrophilic. Furthermore, to determine whether a nanomembrane could function as a vibro-active nano filter, a numerical simulation was performed using COMSOL Multiphysics 5.4 (COMSOL Inc, Stockholm, Sweden). Here, a membrane was excited at a frequency range of 0–100 kHz for surface acoustics wave (SAW) distribution on the surface of the nanoporous AAO using a PZT 5H cylinder (Piezo Hannas, Wuhan, China). The SAW, standing acoustic waves, and travelling acoustic waves of different wavelengths were excited to the fabricated AAO membrane and the results were compared with experimental ones, obtained from non-destructive testing method 3D scanning vibrometer (PSV-500-3D-HV, Polytec GmbH, Waldbronn, Germany) and holographic interferometry system (PRISM, Hy-Tech Forming Systems (USA), Phoenix, AZ, USA). Finally, a simulation of a single nanotube was performed to analyze the acoustic pressure distribution and time, needed to center nanoparticles in the nanotube.
Collapse
|
34
|
Davoodi E, Zhianmanesh M, Montazerian H, Milani AS, Hoorfar M. Nano-porous anodic alumina: fundamentals and applications in tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:60. [PMID: 32642974 DOI: 10.1007/s10856-020-06398-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Recently, nanomaterials have been widely utilized in tissue engineering applications due to their unique properties such as the high surface to volume ratio and diversity of morphology and structure. However, most methods used for the fabrication of nanomaterials are rather complicated and costly. Among different nanomaterials, anodic aluminum oxide (AAO) is a great example of nanoporous structures that can easily be engineered by changing the electrolyte type, anodizing potential, current density, temperature, acid concentration and anodizing time. Nanoporous anodic alumina has often been used for mammalian cell culture, biofunctionalization, drug delivery, and biosensing by coating its surface with biocompatible materials. Despite its wide application in tissue engineering, thorough in vivo and in vitro studies of AAO are still required to enhance its biocompatibility and thereby pave the way for its application in tissue replacements. Recognizing this gap, this review article aims to highlight the biomedical potentials of AAO for applications in tissue replacements along with the mechanism of porous structure formation and pore characteristics in terms of fabrication parameters.
Collapse
Affiliation(s)
- Elham Davoodi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Masoud Zhianmanesh
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Shabanloo Street, Tehran, 16788, Iran
| | - Hossein Montazerian
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
35
|
Yin S, Xie Y, Li R, Zhang J, Zhou T. Polymer–Metal Hybrid Material with an Ultra-High Interface Strength Based on Mechanical Interlocking via Nanopores Produced by Electrochemistry. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shuya Yin
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Ruilong Li
- Coal Chemical Industry Technology Research Institute, Ningxia Coal Industry Co., Ltd., China Energy Group, Yinchuan 750411, China
| | - Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
36
|
Tkalčević M, Gotić M, Basioli L, Lihter M, Dražić G, Bernstorff S, Vuletić T, Mičetić M. Deposition of Thin Alumina Films Containing 3D Ordered Network of Nanopores on Porous Substrates. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2883. [PMID: 32604995 PMCID: PMC7372343 DOI: 10.3390/ma13132883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Self-supporting thin films containing nanopores are very promising materials for use for multiple applications, especially in nanofiltration. Here, we present a method for the production of nanomembranes containing a 3D ordered network of nanopores in an alumina matrix, with a diameter of about 1 nm and a body centered tetragonal structure of the network nodes. The material is produced by the magnetron sputtering deposition of a 3D ordered network of Ge nanowires in an alumina matrix, followed by a specific annealing process resulting in the evaporation of Ge. We demonstrate that the films can be easily grown on commercially available alumina substrates containing larger pores with diameters between 20 and 400 nm. We have determined the minimal film thickness needed to entirely cover the larger pores. We believe that these films have the potential for applications in the fields of filtration, separation and sensing.
Collapse
Affiliation(s)
- Marija Tkalčević
- Ruđer Bošković Institute, Division of Materials Physics, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.); (M.G.); (L.B.)
| | - Marijan Gotić
- Ruđer Bošković Institute, Division of Materials Physics, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.); (M.G.); (L.B.)
| | - Lovro Basioli
- Ruđer Bošković Institute, Division of Materials Physics, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.); (M.G.); (L.B.)
| | - Martina Lihter
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland;
| | - Goran Dražić
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia;
| | | | - Tomislav Vuletić
- Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia;
| | - Maja Mičetić
- Ruđer Bošković Institute, Division of Materials Physics, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.); (M.G.); (L.B.)
| |
Collapse
|
37
|
Nanoporous anodic alumina (NAA) prepared in different electrolytes with different pore sizes for humidity sensing. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04683-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Kovaleva EG, Molochnikov LS, Tambasova D, Marek A, Chestnut M, Osipova VA, Antonov DO, Kirilyuk IA, Smirnov AI. Electrostatic properties of inner nanopore surfaces of anodic aluminum oxide membranes upon high temperature annealing revealed by EPR of pH-sensitive spin probes and labels. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Ashraf MW, Manzoor S, Shahzad Sarfraz M, Wasim MF, Ali B, Akhlaq M, Rujita C, Popa A. Fabrication and fuzzy analysis of AAO membrane with manipulated pore diameter for applications in biotechnology. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-179673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Saher Manzoor
- Department of Physics (Electronics), GC University, Lahore, Pakistan
| | - Muhammad Shahzad Sarfraz
- Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Chiniot-Faisalabad Campus, Pakistan
| | | | - Basit Ali
- Department of Physics (Electronics), GC University, Lahore, Pakistan
| | - Maham Akhlaq
- Department of Physics (Electronics), GC University, Lahore, Pakistan
| | | | | |
Collapse
|
40
|
Sabirova A, Pisig F, Rayapuram N, Hirt H, Nunes SP. Nanofabrication of Isoporous Membranes for Cell Fractionation. Sci Rep 2020; 10:6138. [PMID: 32273573 PMCID: PMC7145805 DOI: 10.1038/s41598-020-62937-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/15/2020] [Indexed: 12/14/2022] Open
Abstract
Cell fractionations and other biological separations frequently require several steps. They could be much more effectively done by filtration, if isoporous membranes would be available with high pore density, and sharp pore size distribution in the micro- and nanoscale. We propose a combination of two scalable methods, photolithography and dry reactive ion etching, to fabricate a series of polyester membranes with isopores of size 0.7 to 50 μm and high pore density with a demonstrated total area of 38.5 cm2. The membranes have pore sizes in the micro- and submicro-range, and pore density 10-fold higher than track-etched analogues, which are the only commercially available isoporous polymeric films. Permeances of 220,000 L m−2 h−1bar−1 were measured with pore size 787 nm. The method does not require organic solvents and can be applied to many homopolymeric materials. The pore reduction from 2 to 0.7 μm was obtained by adding a step of chemical vapor deposition. The isoporous system was successfully demonstrated for the organelle fractionation of Arabidopsis homogenates and could be potentially extended to other biological fractionations.
Collapse
Affiliation(s)
- Ainur Sabirova
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia
| | - Florencio Pisig
- King Abdullah University of Science and Technology (KAUST), Nanofabrication Core Laboratory, 23955-6900, Thuwal, Saudi Arabia
| | - Naganand Rayapuram
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Center for Desert Agriculture, 23955-6900, Thuwal, Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Center for Desert Agriculture, 23955-6900, Thuwal, Saudi Arabia
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
41
|
He H, Yan A, Karapala VK, Wang S, Shen M, Lin Y, Chen Y, Sugiyama T, Chen J. Laser‐Assisted Nanowetting: Selective Fabrication of Polymer/Gold Nanorod Arrays Using Anodic Aluminum Oxide Templates. Macromol Rapid Commun 2020; 41:e2000035. [DOI: 10.1002/marc.202000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Hung‐Chieh He
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Ai‐Ling Yan
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | | | - Shun‐Fa Wang
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Ming‐Hui Shen
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Yu‐Liang Lin
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Yi‐Fan Chen
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Teruki Sugiyama
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
- Graduate School of Materials ScienceNara Institute of Science and Technology Ikoma Nara 630‐0192 Japan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Jiun‐Tai Chen
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
42
|
Vorobjova A, Tishkevich D, Shimanovich D, Zdorovets M, Kozlovskiy A, Zubar T, Vinnik D, Dong M, Trukhanov S, Trukhanov A, Fedosyuk V. Electrochemical Behaviour of Ti/Al 2O 3/Ni Nanocomposite Material in Artificial Physiological Solution: Prospects for Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E173. [PMID: 31963901 PMCID: PMC7022230 DOI: 10.3390/nano10010173] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Inorganic-based nanoelements such as nanoparticles (nanodots), nanopillars and nanowires, which have at least one dimension of 100 nm or less, have been extensively developed for biomedical applications. Furthermore, their properties can be varied by controlling such parameters as element shape, size, surface functionalization, and mutual interactions. In this study, Ni-alumina nanocomposite material was synthesized by the dc-Ni electrodeposition into a porous anodic alumina template (PAAT). The structural, morphological, and corrosion properties were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical techniques (linear sweep voltammetry). Template technology was used to obtain Ni nanopillars (NiNPs) in the PAAT nanocomposite. Low corrosion current densities (order of 0.5 µA/cm2) were indicators of this nanocomposite adequate corrosion resistance in artificial physiological solution (0.9% NaCl). A porous anodic alumina template is barely exposed to corrosion and performs protective functions in the composite. The results may be useful for the development of new nanocomposite materials technologies for a variety of biomedical applications including catalysis and nanoelectrodes for sensing and fuel cells. They are also applicable for various therapeutic purposes including targeting, diagnosis, magnetic hyperthermia, and drug delivery. Therefore, it is an ambitious task to research the corrosion resistance of these magnetic nanostructures in simulated body fluid.
Collapse
Affiliation(s)
- Alla Vorobjova
- Department of Micro- and Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (A.V.); (D.S.)
| | - Daria Tishkevich
- Laboratory of Magnetic Films Physics, Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (T.Z.); (S.T.); (A.T.); (V.F.)
- Laboratory of Single Crystal Growth, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Dmitriy Shimanovich
- Department of Micro- and Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (A.V.); (D.S.)
| | - Maxim Zdorovets
- The Institute of Nuclear Physics, Almaty 050032, Kazakhstan; (M.Z.); (A.K.)
- L.N. Gumilyov Eurasian National University, Nur-Sultan 010008, Kazakhstan
- Ural Federal University named after the First President of Russia B.N. Yeltsin, 620075 Yekaterinburg, Russia
| | - Artem Kozlovskiy
- The Institute of Nuclear Physics, Almaty 050032, Kazakhstan; (M.Z.); (A.K.)
| | - Tatiana Zubar
- Laboratory of Magnetic Films Physics, Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (T.Z.); (S.T.); (A.T.); (V.F.)
- Laboratory of Single Crystal Growth, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Denis Vinnik
- Laboratory of Single Crystal Growth, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Mengge Dong
- Department of Resource and Environment, Northeastern University, Shenyang 110819, China;
| | - Sergey Trukhanov
- Laboratory of Magnetic Films Physics, Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (T.Z.); (S.T.); (A.T.); (V.F.)
- Laboratory of Single Crystal Growth, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Alex Trukhanov
- Laboratory of Magnetic Films Physics, Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (T.Z.); (S.T.); (A.T.); (V.F.)
- Laboratory of Single Crystal Growth, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Valery Fedosyuk
- Laboratory of Magnetic Films Physics, Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (T.Z.); (S.T.); (A.T.); (V.F.)
| |
Collapse
|
43
|
Ultra-slow growth rate: Accurate control of the thickness of porous anodic aluminum oxide films. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.106602] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Mesoporous Composite Membrane Based on Block Copolymer Self-Assembly. Macromol Res 2019. [DOI: 10.1007/s13233-020-8013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Zhou Z, Nonnenmann SS. Progress in Nanoporous Templates: Beyond Anodic Aluminum Oxide and Towards Functional Complex Materials. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2535. [PMID: 31395822 PMCID: PMC6719947 DOI: 10.3390/ma12162535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 11/29/2022]
Abstract
Successful synthesis of ordered porous, multi-component complex materials requires a series of coordinated processes, typically including fabrication of a master template, deposition of materials within the pores to form a negative structure, and a third deposition or etching process to create the final, functional template. Translating the utility and the simplicity of the ordered nanoporous geometry of binary oxide templates to those comprising complex functional oxides used in energy, electronic, and biology applications has been met with numerous critical challenges. This review surveys the current state of commonly used complex material nanoporous template synthesis techniques derived from the base anodic aluminum oxide (AAO) geometry.
Collapse
Affiliation(s)
- Zimu Zhou
- Department of Mechanical and Industrial Engineering, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | - Stephen S Nonnenmann
- Department of Mechanical and Industrial Engineering, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
46
|
Enhanced sunlight-driven photocatalytic performance of Ag–ZnO hybrid nanoflowers. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01076-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Vandekerkhove A, Negahdar L, Glas D, Stassen I, Matveev S, Meeldijk JD, Meirer F, De Vos DE, Weckhuysen BM. Synthesis and Characterization of Ru-Loaded Anodized Aluminum Oxide for Hydrogenation Catalysis. ChemistryOpen 2019; 8:532-538. [PMID: 31061778 PMCID: PMC6488200 DOI: 10.1002/open.201900091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 12/03/2022] Open
Abstract
Anodized aluminum oxides (AAOs) are synthesized and used as catalyst support in combination with Ru as metal in hydrogenation catalysis. SEM and TEM analysis of the as-synthesized AAOs reveal uniform, ordered nanotubes with pore diameters of 18 nm, which are further characterized with Kr physisorption, XRD and FTIR spectroscopy. After impregnation of the AAOs with Ru, the presence of Ru nanoparticles inside the tubular pores is evidenced clearly for the first time via HAADF-STEM-EDX. The Ru-AAOs have been tested for catalytic activity, which showed high conversion and selectivity for the hydrogenation of toluene and butanal.
Collapse
Affiliation(s)
- Annelies Vandekerkhove
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200F, P.O. 24613001 HeverleeBelgium
| | - Leila Negahdar
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Daan Glas
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200F, P.O. 24613001 HeverleeBelgium
| | - Ivo Stassen
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200F, P.O. 24613001 HeverleeBelgium
| | - Serguei Matveev
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Johannes D. Meeldijk
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Dirk E. De Vos
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200F, P.O. 24613001 HeverleeBelgium
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
48
|
Abstract
The development of biosensors for a range of analytes from small molecules to proteins to oligonucleotides is an intensely active field. Detection methods based on electrochemistry or on localized surface plasmon responses have advanced through using nanostructured electrodes prepared by electrodeposition, which is capable of preparing a wide range of different structures. Supported nanoparticles can be prepared by electrodeposition through applying fixed potentials, cycling potentials, and fixed current methods. Nanoparticle sizes, shapes, and surface densities can be controlled, and regular structures can be prepared by electrodeposition through templates. The incorporation of multiple nanomaterials into composite films can take advantage of the superior and potentially synergistic properties of each component. Nanostructured electrodes can provide supports for enzymes, antibodies, or oligonucleotides for creating sensors against many targets in areas such as genomic analysis, the detection of protein antigens, or the detection of small molecule metabolites. Detection can also be performed using electrochemical methods, and the nanostructured electrodes can greatly enhance electrochemical responses by carefully designed schemes. Biosensors based on electrodeposited nanostructures can contribute to the advancement of many goals in bioanalytical and clinical chemistry.
Collapse
|
49
|
Synthesis and Morphological Characterization of Nanoporous Aluminum Oxide Films by Using a Single Anodization Step. COATINGS 2019. [DOI: 10.3390/coatings9020115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanoporous anodic aluminum oxide (AAO) films play an important role in nanotechnology due to their easily adjustable morphological properties and wide range of applications. Thus, a deep and systematic characterization of the morphological properties of these coatings is essential. The most important variables in the synthesis of nanoporous AAO films include the anodization voltage, nature, concentration and temperature of the electrolyte, which, combined, result in pores of different sizes and geometries. In the present work, AA 1050 alloy was used to synthesize AAO films, using 0.3 and 0.9 M oxalic acid as the electrolyte and combining different electrolyte temperatures (20, 30 and 40 °C) and anodizing voltages (30, 40 and 60 V), with the aim to correlate the morphological properties of the coatings with the synthesis parameters of a single anodization step. The coatings obtained were characterized by optical microscopy and scanning electron microscopy, determining pore diameter, interpore distance, pore density and coating thickness. The results showed that, by varying the anodic synthesis conditions, it is possible to obtain coatings with a pore diameter between 21 and 97 nm, an interpore distance between 59 and 138 nm, pore density between 2.8 × 1010 and 5.4 × 109 pores/cm2 and thicknesses between 15 and 145 µm. In this way, the right combination of synthesis variables allows synthesizing AAO coatings with morphological characteristics best suited to each particular application.
Collapse
|
50
|
Yoo S, Cho S, Kim D, Ih S, Lee S, Zhang L, Li H, Lee JY, Liu L, Park S. 3D PtAu nanoframe superstructure as a high-performance carbon-free electrocatalyst. NANOSCALE 2019; 11:2840-2847. [PMID: 30676593 DOI: 10.1039/c8nr08231f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we demonstrate how to synthesize a three-dimensional (3D) ordered PtAu nanoframe superstructure and evaluated its performance as an electrocatalyst. Compared to carbon supported platinum (Pt) nanocrystal electrocatalysts (wherein the aggregation- and carbon corrosion-induced fast degradation is a well-known drawback), the 3D PtAu nanoframe superstructure is free from aggregation and carbon corrosion. The 3D superstructure was self-assembled via drop-casting and evaporation using truncated octahedral PtAu nanoframes (TOh PtAu NFs) as building blocks that were produced by controlled wet-chemical etching of a TOh Au core whose edges and vertexes were selectively deposited with Pt atoms. Density functional theory calculations revealed that the surface alloy state of PtAu gave rise to an enhanced catalytic activity compared to pure Pt. Experimental investigations showed that such 3D superstructure electrocatalysts exhibited excellent mass transfer efficiency, higher catalytic activity and stability towards the methanol oxidation reaction (MOR) compared to a commercial Pt/C catalyst. The demonstrated 3D nanoframe superstructure shows great potential for practical catalytic application due to its high structural stability, high catalytic activity, high surface area and ease of fabrication.
Collapse
Affiliation(s)
- Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|