1
|
Aziz SB, Brza MA, Abdulwahid RT, Hassan J, Tahir HB, Al-Saeedi SI, Abdullah RM, Hadi JM. Electrochemical properties of a novel EDLC derived from plasticized biopolymer based electrolytes with valuable energy density close to NiMH batteries. Sci Rep 2023; 13:21139. [PMID: 38036635 PMCID: PMC10689844 DOI: 10.1038/s41598-023-48417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023] Open
Abstract
This study introduces a novel system of solid electrolytes for electrical double-layer capacitors (EDLCs) utilizing biopolymer electrolytes with high energy density comparable to NiMH batteries. To prepare the electrolytes, a proton-conducting plasticized chitosan: poly(2-oxazoline) (POZ) with good film-forming properties was fabricated using a solution casting technique, and ammonium trifluoromethanesulfonate (NH4CF3SO3) salt was employed as a proton provider. Various glycerol concentrations were incorporated into the chitosan:POZ: NH4CF3SO3 system to enhance the ionic conductivity and fully transparent films were obtained. The impedance technique was utilized to determine the conductivity and measure the diffusion coefficient, mobility, and number density of ions. The electrochemical measurements, including linear sweep voltammetry (LSV) and cyclic voltammetry (CV), validated the high performance of the system. The EDLC was examined using galvanostatic charge-discharge (GCD) equipment, and the results revealed an energy density of 43 Wh/kg, specific capacitance of 300 F/g, and power density of 1800 W/kg over 500 cycles. These findings suggest that it is plausible to develop EDLCs that resemble batteries, making them a more desirable energy storage option for the industry.
Collapse
Affiliation(s)
- Shujahadeen B Aziz
- Research and Development Center, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, 46001, Iraq.
- Department of Physics, College of Science, Charmo University, Chamchamal, Sulaymaniyah, 46023, Iraq.
| | - Mohamad A Brza
- Department of Physics, College of Science, Charmo University, Chamchamal, Sulaymaniyah, 46023, Iraq
| | - Rebar T Abdulwahid
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University Sulaimaniya, Sulaymaniyah, Kurdistan Region, 46001, Iraq
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaymaniyah, Kurdistan Region, 46001, Iraq
| | - Jamal Hassan
- Department of Physics, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Hawzhin B Tahir
- Research and Development Center, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, 46001, Iraq
| | - Sameerah I Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Ranjdar M Abdullah
- Research and Development Center, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, 46001, Iraq
| | - Jihad M Hadi
- Nursing Department, College of Nursing, University of Human Development, Sulaymaniyah, Kurdistan Regional Government, Iraq
| |
Collapse
|
2
|
Yek SC, Jun HK, Liew CW. Electrochemical, structural and thermal studies of poly (ethyl methacrylate) (PEMA)-based ion conductor for electrochemical double-layer capacitor application. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
3
|
Thulasiraman S, Yunus NMM, Kumar P, Kesuma ZR, Norhakim N, Wilfred CD, Roffi TM, Hamdan MF, Burhanudin ZA. Effects of Ionic Liquid, 1-Ethyl-3-methylimidazolium Chloride ([EMIM]Cl), on the Material and Electrical Characteristics of Asphaltene Thin Films. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2818. [PMID: 35454511 PMCID: PMC9026484 DOI: 10.3390/ma15082818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023]
Abstract
Asphaltene is a component of crude oil that has remained relatively unexplored for organic electronic applications. In this study, we report on its extraction technique from crude oil tank bottom sludge (COTBS) and its thin-film characteristics when 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) ionic liquid (IL) was introduced as dopants. The extraction technique yielded asphaltene with more than 80% carbon content. The IL resulted in asphaltene thin films with a typical root-mean-square surface roughness of 4 nm, suitable for organic electronic applications. The thin films each showed an optical band gap of 3.8 eV and a sheet resistance as low as 105 Ω/□. When the film was used as a conductive layer in organic field-effect transistors (OFET), it exhibited hole and electron conduction with hole (µh) and electron (µe) mobilities in the order of 10-8 and 10-6 cm2/Vs, respectively. These characteristics are just preliminary in nature. With the right IL, asphaltene thin films may become a good alternative for a transport layer in organic electronic applications.
Collapse
Affiliation(s)
- Sundarajoo Thulasiraman
- Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (S.T.); (Z.R.K.); (N.N.)
- Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Noor Mona Md Yunus
- Centre of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (N.M.M.Y.); (C.D.W.)
| | - Pradeep Kumar
- Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Zayyan Rafi Kesuma
- Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (S.T.); (Z.R.K.); (N.N.)
- Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Nadia Norhakim
- Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (S.T.); (Z.R.K.); (N.N.)
- Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Cecilia Devi Wilfred
- Centre of Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (N.M.M.Y.); (C.D.W.)
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| | - Teuku Muhammad Roffi
- Department of Electrical Engineering, Universitas Pertamina, Jakarta 12220, Indonesia;
| | - Mohamad Faizal Hamdan
- Group Technical Solutions Department, PETROLIAM NASIONAL BERHAD, Kuala Lumpur 50088, Malaysia;
| | - Zainal Arif Burhanudin
- Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (S.T.); (Z.R.K.); (N.N.)
- Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| |
Collapse
|
4
|
Teo LP, Buraidah MH, Arof AK. Development on Solid Polymer Electrolytes for Electrochemical Devices. Molecules 2021; 26:6499. [PMID: 34770908 PMCID: PMC8587213 DOI: 10.3390/molecules26216499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Electrochemical devices, especially energy storage, have been around for many decades. Liquid electrolytes (LEs), which are known for their volatility and flammability, are mostly used in the fabrication of the devices. Dye-sensitized solar cells (DSSCs) and quantum dot sensitized solar cells (QDSSCs) are also using electrochemical reaction to operate. Following the demand for green and safer energy sources to replace fossil energy, this has raised the research interest in solid-state electrochemical devices. Solid polymer electrolytes (SPEs) are among the candidates to replace the LEs. Hence, understanding the mechanism of ions' transport in SPEs is crucial to achieve similar, if not better, performance to that of LEs. In this paper, the development of SPE from basic construction to electrolyte optimization, which includes polymer blending and adding various types of additives, such as plasticizers and fillers, is discussed.
Collapse
Affiliation(s)
| | | | - Abdul Kariem Arof
- Centre for Ionics University of Malaya, Physics Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (L.P.T.); (M.H.B.)
| |
Collapse
|
5
|
Zheng W, Bi W, Fang Y, Chang S, Yuan W, Li L. Solvent-Free Procedure to Prepare Ion Liquid-Immobilized Gel Polymer Electrolytes Containing Li 0.33La 0.56TiO 3 with High Performance for Lithium-Ion Batteries. ACS OMEGA 2021; 6:25329-25337. [PMID: 34632191 PMCID: PMC8495700 DOI: 10.1021/acsomega.1c03140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Based on the advantages of intrinsic safety, flexibility, and good interfacial contact with electrodes, a gel polymer electrolyte (GPE) is a promising electrolyte for lithium-ion batteries, compared with the conventional liquid electrolyte. However, the unstable electrochemical performance and the liquid state in a microscale limit the commercial application of GPE. Herein, we developed a novel gel polymer electrolyte for lithium-ion batteries by blending methyl methacrylate (MMA), N-butyl-N-methyl-piperidinium (Pyr14TFSI), and lithium salts in a solvent-free procedure, with SiO2 and Li0.33La0.56TiO3 (LLTO) additives. The prepared MMA-Pyr14TFSI-3 wt % LLTO electrolyte shows the best electrochemical performance and obtains a high ion conductivity of 4.51 × 10-3 S cm-1 at a temperature of 60 °C. Notably, the electrochemical window could be stable up to 5.0 V vs Li+/Li. Moreover, the batteries with the GPE also show excellent electrochemical performance. In the LiFePO4/MMA-Pyr14TFSI-3 wt % LLTO/Li cell, a high initial discharge capacity was achieved 150 mA h g-1 at 0.5C with a Coulombic efficiency over 99% and maintaining a good capacity retention of 90.7% after 100 cycles at 0.5C under 60 °C. In addition, the physical properties of the GPE have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) measurements, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetry (TG).
Collapse
Affiliation(s)
- Wen Zheng
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute
of Modern Industrial Innovation, Zhuhai 519175, China
| | - Wanying Bi
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute
of Modern Industrial Innovation, Zhuhai 519175, China
| | - Yaobing Fang
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute
of Modern Industrial Innovation, Zhuhai 519175, China
| | - Shuya Chang
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute
of Modern Industrial Innovation, Zhuhai 519175, China
| | - Wenhui Yuan
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute
of Modern Industrial Innovation, Zhuhai 519175, China
| | - Li Li
- Guangdong
Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute
of Modern Industrial Innovation, Zhuhai 519175, China
- School
of Environment and Energy, South China University
of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Prusty K, Swain SK. Nano
ZrO
2
reinforced cellulose incorporated polyethylmethacrylate/polyvinyl alcohol composite films as semiconducting packaging materials. J Appl Polym Sci 2020. [DOI: 10.1002/app.49284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kalyani Prusty
- Department of ChemistryVeer Surendra Sai University of Technology Sambalpur Odisha India
| | - Sarat K. Swain
- Department of ChemistryVeer Surendra Sai University of Technology Sambalpur Odisha India
| |
Collapse
|
7
|
Novel approach for the utilization of ionic liquid-based cellulose derivative biosourced polymer electrolytes in safe sodium-ion batteries. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03382-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Rajeh A, Ragab H, Abutalib M. Co doped ZnO reinforced PEMA/PMMA composite: Structural, thermal, dielectric and electrical properties for electrochemical applications. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128447] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Asnawi ASFM, B. Aziz S, M. Nofal M, Hamsan MH, Brza MA, Yusof YM, Abdilwahid RT, Muzakir SK, Kadir MFZ. Glycerolized Li + Ion Conducting Chitosan-Based Polymer Electrolyte for Energy Storage EDLC Device Applications with Relatively High Energy Density. Polymers (Basel) 2020; 12:polym12061433. [PMID: 32604910 PMCID: PMC7361679 DOI: 10.3390/polym12061433] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/03/2022] Open
Abstract
In this study, the solution casting method was employed to prepare plasticized polymer electrolytes of chitosan (CS):LiCO2CH3:Glycerol with electrochemical stability (1.8 V). The electrolyte studied in this current work could be established as new materials in the fabrication of EDLC with high specific capacitance and energy density. The system with high dielectric constant was also associated with high DC conductivity (5.19 × 10−4 S/cm). The increase of the amorphous phase upon the addition of glycerol was observed from XRD results. The main charge carrier in the polymer electrolyte was ion as tel (0.044) < tion (0.956). Cyclic voltammetry presented an almost rectangular plot with the absence of a Faradaic peak. Specific capacitance was found to be dependent on the scan rate used. The efficiency of the EDLC was observed to remain constant at 98.8% to 99.5% up to 700 cycles, portraying an excellent cyclability. High values of specific capacitance, energy density, and power density were achieved, such as 132.8 F/g, 18.4 Wh/kg, and 2591 W/kg, respectively. The low equivalent series resistance (ESR) indicated that the EDLC possessed good electrolyte/electrode contact. It was discovered that the power density of the EDLC was affected by ESR.
Collapse
Affiliation(s)
- Ahmed S. F. M. Asnawi
- Chemical Engineering Section, Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Universiti Kuala Lumpur, Alor Gajah 78000, Malacca, Malaysia;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Correspondence: or
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Muhamad H. Hamsan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mohamad A. Brza
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia
| | - Yuhanees M. Yusof
- Malaysian Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia;
| | - Rebar T. Abdilwahid
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
| | - Saifful K. Muzakir
- Material Technology Program, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia;
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
10
|
Temperature Dependence on Density, Viscosity, and Electrical Conductivity of Ionic Liquid 1-Ethyl-3-Methylimidazolium Fluoride. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8030356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Sulfonium cation based ionic liquid incorporated polymer electrolyte for lithium ion battery. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Prasanna CMS, Suthanthiraraj SA. Effective influences of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIMTFSI) ionic liquid on the ion transport properties of micro-porous zinc-ion conducting poly (vinyl chloride) /poly (ethyl methacrylate) blend-based polymer electrolytes. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1043-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Rani MSA, Dzulkurnain NA, Ahmad A, Mohamed NS. Conductivity and Dielectric Behavior Studies of Carboxymethyl Cellulose from Kenaf Bast Fiber Incorporated with Ammonium Acetate-BMATFSI Biopolymer Electrolytes. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2015. [DOI: 10.1080/1023666x.2015.1013176] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|