1
|
Kurtz MA, Aslani S, Smith JA, Klein GR, Spece H, Kurtz SM. Titanium-Titanium Junctions in the Knee Corrode, Generating Damage Similar to the Hip. J Arthroplasty 2025; 40:227-235. [PMID: 39053666 DOI: 10.1016/j.arth.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Previous studies identified corrosion between the modular tibial components of total knee arthroplasty devices. However, gaps persist. Compared to the hip, damage modes that occur within taper junctions in the knee remain poorly understood. In this study, we investigated corrosion on total knee arthroplasty components with titanium-titanium junctions. We asked the following question: under typical in vivo cyclic loading conditions, will the same alloy damage modes from total knee arthroplasty devices resemble those documented in the hip? METHODS A total of 50 paired titanium alloy tibial baseplates and stems were collected and semiquantitatively analyzed using Goldberg corrosion scoring. To characterize damage, a subsection of moderately and severely corroded components was sectioned and imaged using scanning electron and digital optical microscopy. RESULTS Of the 100 device components, 95% showed visual evidence of corrosion. The initial contact area between the stem and bore generally occurred 3 mm from the stem taper base. Scanning electron microscopy revealed 4 damage modes, including oxide film formation, crevice corrosion, selective dissolution, and pitting. CONCLUSIONS Each of the damage modes identified in modular titanium-titanium tibial junctions was previously reported by total hip arthroplasty retrieval studies. Cumulatively, our results suggest that mechanically assisted crevice corrosion promoted this damage in vivo.
Collapse
Affiliation(s)
- Michael A Kurtz
- Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Shabnam Aslani
- Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - James A Smith
- Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Gregg R Klein
- Department of Orthopaedic Surgery, Hackensack University Medical Center, Hackensack, New Jersey
| | - Hannah Spece
- Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Steven M Kurtz
- Implant Research Core, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Zinelis S, Polychronis G, Silvestros S, Barbetseas A, Karasoulos D, Eliades G. Is galvanic corrosion between implant abutments and roots a possible scenario? An experimental study under simulated healthy and inflammatory peri-implant conditions and F anions. Dent Mater 2024:S0109-5641(24)00343-9. [PMID: 39643459 DOI: 10.1016/j.dental.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
PURPOSE To assess the effect of healthy and inflammatory conditions and the presence of F anions on the galvanic coupling between the root surface and titanium abutments of commercially available titanium implants MATERIALS AND METHODS: Eight pairs of three dental root-abutment couples (BEGO, MIS, NOBEL) were exposed to a neutral (pH=7.4) (HE) and an acidic (pH=4.0) (IN) phosphate buffer solution (PBS) simulating healthy and inflammatory conditions respectively. In order to simulate the presence of F anions, which is commonly used in toothpastes, 3.12 gr of NaF was added in both solutions simulating healthy conditions (HEF) and inflammatoy conditions (INF) with the presence of F anions respectively. The galvanic potential difference was recorded for 48 h and averaged. Physical appearance of abutment and roots were tested under a stereomicroscope. Scanning electron microscopy and X-ray energy dispersive spectroscopy (SEM/EDX) was used to characterize the materials under reseach and compare the surfaces before and after galvanic testing. RESULTS All abutments are composed of Ti-6Al-4V alloy along with root of MIS system, while BEG and NOB are made of Ti according to the SEM/EDX analysis. No differences were identified in surface morphology before and after galvanic testing, while EDX analysis revealed only the presence of Na and F on the surface of MIS abutments after testing in INF conditions. All groups tested showed negligible potential difference and below the nominal threshold for triggering galvanic corrosion under HE, IN and HEF conditions. The same applies for BEG and MIS under INF conditions, while NOB presented an average potential difference value of -273 mV, which is above nominal thresshold for galvanic action. Only MIS abutment showed a color change from yellow to blue under INF conditions. CONCLUSIONS AND CLINICAL IMPLICATIONS BEG and MIS implant systems are not prone to galvanic corrosion in all conditions tested. NOB was found vulnerable to galvanic corrosion under inflammatory peri-implant conditions in the presence of F anions. Galvanic reactions is a possible scenario even between Ti base implant components.
Collapse
Affiliation(s)
- Spiros Zinelis
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece.
| | - Georgios Polychronis
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiridon Silvestros
- Department of Prosthodontics, School of Dentistry, National and Kapodistrian University of Athens, Greece
| | | | | | - George Eliades
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Poli PP, Manfredini M, Oliva N, Bettini S, Damiani G, Goldoni R, Strambini L, Casati S, Del Fabbro M, Tartaglia GM. Detection and sensing of oral xenobiotics in edentulous patients rehabilitated with titanium dental implants: Insights from a scoping review. J Prosthet Dent 2024; 132:913-920. [PMID: 37423787 DOI: 10.1016/j.prosdent.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
STATEMENT OF PROBLEM Titanium has been considered the standard element in implant manufacturing. Recent studies have evaluated the role of titanium as a biological modulator of oral health. However, evidence regarding the association between the release of metal particles and peri-implantitis is lacking. PURPOSE The purpose of this scoping review was to evaluate the literature regarding the release of metal particles in peri-implant tissues correlated with the methods of detection and the local and systemic implications. MATERIAL AND METHODS The study was performed in adherence with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines and was registered with the National Institute for Health Research PROSPERO (Submission No. 275576; ID: CRD42021275576). A systematic search was conducted in the Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE via PubMed, Scopus, and Web of Science bibliographic databases, complemented by a manual evaluation. Only in vivo human studies written in the English language and published between January 2000 and June 2022 were included. RESULTS In total, 10 studies were included according to eligibility criteria. Different tissues and analytic techniques were reported: the characterization technique most used was inductively coupled plasma mass spectrometry. All 10 studies analyzed the release of metal particles in patients with dental implants, continuously detecting titanium. None of the studies reported a significant association between metal particles and biological effects. CONCLUSIONS Titanium is still considered the material of choice in implant dentistry, despite the detection of metal particles in peri-implant tissues. Further studies are necessary to evaluate the association between analytes and local health or inflammatory status.
Collapse
Affiliation(s)
- Pier Paolo Poli
- Research Fellow, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Research Fellow, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mattia Manfredini
- PhD Student, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; PhD Student, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Nadim Oliva
- Resident, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Sofia Bettini
- Resident, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Resident, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Damiani
- Assistant Professor, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Assistant Professor, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Assistant Professor, Division of Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Riccardo Goldoni
- PhD Student, Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy; PhD Student, National Research Council, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Lucanos Strambini
- Research Fellow, National Research Council, Department of Electronics, Computer and Telecommunication Engineering (CNR-IEIIT), Milan, Italy
| | - Sara Casati
- Research Fellow, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Massimo Del Fabbro
- Associate Professor, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Associate Professor, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca M Tartaglia
- Associate Professor, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Associate Professor, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Zhou Y, Shen Z, Xu Y, Qian XN, Chen W, Qiu J. Antimicrobial efficiency and cytocompatibility of resveratrol and naringin as chemical decontaminants on SLA surface. Microbiol Spectr 2024; 12:e0367923. [PMID: 39240122 PMCID: PMC11448033 DOI: 10.1128/spectrum.03679-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
Bacterial biofilms are the major etiology agent of peri-implant disease. Chemical decontamination is a promising treatment strategy against bacterial biofilms; however, its applications are limited by its low efficiency and poor biocompatibility. In contrast to three conventional cleaners (sterile saline, hydrogen peroxide, and chlorhexidine), this study used resveratrol and naringin solutions to remove mature Staphylococcus aureus and Porphyromonas gingivalis biofilm on sandblasted (with large grit and acid-etched (SLA) titanium surface. To determine changes in surface characteristics, the surface wettability and roughness were measured, and micromorphology was observed by scanning electron microscopy. With crystal violet (CV) and live/dead bacterial staining, residual plaque quantity and composition were measured. The biocompatibility was tested using pH and cytotoxicity, as well as by osteoblasts (MC3T3-E1) adhesion, proliferation, and differentiation, and fibroblasts (L-929) proliferation were also analyzed. It was found that resveratrol and naringin solutions were more effective in restoring surface characteristics and also showed that less plaque and viable bacteria were left. Naringin removed S. aureus biofilms better than chlorhexidine. Alkaline resveratrol and naringin solutions increased cell adhesion, proliferation, and osteogenic differentiation without any cytotoxicity. Resveratrol increased the expression of mRNA and protein associated with osteogenesis. In conclusion, resveratrol and naringin effectively restored SLA titanium surface characteristics and decontaminated the biofilm with good biocompatibility, suggesting their therapeutic potential as chemical decontaminants. IMPORTANCE Bacterial biofilms are considered the primary etiology of peri-implant disease. Physical cleaning is the most common way to remove bacterial biofilm, but it can cause grooving, melting, and deposition of chemicals that alter the surface of implants, which may hamper biocompatibility and re-osseointegration. Chemical decontamination is one of the most promising treatments but is limited by low efficiency and poor biocompatibility. Our study aims to develop safer, more effective chemical decontaminants for peri-implant disease prevention and treatment. We focus on resveratrol and naringin, two natural compounds, which have shown to be more effective in decontaminating biofilms on dental implant surfaces and exerting better biocompatibility. This research is groundbreaking as it is the first exploration of natural plant extracts' impact on mature bacterial biofilms on rough titanium surfaces. By advancing this knowledge, we seek to contribute to more effective and biocompatible strategies for combating peri-implant diseases, enhancing oral health, and prolonging implant lifespan.
Collapse
Affiliation(s)
- You Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zhe Shen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Yan Xu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Xin-na Qian
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Wei Chen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
5
|
Aftabi H, Zaraska K, Eghbal A, McGregor S, Prisman E, Hodgson A, Fels S. Computational models and their applications in biomechanical analysis of mandibular reconstruction surgery. Comput Biol Med 2024; 169:107887. [PMID: 38160502 DOI: 10.1016/j.compbiomed.2023.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Advanced head and neck cancers involving the mandible often require surgical removal of the diseased parts and replacement with donor bone or prosthesis to recreate the form and function of the premorbid mandible. The degree to which this reconstruction successfully replicates key geometric features of the original bone critically affects the cosmetic and functional outcomes of speaking, chewing, and breathing. With advancements in computational power, biomechanical modeling has emerged as a prevalent tool for predicting the functional outcomes of the masticatory system and evaluating the effectiveness of reconstruction procedures in patients undergoing mandibular reconstruction surgery. These models offer cost-effective and patient-specific treatment tailored to the needs of individuals. To underscore the significance of biomechanical modeling, we conducted a review of 66 studies that utilized computational models in the biomechanical analysis of mandibular reconstruction surgery. The majority of these studies employed finite element method (FEM) in their approach; therefore, a detailed investigation of FEM has also been provided. Additionally, we categorized these studies based on the main components analyzed, including bone flaps, plates/screws, and prostheses, as well as their design and material composition.
Collapse
Affiliation(s)
- Hamidreza Aftabi
- Department of ECE, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| | - Katrina Zaraska
- Department of Surgery, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, Vancouver, V5Z 1M9, BC, Canada
| | - Atabak Eghbal
- Department of ECE, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Sophie McGregor
- Department of Surgery, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, Vancouver, V5Z 1M9, BC, Canada
| | - Eitan Prisman
- Department of Surgery, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, Vancouver, V5Z 1M9, BC, Canada
| | - Antony Hodgson
- Department of Mechanical Engineering, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Sidney Fels
- Department of ECE, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| |
Collapse
|
6
|
Alhamad M, Barão VA, Sukotjo C, Mathew MT. The effect of three dental cement types on the corrosion of dental implant surfaces. Heliyon 2024; 10:e23626. [PMID: 38192807 PMCID: PMC10772628 DOI: 10.1016/j.heliyon.2023.e23626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Statement of problem One of the main challenges facing dental implant success is peri-implantitis. Recent evidence indicates that titanium (Ti) corrosion products and undetected-residual cement are potential risk factors for peri-implantitis. The literature on the impact of various types of dental cement on Ti corrosion is very limited. Purpose This study aimed to determine the influence of dental cement on Ti corrosion as a function of cement amount and type. Materials and methods Thirty commercially pure Ti grade 4 discs (19 × 7mm) were polished to mirror-shine (Ra ≈ 40 nm). Samples were divided into 10 groups (n = 3) as a cement type and amount function. The groups were no-cement as control, TempBond NE (TB3mm, TB5mm, and TB8mm), FujiCEM-II (FC3mm, FC5mm, and FC8mm), and Panavia-F-2.0 (PC3mm, PC5mm, and PC8mm). Tafel's method estimated corrosion rate (icorr) and corresponding potential (Ecorr) from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data was utilized to obtain Nyquist and Bode plots. An equivalent electrical circuit estimated polarization resistance (Rp) and double-layer capacitance (Cdl). Inductively coupled plasma mass spectrometry (ICP-MS) analysis was conducted to analyze the electrolyte solution after corrosion. pH measurements of the electrolyte were recorded before and after corrosion tests. Finally, the corroded surface was characterized by a 3D white-light microscope and scanning electron microscope. Statistical analysis was conducted using either one-way ANOVA followed by Tukey's Post Hoc test or Kruskal-Wallis followed by Dunn's test based on data distribution. Results Based on cement amount, FC and PC significantly increased icorr in higher amounts (FC8mm-icorr = 8.22 × 10-8A/cm2, PC8mm-icorr = 5.61 × 10-8A/cm2) compared to control (3.35 × 10-8A/cm2). In contrast, TB3mm decreased icorr significantly compared to the control. As a function of cement type, FC increased icorr the most. EIS data agrees with these observations. Finally, corroded surfaces had higher surface roughness (Ra) compared to non-corroded surfaces. Conclusion The study indicated that cement types FC and PC led to increased Ti-corrosion as a function of a higher amount. Hence, the implant stability could be impacted by the selection, excessive cement, and a potentially increased risk of peri-implantitis.
Collapse
Affiliation(s)
- Mostafa Alhamad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Valentim A.R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Altay B, Çoban E. Dental Implant Corrosion Products May Accumulate in the Human Body. J Oral Maxillofac Surg 2024; 82:56-64. [PMID: 37898154 DOI: 10.1016/j.joms.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Corrosion products resulting from the degradation of the dental implant surface due to biological fluids and infection may accumulate in the body and lead to clinical consequences. PURPOSE The primary aim of this study is to measure the accumulation of dental implant corrosion products in the human body and the secondary aim is to estimate the association between corrosion products and fatigue. STUDY DESIGN, SETTING, SAMPLE This study was designed as a prospective cross-sectional and was conducted with patients presenting at to the Department of Oral and Maxillofacial Surgery. The study included patients with Grade IV dental implants made of pure titanium (Ti) at the bone level and Grade V abutments composed of Ti, aluminum (Al), and vanadium (V). Individuals possessing different metallic implants and those prone to metal exposure were not included in the study. Blood and hair samples were procured from each participant and subsequently analyzed. PREDICTOR VARIABLES The predictor variable is implant exposure, and it was divided into 3 groups; Group I, patients with healthy dental implants; Group II, patients with peri-implantitis; Control Group, individuals without dental implants. MAIN OUTCOME VARIABLES The primary outcome variables are Al, Ti, V levels in blood and hair samples and the secondary outcome variable is the fatigue questionnaire score. COVARIATES Age and gender, along with the dental implant number and duration of exposure within the study groups, are utilized as covariates. ANALYSES Groups were compared using the Kruskal-Wallis and Mann-Whitney U-tests. Spearman's correlation coefficient determined relationships between groups, signifying significance with P values <.05. RESULTS The sample consisted of 30 patients aged 18 to 68, with 53% being female and 47% male. The differences among the 3 groups in the median values of blood Ti, V; hair Al, Ti, V; and fatigue questionnaire scores were not statistically significant (P > .05). However, the median blood Al value was statistically higher in Group II (P < .05). CONCLUSIONS AND RELEVANCE While the presence of healthy dental implants may not affect the accumulation of Al, Ti, and V within the body, patients with peri-implantitis exhibited elevated blood Al levels, possibly due to infection influencing the corrosion process.
Collapse
Affiliation(s)
- Berkan Altay
- Assistant Professor, Department Head, Department of Oral and Maxillofacial Surgery, Kırıkkale University, Kırıkkale, Turkey.
| | - Elif Çoban
- Resarch Assistant, Department of Oral and Maxillofacial Surgery, Kütahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
8
|
Kurtz MA, Wessinger AC, Mace A, Moreno-Reyes A, Gilbert JL. Additively manufactured Ti-29Nb-21Zr shows improved oxide polarization resistance versus Ti-6Al-4V in inflammatory simulating solution. J Biomed Mater Res A 2023; 111:1538-1553. [PMID: 37129046 DOI: 10.1002/jbm.a.37552] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Retrieval studies in the past two decades show severe corrosion of titanium and its alloys in orthopedic implants. This damage is promoted by mechanically assisted crevice corrosion (MACC), particularly within modular titanium-titanium junctions. During MACC, titanium interfaces may be subject to negative potentials and reactive oxygen species (ROS), generated from cathodic activation and/or inflammation. Additive manufacturing (AM) may be able to produce new, corrosion-resistant titanium alloys and admixtures that are less susceptible to these adverse electrochemical events. In this study, we characterize the impedance and corrosion properties of three new AM titanium materials, including Ti-6Al-4V with added 1% nano-yttria stabilized ZrO2 , admixed Ti-29Nb-21Zr, and pre-alloyed Ti-29Nb-21Zr. We aim to elucidate how these materials perform when subjected to high ROS solutions. We include conventionally and additively manufactured Ti-6Al-4V in our study as comparison groups. A 0.1 M H2 O2 phosphate-buffered saline (PBS) solution, simulating inflammatory conditions, significantly increased biomaterial OCP (-0.14 V vs. Ag/AgCl) compared to PBS only (-0.38 V, p = .000). During anodic polarization, Ti-6Al-4V passive current density more than doubled from 1.28 × 10-7 to 3.81 × 10-7 A/cm2 when exposed to 0.1 M H2 O2 . In contrast, Ti-29Nb-21Zr passive current density remained relatively unchanged, slightly increasing from 7.49 × 10-8 in PBS to 9.31 × 10-8 in 0.1 M H2 O2 . Ti-29Nb-21Zr oxide polarization resistance (Rp ) was not affected by 0.1 M H2 O2 , maintaining a high value (1.09 × 106 vs. 1.89 × 106 Ω cm2 ), while Ti-6Al-4V in 0.1 M H2 O2 solution had significantly diminished Rp (4.38 × 106 in PBS vs. 7.24 × 104 Ω cm2 in H2 O2 ). These results indicate that Ti-29Nb-21Zr has improved corrosion resistance in ROS containing solutions when compared with Ti-6Al-4V based biomaterials.
Collapse
Affiliation(s)
- Michael A Kurtz
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Audrey C Wessinger
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Annsley Mace
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Aldo Moreno-Reyes
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| |
Collapse
|
9
|
Kheder W, Bouzid A, Venkatachalam T, Talaat IM, Elemam NM, Raju TK, Sheela S, Jayakumar MN, Maghazachi AA, Samsudin AR, Hamoudi R. Titanium Particles Modulate Lymphocyte and Macrophage Polarization in Peri-Implant Gingival Tissues. Int J Mol Sci 2023; 24:11644. [PMID: 37511404 PMCID: PMC10381089 DOI: 10.3390/ijms241411644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Titanium dental implants are one of the modalities to replace missing teeth. The release of titanium particles from the implant's surface may modulate the immune cells, resulting in implant failure. However, little is known about the immune microenvironment that plays a role in peri-implant inflammation as a consequence of titanium particles. In this study, the peri-implant gingival tissues were collected from patients with failed implants, successful implants and no implants, and then a whole transcriptome analysis was performed. The gene set enrichment analysis confirmed that macrophage M1/M2 polarization and lymphocyte proliferation were differentially expressed between the study groups. The functional clustering and pathway analysis of the differentially expressed genes between the failed implants and successful implants versus no implants revealed that the immune response pathways were the most common in both comparisons, implying the critical role of infiltrating immune cells in the peri-implant tissues. The H&E and IHC staining confirmed the presence of titanium particles and immune cells in the tissue samples, with an increase in the infiltration of lymphocytes and macrophages in the failed implant samples. The in vitro validation showed a significant increase in the level of IL-1β, IL-8 and IL-18 expression by macrophages. Our findings showed evidence that titanium particles modulate lymphocyte and macrophage polarization in peri-implant gingival tissues, which can help in the understanding of the imbalance in osteoblast-osteoclast activity and failure of dental implant osseointegration.
Collapse
Affiliation(s)
- Waad Kheder
- College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amal Bouzid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noha Mousaad Elemam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tom Kalathil Raju
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Soumya Sheela
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Manju Nidagodu Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Azzam A Maghazachi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abdul Rani Samsudin
- College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
10
|
Conforte JJ, Sousa CA, da Silva ACR, Ribeiro AV, Duque C, Assunção WG. Effect of Enterococcus faecalis Biofilm on Corrosion Kinetics in Titanium Grade 4 Alloys with Different Surface Treatments. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4532. [PMID: 37444846 DOI: 10.3390/ma16134532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
E. faecalis has been associated with bacteremia, sepsis, and bacterial endocarditis and peri-implantitis. This microorganism can remain in the alveolus even after extraction of the root remnant. This study aimed to evaluate the corrosion on different surfaces of commercially pure titanium (Ti) grade 4 (Ticp-G4) as a function of the bacterial biofilm effect of Enterococcus faecalis. A total of 57 discs were randomly divided according to their surface finish (n = 19). For microbiological analysis (n = 9), the discs were placed in 12-well plates containing E. faecalis culture and incubated at 37 °C for 7 days. The results show that for the intergroup analysis, considering the "electrolyte" factor, there was a difference between the groups. There was greater biofilm formation for the D.A.Zir group, with greater electrochemical exchange for Biofilm, and the presence of biofilm favored greater electrochemical exchange with the medium.
Collapse
Affiliation(s)
- Jadison Junio Conforte
- Department of Dental Materials and Prosthodontic, Araçatuba School of Dentistry, São Paulo State University (UNESP), Sao Paulo 16015-050, Brazil
| | - Cecília Alves Sousa
- Department of Dental Materials and Prosthodontic, Araçatuba School of Dentistry, São Paulo State University (UNESP), Sao Paulo 16015-050, Brazil
| | - Ana Claudia Rodrigues da Silva
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Sao Paulo 16015-050, Brazil
| | | | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University (UNESP), Sao Paulo 16015-050, Brazil
| | - Wirley Gonçalves Assunção
- Department of Dental Materials and Prosthodontic, Araçatuba School of Dentistry, São Paulo State University (UNESP), Sao Paulo 16015-050, Brazil
| |
Collapse
|
11
|
Herrero-Climent M, Punset M, Molmeneu M, Brizuela A, Gil J. Differences between the Fittings of Dental Prostheses Produced by CAD-CAM and Laser Sintering Processes. J Funct Biomater 2023; 14:jfb14020067. [PMID: 36826866 PMCID: PMC9959825 DOI: 10.3390/jfb14020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023] Open
Abstract
Digital dentistry and new techniques for the dental protheses' suprastructure fabrication have undergone a great evolution in recent years, revolutionizing the quality of dental prostheses. The aim of this work is to determine whether the best horizontal marginal fit is provided by the CAD-CAM technique or by laser sintering. These values have been compared with the traditional casting technique. A total of 30 CAD-CAM models, 30 laser sintering models, and 10 casting models (as control) were fabricated. The structures realized with chromium-cobalt (CrCo) have been made by six different companies, always with the same model. Scanning electron microscopy with a high-precision image analysis system was used, and 10,000 measurements were taken for each model on the gingival (external) and palatal (internal) side. Thus, a total of 1,400,000 images were measured. It was determined that the CAD-CAM technique is the one that allows the best adjustments in the manufacturing methods studied. The laser sintering technique presents less adjustment, showing the presence of porosities and volume contraction defects due to solidification processes and heterogeneities in the chemical composition (coring). The technique with the worst adjustments is the casting technique, containing numerous defects in the suprastructure. The statistical analysis of results reflected the presence of statistically significant gap differences between the three manufacturing methods analyzed (p < 0.05), with the samples manufactured by CAD-CAM and by traditional casting processes being the ones that showed lower and higher values, respectively. No statistically significant differences in fit were observed between the palatal and gingival fit values, regardless of the manufacturing method used. No statistically significant differences in adjustment between the different manufacturing centers were found, regardless of the process used.
Collapse
Affiliation(s)
| | - Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Edurad Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Meritxell Molmeneu
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Edurad Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2., 47012 Valladolid, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Faculty of Medicine and Health Sciences, International University of Catalonia, Josep Trueta s/n, 08195 Barcelona, Spain
- Correspondence:
| |
Collapse
|
12
|
Camps-Font O, Toledano-Serrabona J, Juiz-Camps A, Gil J, Sánchez-Garcés MA, Figueiredo R, Gay-Escoda C, Valmaseda-Castellón E. Effect of Implantoplasty on Roughness, Fatigue and Corrosion Behavior of Narrow Diameter Dental Implants. J Funct Biomater 2023; 14:61. [PMID: 36826860 PMCID: PMC9967762 DOI: 10.3390/jfb14020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Implantoplasty (IP) is used in dental implants with peri-implantitis and aims to remove threads and polish rough surfaces in order to prevent bacterial colonization. As a result of this procedure, implant strength might be compromised. We tested 20 tapered screw-shaped Ti6Al4V dental implants with a simulated bone loss of 50%. Ten implants underwent IP and 10 served as controls. Surface topography (Sa, Sz, Ssk, and Sdr) was analyzed with a confocal optical microscope. Subsequently, a minimum of four series of cyclic loads were applied with a servo-hydraulic mechanical testing machine (5 × 106 cycles at 15 Hz, between a maximal nominal value-starting at 529 N in the IP group and 735 N in the control group-and 10% of that force). We recorded the number of cycles until failure and the type of failure. Implant failure was analyzed by visual inspection and scanning electron microscopy. Open circuit potential and potenctiodynamic tests were carried out with high precision potentiostat using Hank's solution at 37 °C to evaluate the effect of the implantoplasty on the corrosion resistance. Implantoplasty significantly reduced the surface topography values (median) and interquartile range (IQR); Sa from 1.76 (IQR = 0.11) to 0.49 (IQR = 0.16), Sz from 20.98 (IQR = 8.14) to 8.19 (IQR = 4.16), Ssk from 0.01 (IQR = 0.34) to -0.74 (IQR = 0.53) and Sdr from 18.20 (IQR = 2.26) to 2.67 (IQR = 0.87). The fatigue limits of the control and implantoplasty groups were 551 N and 529 N, respectively. The scanning electron micrographs showed fatigue striations indicating fatigue failure. Besides, the fractographic analysis revealed a typical brittle intergranular fracture mechanism. The infinite life range of the dental implants evaluated was largely above the threshold of usual chewing forces. Implantoplasty seems to render a fairly smooth surface and has a limited impact on fatigue resistance. In addition, implantoplasty produces a decrease in the corrosion resistance of the implant. Corrosion current density from 0.019 μA/cm2 for as-received to 0.069 μA/cm2 in the interface smooth-roughened dental implant. These places between the machining and the rough area of the implant are the most susceptible, with the appearance of pitting.
Collapse
Affiliation(s)
- Octavi Camps-Font
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Jorge Toledano-Serrabona
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Ana Juiz-Camps
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencia de la Salud, Universitat Internacional de Catalunya, Sant Cugat del Vallés, 08907 Barcelona, Spain
| | - Maria Angeles Sánchez-Garcés
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Rui Figueiredo
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Cosme Gay-Escoda
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Eduard Valmaseda-Castellón
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| |
Collapse
|
13
|
Hlinka J, Dostalova K, Cabanova K, Madeja R, Frydrysek K, Koutecky J, Rybkova Z, Malachova K, Umezawa O. Electrochemical, Biological, and Technological Properties of Anodized Titanium for Color Coded Implants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:632. [PMID: 36676374 PMCID: PMC9866561 DOI: 10.3390/ma16020632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Anodization coloring of titanium tools or implants is one of the common methods for the differentiation of each application by its size or type. Commercial purity titanium grade 4 plates (50 × 20 × 0.1 mm) were tested to obtain their electrochemical and other technological properties. The coloring process was done using the potential of 15, 30, 45, 60, and 75 Volts for 5 s in 1 wt. % citric acid in demineralized water solution. Organic acids solutions generally produce better surface quality compared to inorganic acids. The contact angle of colored surfaces was measured by the sessile drop method. Electrochemical impedance spectroscopy and potentiodynamic polarization were used for the determination of selected electrochemical and corrosion parameters of the tested surfaces. It was found that the anodization process decreases corrosion potential significantly. It was also confirmed that a higher potential used for anodization results in higher polarization resistance but also a decrease in corrosion potential. The anodization process at 75 V produces surfaces with the lowest corrosion rate under 1 nm/year and the noblest corrosion potential. It was confirmed that the anodization process in citric acid does not affect titanium cytotoxicity.
Collapse
Affiliation(s)
- Josef Hlinka
- Faculty of Materials and Technology, Department of Materials Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Kamila Dostalova
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Kristina Cabanova
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Roman Madeja
- Trauma Center, University Hospital Ostrava, 17. Listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Karel Frydrysek
- Institute of Emergency Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Jan Koutecky
- Medin a.s., Vlachovicka 619, 592 31 Nove Mesto na Morave, Czech Republic
| | - Zuzana Rybkova
- Institute of Emergency Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Katerina Malachova
- Institute of Emergency Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Osamu Umezawa
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogoaya, Yokohama 240-8501, Japan
| |
Collapse
|
14
|
Liao M, Shi Y, Chen E, Shou Y, Dai D, Xian W, Ren B, Xiao S, Cheng L. The Bio-Aging of Biofilms on Behalf of Various Oral Status on Different Titanium Implant Materials. Int J Mol Sci 2022; 24:332. [PMID: 36613775 PMCID: PMC9820730 DOI: 10.3390/ijms24010332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The properties of titanium implants are affected by bio-aging due to long-term exposure to the oral microenvironment. This study aimed to investigate probable changes in titanium plates after different biofilm bio-aging processes, representing various oral status. Titanium plates with different surface treatments were used, including polish, sandblasted with large grit and acid etched (SLA), microarc oxidation (MAO), and hydroxyapatite coating (HA). We established dual-species biofilms of Staphylococcus aureus (S. aureus)-Candida albicans (C. albicans) and saliva biofilms from the healthy and patients with stage III-IV periodontitis, respectively. After bio-aging with these biofilms for 30 days, the surface morphology, chemical composition, and water contact angles were measured. The adhesion of human gingival epithelial cells, human gingival fibroblasts, and three-species biofilms (Streptococcus sanguis, Porphyromonas gingivalis, and Fusobacterium nucleatum) were evaluated. The polished specimens showed no significant changes after bio-aging with these biofilms. The MAO- and SLA-treated samples showed mild corrosion after bio-aging with the salivary biofilms. The HA-coated specimens were the most vulnerable. Salivary biofilms, especially saliva from patients with periodontitis, exhibited a more distinct erosion on the HA-coating than the S. aureus-C. albicans dual-biofilms. The coating became thinner and even fell from the substrate. The surface became more hydrophilic and more prone to the adhesion of bacteria. The S. aureus-C. albicans dual-biofilms had a comparatively mild corrosion effect on these samples. The HA-coated samples showed more severe erosion after bio-aging with the salivary biofilms from patients with periodontitis compared to those of the healthy, which emphasized the importance of oral hygiene and periodontal health to implants in the long run.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Enni Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuke Shou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongyue Dai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenpan Xian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Terranova ML. Key Challenges in Diamond Coating of Titanium Implants: Current Status and Future Prospects. Biomedicines 2022; 10:biomedicines10123149. [PMID: 36551907 PMCID: PMC9775193 DOI: 10.3390/biomedicines10123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Over past years, the fabrication of Ti-based permanent implants for fracture fixation, joint replacement and bone or tooth substitution, has become a routine task. However, it has been found that some degradation phenomena occurring on the Ti surface limits the life or the efficiency of the artificial constructs. The task of avoiding such adverse effects, to prevent microbial colonization and to accelerate osteointegration, is being faced by a variety of approaches in order to adapt Ti surfaces to the needs of osseous tissues. Among the large set of biocompatible materials proposed as an interface between Ti and the hosting tissue, diamond has been proven to offer bioactive and mechanical properties able to match the specific requirements of osteoblasts. Advances in material science and implant engineering are now enabling us to produce micro- or nano-crystalline diamond coatings on a variety of differently shaped Ti constructs. The aim of this paper is to provide an overview of the research currently ongoing in the field of diamond-coated orthopedic Ti implants and to examine the evolution of the concepts that are accelerating the full transition of such technology from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy; or
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
16
|
Bio-Tribocorrosion of Titanium Dental Implants and Its Toxicological Implications: A Scoping Review. ScientificWorldJournal 2022; 2022:4498613. [PMID: 36312451 PMCID: PMC9616655 DOI: 10.1155/2022/4498613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Bio-tribocorrosion is a phenomenon that combines the essentials of tribology (friction, wear, and lubrication) and corrosion with microbiological processes. Lately, it has gained attention in implant dentistry because dental implants are exposed to wear, friction, and biofilm formation in the corrosive oral environment. They may degrade upon exposure to various microbial, biochemical, and electrochemical factors in the oral cavity. The mechanical movement of the implant components produces friction and wear that facilitates the release of metal ions, promoting adverse oro-systemic reactions. This review describes the bio-tribocorrosion of the titanium (Ti) dental implants in the oral cavity and its toxicological implications. The original research related to the bio-tribo or tribocorrosion of the dental implants was searched in electronic databases like Medline (Pubmed), Embase, Scopus, and Web of Science. About 34 studies included in the review showed that factors like the type of Ti, oral biofilm, acidic pH, fluorides, and micromovements during mastication promote bio-tribocorrosion of the Ti dental implants. Among the various grades of Ti, grade V, i.e., Ti6Al4V alloy, is most susceptible to tribocorrosion. Oral pathogens like Streptococcus mutans and Porphyromonas gingivalis produce acids and lipopolysaccharides (LPS) that cause pitting corrosion and degrade the TiO2. The low pH and high fluoride concentration in saliva hinder passive film formation and promote metal corrosion. The released metal ions promote inflammatory reactions and bone destruction in the surrounding tissues resulting in peri-implantitis, allergies, and hyper-sensitivity reactions. However, further validation of the role of bio-tribocorrosion on the durability of the Ti dental implants and Ti toxicity is warranted through clinical trials.
Collapse
|
17
|
Jornet-García A, Sanchez-Perez A, Montoya-Carralero JM, Moya-Villaescusa MJ. Electrical Potentiometry with Intraoral Applications. MATERIALS 2022; 15:ma15155100. [PMID: 35897533 PMCID: PMC9331720 DOI: 10.3390/ma15155100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
Dental implants currently in use are mainly made of titanium or titanium alloys. As these metallic elements are immersed in an electrolytic medium, galvanic currents are produced between them or with other metals present in the mouth. These bimetallic currents have three potentially harmful effects on the patient: micro-discharges, corrosion, and finally, the dispersion of metal ions or their oxides, all of which have been extensively demonstrated in vitro. In this original work, a system for measuring the potentials generated in vivo is developed. Specifically, it is an electrogalvanic measurements system coupled with a periodontal probe that allows measurement of the potentials in the peri-implant sulcus. This device was tested and verified in vitro to guarantee its applicability in vivo. As a conclusion, this system is able to detect galvanic currents in vitro and it can be considered capable of being employed in vivo, so to assess the effects they may cause on dental implants.
Collapse
|
18
|
Kurtz MA, Khullar P, Gilbert JL. Cathodic activation and inflammatory species are critical to simulating in vivo Ti-6Al-4V selective dissolution. Acta Biomater 2022; 149:399-409. [PMID: 35842034 DOI: 10.1016/j.actbio.2022.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
In vivo retrievals of metallic orthopedic implants have shown selective dissolution of Ti-6Al-4V, where the vanadium-rich β phase preferentially corrodes from the surface. This damage, typically observed in crevices, is not directly caused by wear mechanics and the underlying electrochemical mechanism remains poorly understood. Previous studies show that fretting corrosion can cause negative potential drops, resulting in a decrease in surface oxide passivation resistance and the electrochemical generation of reactive oxygen species (ROS) at metallic surfaces. In this study, we combine cathodic activation and hydrogen peroxide to induce selective dissolution in vitro. After a 600 s -1 V hold and 4 h recovery in 20 °C 1 M H2O2 solution, the Ti-6Al-4V β phase was preferentially dissolved. An initial activation threshold of -0.5 V induced a significant increase in β dissolution (p = 0.000). Above this threshold, little selective dissolution occurred. In an Arrhenius-like fashion, decreasing solution concentration to 0.1 M required 72 h to generate β dissolution instead of 4 h at 1 M. Heating 0.1 M solution to body temperature (37 °C) resulted in a decrease in the time needed to replicate a similar level of β dissolution (>90%). Electrochemical impedance shows that both cathodic activation and inflammatory species are necessary to induce selective dissolution, where the combinatorial effect causes a significant drop in oxide passivation resistance from 106 to 102 (p = 0.000). STATEMENT OF SIGNIFICANCE: Though hip arthroplasties are considered a successful procedure, revision rates of 2-4% result in tens of thousands of additional surgeries within the United States, subjecting patients to increased risk of complications. Corrosion is associated with implant failure and retrieval studies show that titanium and its alloys can severely corrode in vivo in ways not yet duplicated in vitro. Here, we reproduce selective dissolution of Ti-6Al-4V β phase simulating key characteristics of in vivo degradation observed in orthopedic retrievals. We establish both cathodically activated corrosion, a relatively unexplored concept, and the presence of inflammatory species as prerequisites, furthering our understanding of this clinically relevant damage mode. We introduce an Arrhenius-based approach to assess the concentration-temperature-time interactions present.
Collapse
Affiliation(s)
- Michael A Kurtz
- Department of Bioengineering, Clemson University, Clemson, SC, United States; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, BE 325, Charleston, SC 29425, United States
| | - Piyush Khullar
- Department of Bioengineering, Clemson University, Clemson, SC, United States; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, BE 325, Charleston, SC 29425, United States
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, SC, United States; The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, BE 325, Charleston, SC 29425, United States.
| |
Collapse
|
19
|
Weller J, Vasudevan P, Kreikemeyer B, Ekat K, Jackszis M, Springer A, Chatzivasileiou K, Lang H. The role of bacterial corrosion on recolonization of titanium implant surfaces: An in vitro study. Clin Implant Dent Relat Res 2022; 24:664-675. [PMID: 35709098 DOI: 10.1111/cid.13114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inflammation triggered by bacterial biofilms in the surrounding tissue is a major etiological factor for peri-implantitis and subsequent implant failure. However, little is known about the direct effects of bacterial corrosion and recolonization on implant failure PURPOSE: To investigate the influence of oral commensals on bacterial corrosion and recolonization of titanium surfaces. MATERIALS AND METHODS Streptococcus sanguinis (S. sanguinis) and Porphyromonas gingivalis (P. gingivalis), which are key bacteria in oral biofilm formation, were cultured on commercially pure titanium and titanium-aluminum-vanadium (Ti6Al4V) plates in artificial saliva/brain heart infusion medium under aerobic or anaerobic conditions. Biofilm formation was examined after 7 and 21 days by crystal violet and live/dead staining. Titanium ions released into culture supernatants were analyzed over a period of 21 days by atomic absorption spectrometry. Visual changes in surface morphology were investigated using scanning electron microscopy. Biofilm formation on sterilized, biocorroded, and recolonized implant surfaces was determined by crystal violet staining. RESULTS S. sanguinis and P. gingivalis formed stable biofilms on the titanium samples. Bacterial corrosion led to a significant increase in titanium ion release from these titanium plates (p < 0.01), which was significantly higher under aerobic conditions on pure titanium (p ≤ 0.001). No obvious morphological surface changes, such as pitting and discoloration, were detected in the titanium samples. During early biofilm formation, the addition of titanium ions significantly decreased the number of live cells. In contrast, a significant effect on biofilm mass was only detected with P. gingivalis. Bacterial corrosion had no influence on bacterial recolonization following sterilization of titanium and Ti6Al4V surfaces. CONCLUSION Bacterial corrosion differs between oral commensal bacteria and leads to increased titanium ion release from titanium plates. The titanium ion release did not influence biofilm formation or bacterial recolonization under in vitro conditions.
Collapse
Affiliation(s)
- Julia Weller
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Katharina Ekat
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Mario Jackszis
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University Medical Center Rostock, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, Medical Faculty, University of Rostock, Rostock, Germany
| | - Kyriaki Chatzivasileiou
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
20
|
Pagar RR, Musale SR, Pawar G, Kulkarni D, Giram PS. Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials. ACS Biomater Sci Eng 2022; 8:2161-2195. [PMID: 35522605 DOI: 10.1021/acsbiomaterials.1c01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent decades there has been growing interest of material chemists in the successful development of functional materials for drug delivery, tissue engineering, imaging, diagnosis, theranostic, and other biomedical applications with advanced nanotechnology tools. The efficacy and safety of functional materials are determined by their pharmacological, toxicological, and immunogenic effects. It is essential to consider all degradation pathways of functional materials and to assess plausible intermediates and final products for quality control. This review provides a brief insight into chemical degradation mechanisms of functional materials like oxidation, photodegradation, and physical and enzymatic degradation. The intermediates and products of degradation were confirmed with analytical methods such as proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), UV-vis spectroscopy (UV-vis), infrared spectroscopy (IR), differential scanning calorimetry (DSC), mass spectroscopy, and other sophisticated analytical methods. These analytical methods are also used for regulatory, quality control, and stability purposes in industry. The assessment of degradation is important to predetermine the behavior of functional materials in specific storage conditions and can be relevant to their behavior during in vivo applications. Another important aspect is the evaluation of the toxicity of functional materials. Toxicity can be accessed with various methods using in vitro, in vivo, ex vivo, and in silico models. In vitro cell culture methods are used to determine mitochondrial damage, reactive oxygen species, stress responses, and cellular toxicity. In vitro cellular toxicity can be measured by MTT assay, LDH leakage assay, and hemolysis. In vivo studies are performed using various animal models involving zebrafish, rodents (mice and rats), and nonhuman primates. Ex vivo studies are also used for efficacy and toxicity determinations of functional materials like ex vivo potency assay and precision-cut liver slice (PCLS) models. The in silico tools with computational simulations like quantitative structure-activity relationships (QSAR), pharmacokinetics (PK) and pharmacodynamics (PD), dose and time response, and quantitative cationic-activity relationships ((Q)CARs) are used for prediction of the toxicity of functional materials. In this review, we studied the principle methods used for degradation studies, different degradation pathways, and mechanisms of functional material degradation with prototype examples. We discuss toxicity assessments with different toxicity approaches used for estimation of the safety and efficacy of functional materials.
Collapse
Affiliation(s)
- Roshani R Pagar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Shubham R Musale
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Ganesh Pawar
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Deepak Kulkarni
- Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra 431136, India
| | - Prabhanjan S Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.,Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
21
|
Relevant Aspects of Titanium and Zirconia Dental Implants for Their Fatigue and Osseointegration Behaviors. MATERIALS 2022; 15:ma15114036. [PMID: 35683331 PMCID: PMC9182570 DOI: 10.3390/ma15114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023]
Abstract
Osseointegration capacity and good mechanical behavior are key to the success of the dental implant. In many investigations, comparisons of properties are made using different dental implant designs and therefore the results can be influenced by the macrodesign of the dental implant. In this work, studies were carried out with the same dental implant model using different roughness and different materials—commercially pure titanium (grade 4) and zirconia. For this purpose, 80 smooth passivated titanium (Ti), 80 smooth zirconia (ZrO2), and 80 rough passivated titanium (Ti-R) dental implants were used. The samples were characterized by their roughness, wettability, surface energy, residual stresses, and fatigue behavior. The implants were implanted in minipigs for 4 and 12 weeks. The animals were sacrificed, and histological studies were carried out to determine the osseointegration parameters for each of the implantation times. Ti and ZrO2 dental implants have very similar wettability and surface energy properties. However, the roughness causes a decrease in the hydrophilic character and a decrease of the total surface energy and especially the dispersive component, while the polar component is higher. Due to the compressive residual stresses of alumina sandblasting, the rough dental implant has the best fatigue behavior, followed by Ti and due to the lack of toughness and rapid crack propagation the ZrO2 implants have the worst fatigue behavior. The bone index contact (BIC) values for 4 weeks were around 25% for Ti, 32% for ZrO2, and 45% for Ti-R. After 12 weeks the Ti dental implants increased to 42%, for Ti, 43% for ZrO2, and an important increase to 76% was observed for Ti-R implants. In vivo results showed that the key factor that improves osseointegration is roughness. There was no significant difference between ZrO2 and Ti implants without sandblasting.
Collapse
|
22
|
Gürbüz-Urvasızoğlu G, Ataol M, Özgeriş FB. Trace elements released from dental implants with periimplantitis: a cohort study. Ir J Med Sci 2022; 191:2305-2310. [PMID: 35524031 DOI: 10.1007/s11845-022-03020-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Pure titanium and Ti6Al4V alloy have been in use as dental implant contemporarily. Trace element release from implant bodies is a possible health problem. Well-healed and osseointegrated intrabony implants are only in contact with bone and blood, but in the case of periimplantitis, the possibility of corrosion and the release of trace elements from dental implant surfaces increases due to contact with external factors. AIMS The aim of this study is to evaluate the trace element levels in the blood serum and saliva of patients who have dental implants with periimplantitis compared with the control group. METHODS This study included 25 patients diagnosed with periimplantitis and 25 participants with healthy osseointegrated implants as the control group. The trace element levels in blood serum and saliva were measured by inductively coupled plasma-mass spectrometry (ICP-MS) and results were analyzed statistically. RESULTS There is no statistically significant difference between groups for saliva samples except the aluminum (Al) levels of the study group are significantly lower than the control group (p < 0.05) and the mercury (Hg) levels of the study group are significantly higher than the control group (p < 0.05). On the other hand, there is a significant decrease in titanium (Ti), chromium (Cr), and iodine (I) in the blood serum samples of the study group (p < 0.05). There is no significant difference between the groups for other measured trace elements in the blood serum (p > 0.05). CONCLUSION There is no statistically significant increase in titanium or aluminum levels in the study group compared with the control group.
Collapse
Affiliation(s)
| | - Mert Ataol
- Private Zoom Dental Clinic, 06530, Ankara, Turkey.
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
23
|
Corrosion Behavior of Titanium Dental Implants with Implantoplasty. MATERIALS 2022; 15:ma15041563. [PMID: 35208101 PMCID: PMC8875252 DOI: 10.3390/ma15041563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023]
Abstract
The procedure generally used to remove bacterial biofilm adhering to the surface of titanium on dental implants is implantoplasty. This treatment is based on the machining of the titanium surface to remove bacterial plaque. In this study, we used 60 grade 4 titanium implants and performed the implantoplasty protocol. Using X-ray diffraction, we determined the stresses accumulated in each of the as-received, machined and debris implants. The resistance to corrosion in open circuit and potentiodynamically in physiological medium has been determined, and the corrosion potentials and intensities have been determined. Tests have been carried out to determine ion release by ICP-MS at different immersion times. The results show that the corrosion resistance and the release of titanium ions into the medium are related to the accumulated energy or the degree of deformation. The titanium debris exhibit compressive residual stresses of −202 MPa, the implant treated with implantoplasty −120 MPa, and as-received −77 MPa, with their corrosion behavior resulting in corrosion rates of 0.501, 0.77, and 0.444 mm/year, respectively. Debris is the material with the worst corrosion resistance and the one that releases the most titanium ions to the physiological medium (15.3 ppb after 21 days vs. 7 ppb for as-received samples). Pitting has been observed on the surface of the debris released into the physiological environment. This behavior should be taken into account by clinicians for the good long-term behavior of implants with implantoplasty.
Collapse
|
24
|
Effect of the Nature of the Particles Released from Bone Level Dental Implants: Physicochemical and Biological Characterization. COATINGS 2022. [DOI: 10.3390/coatings12020219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The placement of bone–level dental implants can lead to the detachment of particles in the surrounding tissues due to friction with the cortical bone. In this study, 60 bone–level dental implants were placed with the same design: 30 made of commercially pure grade 4 titanium and 30 made of Ti6Al4V alloy. These implants were placed in cow ribs following the company’s placement protocols. Particles detached from the dental implants were isolated and their size and specific surface area were characterized. The irregular morphology was observed by scanning electron microscopy. Ion release to the medium was determined at different immersion times in physiological medium. Cytocompatibility studies were performed with fibroblastic and osteoblastic cells. Gene expression and cytokine release were analysed to determine the action of inflammatory cells. Particle sizes of around 15 μM were obtained in both cases. The Ti6Al4V alloy particles showed significant levels of vanadium ion release and the cytocompatibility of these particles is lower than that of commercially pure titanium. Ti6Al4V alloy presents higher levels of inflammation markers (TNFα and Il–1β) compared to that of only titanium. Therefore, there is a trend that with the alloy there is a greater toxicity and a greater pro-inflammatory response.
Collapse
|
25
|
Abstract
Passivation of titanium alloy dental meshes cleans their surface and forms a thin layer of protective oxide (TiO2) on the surface of the material to improve resistance to corrosion and prevent release of ions to the physiological environment. The most common chemical agent for the passivation process of titanium meshes is hydrochloric acid (HCl). In this work, we introduce the use of Piranha solution (H2SO4 and H2O2) as a passivating and bactericidal agent for metallic dental meshes. Meshes of grade 5 titanium alloy (Ti6Al4V) were tested after different treatments: as-received control (Ctr), passivated by HCl, and passivated by Piranha solution. Physical-chemical characterization of all treated surfaces was carried out by scanning electron microscopy (SEM), confocal microscopy and sessile drop goniometry to assess meshes’ topography, elemental composition, roughness, wettability and surface free energy, that is, relevant properties with potential effects for the biological response of the material. Moreover, open circuit potential and potentiodynamic tests were carried out to evaluate the corrosion behavior of the differently-treated meshes under physiological conditions. Ion release tests were conducted using Inductively Coupled Plasma mass spectrometry (ICP-MS). The antibacterial activity by prevention of bacterial adhesion tests on the meshes was performed for two different bacterial strains, Pseudomonas aeruginosa (Gram-) and Streptococcus sanguinis (Gram+). Additionally, a bacterial viability study was performed with the LIVE/DEAD test. We complemented the antibacterial study by counting cells attached to the surface of the meshes visualized by SEM. Our results showed that the passivation of titanium meshes with Piranha solution improved their hydrophilicity and conferred a notably higher bactericidal activity in comparison with the meshes passivated with HCl. This unique response can be attributed to differences in the obtained nanotextures of the TiO2 layer. However, Piranha solution treatment decreased electrochemical stability and increased ion release as a result of the porous coating formed on the treated surfaces, which can compromise their corrosion resistance. Framed by the limitations of this work, we conclude that using Piranha solution is a viable alternative method for passivating titanium dental meshes with beneficial antibacterial properties that merits further validation for its translation as a treatment applied to clinically-used meshes.
Collapse
|
26
|
Verdeguer P, Gil J, Punset M, Manero JM, Nart J, Vilarrasa J, Ruperez E. Citric Acid in the Passivation of Titanium Dental Implants: Corrosion Resistance and Bactericide Behavior. MATERIALS (BASEL, SWITZERLAND) 2022; 15:545. [PMID: 35057263 PMCID: PMC8779281 DOI: 10.3390/ma15020545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023]
Abstract
The passivation of titanium dental implants is performed in order to clean the surface and obtain a thin layer of protective oxide (TiO2) on the surface of the material in order to improve its behavior against corrosion and prevent the release of ions into the physiological environment. The most common chemical agent for the passivation process is hydrochloric acid (HCl), and in this work we intend to determine the capacity of citric acid as a passivating and bactericidal agent. Discs of commercially pure titanium (c.p.Ti) grade 4 were used with different treatments: control (Ctr), passivated by HCl, passivated by citric acid at 20% at different immersion times (20, 30, and 40 min) and a higher concentration of citric acid (40%) for 20 min. Physical-chemical characterization of all of the treated surfaces has been carried out by scanning electronic microscopy (SEM), confocal microscopy, and the 'Sessile Drop' technique in order to obtain information about different parameters (topography, elemental composition, roughness, wettability, and surface energy) that are relevant to understand the biological response of the material. In order to evaluate the corrosion behavior of the different treatments under physiological conditions, open circuit potential and potentiodynamic tests have been carried out. Additionally, ion release tests were realized by means of ICP-MS. The antibacterial behavior has been evaluated by performing bacterial adhesion tests, in which two strains have been used: Pseudomonas aeruginosa (Gram-) and Streptococcus sanguinis (Gram+). After the adhesion test, a bacterial viability study has been carried out ('Life and Death') and the number of colony-forming units has been calculated with SEM images. The results obtained show that the passivation with citric acid improves the hydrophilic character, corrosion resistance, and presents a bactericide character in comparison with the HCl treatment. The increasing of citric acid concentration improves the bactericide effect but decreases the corrosion resistance parameters. Ion release levels at high citric acid concentrations increase very significantly. The effect of the immersion times studied do not present an effect on the properties.
Collapse
Affiliation(s)
- Pablo Verdeguer
- Bioengineering Institute of Technology, International University of Catalonia, Josep Trueta s/n, 08195 Barcelona, Spain;
| | - Javier Gil
- Bioengineering Institute of Technology, International University of Catalonia, Josep Trueta s/n, 08195 Barcelona, Spain;
- School of Dentistry, Universitat Internacional de Catalunya (UIC), C/Josep Trueta s/n, Sant Cugat del Vallès, 08125 Barcelona, Spain; (J.N.); (J.V.)
| | - Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (M.P.); (J.M.M.); (E.R.)
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
- UPC Innovation and Technology Center (CIT-UPC), Technical University of Catalonia (UPC), C/Jordi Girona 3-1, 08034 Barcelona, Spain
- Institut de Recerca San Joan de Déu, Hospital Sant Joan de Deu (IRSJD), 08034 Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (M.P.); (J.M.M.); (E.R.)
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Institut de Recerca San Joan de Déu, Hospital Sant Joan de Deu (IRSJD), 08034 Barcelona, Spain
| | - José Nart
- School of Dentistry, Universitat Internacional de Catalunya (UIC), C/Josep Trueta s/n, Sant Cugat del Vallès, 08125 Barcelona, Spain; (J.N.); (J.V.)
| | - Javi Vilarrasa
- School of Dentistry, Universitat Internacional de Catalunya (UIC), C/Josep Trueta s/n, Sant Cugat del Vallès, 08125 Barcelona, Spain; (J.N.); (J.V.)
| | - Elisa Ruperez
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (M.P.); (J.M.M.); (E.R.)
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Institut de Recerca San Joan de Déu, Hospital Sant Joan de Deu (IRSJD), 08034 Barcelona, Spain
| |
Collapse
|
27
|
Gaafar MS, Yakout SM, Barakat YF, Sharmoukh W. Electrophoretic deposition of hydroxyapatite/chitosan nanocomposites: the effect of dispersing agents on the coating properties. RSC Adv 2022; 12:27564-27581. [PMID: 36276043 PMCID: PMC9516373 DOI: 10.1039/d2ra03622c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, electrophoretic deposition (EPD) was used for the coating on titanium (Ti) substrate with a composite of hydroxyapatite (HA)-chitosan (CS) in the presence of dispersing agents such as polyvinyl butyral (PVB), polyethylene glycol (PEG), and triethanolamine (TEA). The materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential, and Fourier transform infrared (FT-IR) spectroscopy. The addition of PVB, PEG, and TEA agents improved the development of Ti coating during the EPD process. These additives increased the suspension stability and promoted the formation of uniform and compact HA/CS nanocomposite coatings on Ti substrates. The electrochemical polarization tests (e.g., potentiodynamic test) of the substrate with and without coating were investigated. Data analysis showed high corrosion resistance of Ti substrate coated with the HA/CS NP composite. The corrosion potentials displayed a shift toward positive values indicating the increase in the corrosion resistance of Ti after coating. In addition to measuring calcium ion release at various pH values and contact times at a biological pH value of 5.5, the stabilities of Ti substrates coated with HA/CS and different dispersing agents were also evaluated. Ti substrates with high anticorrosion properties may have a new potential application in biomedicine. Electrophoretic deposition was used for coating of titanium substrate with a composite of hydroxyapatite (HA)-chitosan (CS) in the presence of polyvinyl butyral (PVB), polyethylene glycol (PEG), and triethanolamine (TEA).![]()
Collapse
Affiliation(s)
- M. S. Gaafar
- Department of Chemical Engineering, Tabbin Institute for Metallurgical Studies (TIMS), PO Box: 109 Helwan, 11421 Cairo, Egypt
| | - S. M. Yakout
- Inorganic Chemistry Department, National Research Centre, Tahrir St, Dokki, Giza 12622, Egypt
| | - Y. F. Barakat
- Department of Chemical Engineering, Tabbin Institute for Metallurgical Studies (TIMS), PO Box: 109 Helwan, 11421 Cairo, Egypt
| | - W. Sharmoukh
- Inorganic Chemistry Department, National Research Centre, Tahrir St, Dokki, Giza 12622, Egypt
| |
Collapse
|
28
|
Reactivity and Corrosion Behaviors of Ti6Al4V Alloy Implant Biomaterial under Metabolic Perturbation Conditions in Physiological Solutions. MATERIALS 2021; 14:ma14237404. [PMID: 34885558 PMCID: PMC8658691 DOI: 10.3390/ma14237404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
The corrosion of implant biomaterials is a well-known critical issue when they are in contact with biological fluids. Therefore, the reactivity of Ti6Al4V implant biomaterials is monitored during immersion in a Hanks’ physiological solution without and with added metabolic compounds, such as lactic acid, hydrogen peroxide, and a mixture of the two. Electrochemical characterization is done by measuring the open circuit potential and electrochemical impedance spectroscopy performed at different intervals of time. Electrochemical results were completed by morphological and compositional analyses as well as X-ray diffraction before and after immersion in these solutions. The results indicate a strong effect from the inflammatory product and the synergistic effect of the metabolic lactic acid and hydrogen peroxide inflammatory compound on the reactivity and corrosion resistance of an implant titanium alloy.
Collapse
|
29
|
Philip J, Buijs MJ, Pappalardo VY, Crielaard W, Brandt BW, Zaura E. The microbiome of dental and peri-implant subgingival plaque during peri-implant mucositis therapy: A randomized clinical trial. J Clin Periodontol 2021; 49:28-38. [PMID: 34664294 PMCID: PMC9298297 DOI: 10.1111/jcpe.13566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
Aim To assess the microbial effects of mechanical debridement in conjunction with a mouthrinse on sites with peri‐implant mucositis and gingivitis. Materials and methods Eighty‐nine patients with peri‐implant mucositis were included in a double‐blinded, randomized, placebo‐controlled trial with mechanical debridement and 1‐month use of either delmopinol, chlorhexidine (CHX), or a placebo mouthrinse. Submucosal and subgingival plaque samples of implants and teeth were collected at baseline and after 1 and 3 months, processed for 16S V4 rRNA gene amplicon sequencing, and analysed bioinformatically. Results The sites with peri‐implant mucositis presented with a less diverse and less anaerobic microbiome. Exposure to delmopinol or CHX, but not to the placebo mouthrinse resulted in microbial changes after 1 month. The healthy sites around the teeth harboured a more diverse and more anaerobe‐rich microbiome than the healthy sites around the implants. Conclusions Peri‐implant sites with mucositis harbour ecologically less complex and less anaerobic biofilms with lower biomass than patient‐matched dental sites with gingivitis while eliciting an equal inflammatory response. Adjunctive antimicrobial therapy in addition to mechanical debridement does affect both dental and peri‐implant biofilm composition in the short term, resulting in a less dysbiotic subgingival biofilm.
Collapse
Affiliation(s)
- Juliana Philip
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Vincent Y Pappalardo
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Alhamad M, Barão VAR, Sukotjo C, Cooper LF, Mathew MT. Ti-Ions and/or Particles in Saliva Potentially Aggravate Dental Implant Corrosion. MATERIALS 2021; 14:ma14195733. [PMID: 34640130 PMCID: PMC8510105 DOI: 10.3390/ma14195733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
The corrosive titanium products in peri-implant tissues are a potential risk factor for peri-implantitis. There is very limited information available on the effect of the corrosion and wear products on the dental implant corrosion. Therefore, we determined the influence of Ti-ions and Ti-particles on Ti corrosion. Eighteen commercially pure-Ti-grade-2 discs were polished to mirror-shine. Samples were divided into six groups (n = 3) as a function of electrolytes; (A) Artificial saliva (AS), (B) AS with Ti-ions (the electrolyte from group A, after corrosion), (C) AS with Ti-particles 10 ppm (D) AS with Ti-particles 20 ppm, (E) AS with Ti-ions 10 ppm, and (F) AS with Ti-ions 20 ppm. Using Tafel’s method, corrosion potential (Ecorr) and current density (Icorr) were estimated from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data were used to construct Nyquist and Bode plots, and an equivalent electrical circuit was used to assess the corrosion kinetics. The corroded surfaces were examined through a 3D-white-light microscope and scanning electronic microscopy. The data demonstrated that the concentration of Ti-ions and corrosion rate (Icorr) are strongly correlated (r = 0.997, p = 0.046). This study indicated that high Ti-ion concentration potentially aggravates corrosion. Under such a severe corrosion environment, there is a potential risk of increased implant associated adverse tissue reactions.
Collapse
Affiliation(s)
- Mostafa Alhamad
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Valentim A. R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo 13414-903, Brazil;
| | - Cortino Sukotjo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Prosthodontics, School of Dental Medicine, Bahçeşehir University, Istanbul 34353, Turkey
- Correspondence: (C.S.); (M.T.M.)
| | - Lyndon F. Cooper
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (C.S.); (M.T.M.)
| |
Collapse
|
31
|
Hsu SM, Fares C, Xia X, Rasel MAJ, Ketter J, Afonso Camargo SE, Haque MA, Ren F, Esquivel-Upshaw JF. In Vitro Corrosion of SiC-Coated Anodized Ti Nano-Tubular Surfaces. J Funct Biomater 2021; 12:52. [PMID: 34564201 PMCID: PMC8482235 DOI: 10.3390/jfb12030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
Peri-implantitis leads to implant failure and decreases long-term survival and success rates of implant-supported prostheses. The pathogenesis of this disease is complex but implant corrosion is believed to be one of the many factors which contributes to progression of this disease. A nanostructured titanium dioxide layer was introduced using anodization to improve the functionality of dental implants. In the present study, we evaluated the corrosion performance of silicon carbide (SiC) on anodized titanium dioxide nanotubes (ATO) using plasma-enhanced chemical vapor deposition (PECVD). This was investigated through a potentiodynamic polarization test and bacterial incubation for 30 days. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze surface morphologies of non-coated and SiC-coated nanotubes. Energy dispersive X-ray (EDX) was used to analyze the surface composition. In conclusion, SiC-coated ATO exhibited improved corrosion resistance and holds promise as an implant coating material.
Collapse
Affiliation(s)
- Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.-M.H.); (S.E.A.C.)
| | - Chaker Fares
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (X.X.); (F.R.)
| | - Xinyi Xia
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (X.X.); (F.R.)
| | - Md Abu Jafar Rasel
- Department of Mechanical Engineering, Penn State University, University Park, PA 16802, USA; (M.A.J.R.); (M.A.H.)
| | | | - Samira Esteves Afonso Camargo
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.-M.H.); (S.E.A.C.)
| | - Md Amanul Haque
- Department of Mechanical Engineering, Penn State University, University Park, PA 16802, USA; (M.A.J.R.); (M.A.H.)
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (X.X.); (F.R.)
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.-M.H.); (S.E.A.C.)
| |
Collapse
|
32
|
Román-Quesada N, González-Navarro B, Izquierdo-Gómez K, Jané-Salas E, Marí-Roig A, Estrugo-Devesa A, López-López J. An analysis of the prevalence of peripheral giant cell granuloma and pyogenic granuloma in relation to a dental implant. BMC Oral Health 2021; 21:204. [PMID: 33892689 PMCID: PMC8067650 DOI: 10.1186/s12903-021-01566-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background The aim of the present investigation was to evaluate the literature recurrence of peripheral giant cell granuloma and pyogenic granuloma associated with dental implants. It’s important to know the characteristics present in these lesions and possible effects on the prognosis of dental implants. Methods An electronic search without time restrictions was done in the databases: PubMed/Medline. With the keywords "Granuloma" OR "Granuloma, Giant Cell" OR "peripheral giant cell" OR "Granuloma, Pyogenic” AND "Dental implants" OR "Oral implants”.
Results After applying the inclusion and exclusion criteria, a total of 20 articles were included, which reported 32 lesions (10 pyogenic granulomas, 21 peripheral giant cell granulomas and one peripheral giant cell granuloma combined with peripheral ossifying fibroma, all associated with implants). According to our review, these lesions are more frequent in males and in the posterior region of the mandible. Both excision and curettage of the lesion, compared to only excision, presented similar recurrences (40%). Explantation of the implant was performed in 41% of cases without additional recurrences. The results are not statistically significant when comparing one lesion to the other in terms of explantation (p = 0.97), recurrence (p = 0.57) or bone loss (p = 0.67). Conclusions The main therapeutic approach is tissue excision. The lesions show a high recurrence rate (34.4%), which often requires explantation of the associated implant. This recurrence rate is not affected by curettage after excision.
Collapse
Affiliation(s)
- Nieves Román-Quesada
- Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, Barcelona, Spain
| | - Beatriz González-Navarro
- Department of Odontoestomatology, Faculty of Medicine and Health Sciences (Dentistry), Bellvitge Campus, University of Barcelona, Barcelona, Spain.,Oral Health and Masticatory System Group, Institut D'Investigació Biomédica de Bellvitge (IDIBELL, Bellvitge Institute of Biomedical Research), L'Hospitalet de Llobregrat, Barcelona, Spain
| | - Keila Izquierdo-Gómez
- Department of Odontoestomatology, Faculty of Medicine and Health Sciences (Dentistry), Bellvitge Campus, University of Barcelona, Barcelona, Spain.,Oral Health and Masticatory System Group, Institut D'Investigació Biomédica de Bellvitge (IDIBELL, Bellvitge Institute of Biomedical Research), L'Hospitalet de Llobregrat, Barcelona, Spain
| | - Enric Jané-Salas
- Department of Odontoestomatology, Faculty of Medicine and Health Sciences (Dentistry), Bellvitge Campus, University of Barcelona, Barcelona, Spain.,Oral Health and Masticatory System Group, Institut D'Investigació Biomédica de Bellvitge (IDIBELL, Bellvitge Institute of Biomedical Research), L'Hospitalet de Llobregrat, Barcelona, Spain
| | - Antonio Marí-Roig
- Oral Health and Masticatory System Group, Institut D'Investigació Biomédica de Bellvitge (IDIBELL, Bellvitge Institute of Biomedical Research), L'Hospitalet de Llobregrat, Barcelona, Spain.,Department of Maxillofacial Surgery, Bellvitge University Hospital, L'Hospitalet de Llobregrat, Barcelona, Spain
| | - Albert Estrugo-Devesa
- Department of Odontoestomatology, Faculty of Medicine and Health Sciences (Dentistry), Bellvitge Campus, University of Barcelona, Barcelona, Spain. .,Oral Health and Masticatory System Group, Institut D'Investigació Biomédica de Bellvitge (IDIBELL, Bellvitge Institute of Biomedical Research), L'Hospitalet de Llobregrat, Barcelona, Spain.
| | - José López-López
- Department of Odontoestomatology, Faculty of Medicine and Health Sciences (Dentistry), Bellvitge Campus, University of Barcelona, Barcelona, Spain. .,Oral Health and Masticatory System Group, Institut D'Investigació Biomédica de Bellvitge (IDIBELL, Bellvitge Institute of Biomedical Research), L'Hospitalet de Llobregrat, Barcelona, Spain. .,Odontology Hospital University of Barcelona (HOUB), Barcelona, Spain.
| |
Collapse
|
33
|
Energy-Dispersive X-ray Spectroscopic Investigation of Failed Dental Implants Associated with Odontogenic Maxillary Sinusitis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The failed dental implant associated with maxillary sinusitis is a multifactorial phenomenon and should be investigated thoroughly. The inflammatory process induced by accumulated biofilm and wear debris may increase mucous secretion and mucous thickening, which finally may lead to severe complications such as maxillary sinusitis. The inflammatory cytokines might compromise the long-term osseointegration of the related implant. In this study, implants retrieved from three patients who experienced implant failure relating to maxillary sinusitis were investigated using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. SEM analysis of the implant apical region revealed a less-compact bone structure, indicating the high bone turnover due to an inflammatory process. The ratio of calcium (Ca) and phosphorus (P) was negligible in all specimens. Detection of fluorine (F), sodium (Na), silicon (Si), gold (Au), aluminum (Al), and magnesium (Mg) confirmed the contamination. The selected cases presented different biological aspects that might play the central role in the failed dental implants associated with maxillary sinusitis: the contamination of potentially toxic elements, microorganism infection, and long perforation of implant apex into the sinus. Each of the above phenomena needs to be confirmed with further clinical study with a larger number of failed implants and accompanying tissue samples.
Collapse
|
34
|
Barão VAR, Ramachandran RA, Matos AO, Badhe RV, Grandini CR, Sukotjo C, Ozevin D, Mathew M. Prediction of tribocorrosion processes in titanium-based dental implants using acoustic emission technique: Initial outcome. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112000. [PMID: 33812620 DOI: 10.1016/j.msec.2021.112000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
The use of dental implants is growing rapidly for the last few decades and Ti-based dental implants are a commonly used prosthetic structure in dentistry. Recently, the combined effect of corrosion and wear, called tribocorrosion, is considered as a major driving process in the early failure of dental implants. However, no previous study has reported the prediction of tribocorrosion processes in advance. Therefore, this study is a novel investigation on how the acoustic emission (AE) technique can predict tribocorrosion processes in commercially-pure titanium (cpTi) and titanium-zirconium (TiZr) alloys. In this study, tribocorrosion tests were performed under potentiostatic conditions and AE detection system associated with it captures AE data. Current evolution and friction coefficient data obtained from the potentiostatic evaluations were compared with AE absolute energy showcased the same data interpretation of tribocorrosion characteristics. Other AE data such as duration, count, and amplitude, matched more closely with other potentiostatic corrosion evaluations and delivered more promising results in the detection of tribocorrosion. Hence, AE can be consider as a tool for predicting tribocorrosion in dental implants. Experimental results also reveal Ti5Zr as one of the most appropriate dental implant materials while exposing Ti10Zr's lower effectiveness to withstand in the simulated oral environment.
Collapse
Affiliation(s)
- Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.
| | | | - Adaías Oliveira Matos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | | | - Carlos R Grandini
- Laboratório de Anelasticidade e Biomateriais, Univ Estadual Paulista (UNESP), Bauru, São Paulo, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, IL, USA
| | - Didem Ozevin
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, IL, USA
| | - Mathew Mathew
- Department of Bioengineering, University of Illinois at Chicago, IL, USA; Department of Biomedical Sciences, UIC Rockford, IL, USA; Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
35
|
Teixeira H, Branco AC, Rodrigues I, Silva D, Cardoso S, Colaço R, Serro AP, Figueiredo-Pina CG. Effect of albumin, urea, lysozyme and mucin on the triboactivity of Ti6Al4V/zirconia pair used in dental implants. J Mech Behav Biomed Mater 2021; 118:104451. [PMID: 33730640 DOI: 10.1016/j.jmbbm.2021.104451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The titanium implant/zirconia abutment interface can suffer failure upon mechanical and biological issues, ultimately leading to the loss of the artificial tooth. The study of the effect of the organic compounds present in saliva on the tribological behavior of these systems is of utmost importance to understand the failure mechanisms and better mimic the in vivo conditions. The aim of the present work is to evaluate the effect of the addition of albumin, urea, lysozyme and mucin to artificial saliva, on the triboactivity of Ti6Al4V/zirconia pair commonly used in dental implants and then, compare the results with those obtained with human saliva. The solutions' viscosity was measured and the adsorption of the different biomolecules to both Ti6Al4V and zirconia was accessed. Tribological tests were performed using Ti6Al4V balls sliding on zirconia plates inside of a corrosion cell. Friction and wear coefficients were determined, and the open circuit potential (OCP) was monitored during the tests. Also, the wear mechanisms were identified. The presence of mucin in the artificial lubricant led to the lowest wear coefficients. The main wear mechanism was abrasion, independently of the used lubricant. Adhesive wear was observed for the systems without mucin. Tribocorrosion activity and wear coefficient were lower in the presence of mucin. None of the studied artificial lubricants mimicked the effect of human saliva (HS) on the tribological behavior of the studied pair since this lubricant led to the lowest friction coefficient and highest corrosion activity.
Collapse
Affiliation(s)
- H Teixeira
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal
| | - A C Branco
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal; Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal
| | - I Rodrigues
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal; Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal
| | - D Silva
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - S Cardoso
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Lisboa, Portugal
| | - R Colaço
- Instituto de Engenharia Mecânica (IDMEC), Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - A P Serro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal.
| | - C G Figueiredo-Pina
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal; Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal; Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
36
|
Zhou Z, Shi Q, Wang J, Chen X, Hao Y, Zhang Y, Wang X. The unfavorable role of titanium particles released from dental implants. Nanotheranostics 2021; 5:321-332. [PMID: 33732603 PMCID: PMC7961127 DOI: 10.7150/ntno.56401] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Titanium is considered to be a metal material with the best biological safety. Studies have proved that the titanium implanted in the bone continuously releases titanium particles (Ti particles), significantly increasing the total titanium content in human body. Generally, Ti particles are released slowly without causing a systemic immune response. However, the continuous increased local concentration may result in damage to the intraepithelial homeostasis, aggravation of inflammatory reaction in the surrounding tissues, bone resorption and implant detachment. They also migrate with blood flow and aggregate in the distal organ. The release of Ti particles is affected by the score of the implant surface structure, microenvironment wear and corrosion, medical operation wear, and so on, but the specific mechanism is not clear. Thus, it difficult to prevent the release completely. This paper reviews the causes of the Ti particles formation, the damage to the surrounding tissue, and its mechanism, in particular, methods for reducing the release and toxicity of the Ti particles.
Collapse
Affiliation(s)
- Zilan Zhou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Quan Shi
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
37
|
Diabetes as a Risk Factor for Orthopedic Implant Surface Performance: A Retrieval and In Vitro Study. ACTA ACUST UNITED AC 2021; 7. [PMID: 34150468 DOI: 10.1007/s40735-021-00486-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Orthopedic devices are often associated with increased risk for diabetic patients due to impaired wound healing capabilities. Adverse biological responses for immunocompromised patients at the implant-tissue interface can lead to significant bone resorption that may increase failure rates. The goal of this study was to characterize the surface of implants removed from diabetic patients to determine underlying mechanisms of diabetes-induced impaired osseointegration. Thirty-nine retrieved titanium and stainless-steel orthopedic devices were obtained from diabetic and non-diabetic patients, and compared to non-implanted controls. Optical Microscopy, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and X-ray Photoelectron Spectroscopy revealed changes in morphology, chemical composition, oxidation state, and oxide thickness of the retrieval specimens, respectively. Additionally, titanium disks were immersed for 28 days in simulated in vitro diabetic conditions followed by Inductively Coupled Plasma-Optical Emission Spectroscopy to quantify metal dissolution. Electrochemical testing was performed on specimens from retrievals and in vitro study. Aside from biological deposits, retrievals demonstrated surface discoloration, pit-like formations and oxide thinning when compared to non-implanted controls, suggesting exposure to unfavorable acidic conditions. Cyclic load bearing areas on fracture-fixation screws and plates depicted cracking and delamination. The corrosion behavior was not significantly different between diabetic and non-diabetic conditions of immersed disks or implant type. However, simulated diabetic conditions elevated aluminum release. This elucidates orthopedic implant failures that potentially arise from diabetic environments at the implant-tissue interface. Design of new implant surfaces should consider specific strategies to induce constructive healing responses in immunocompromised patients while also mitigating corrosion in acidic diabetic environments.
Collapse
|
38
|
Saito MM, Onuma K, Yamamoto R, Yamakoshi Y. New insights into bioactivity of ceria-stabilized zirconia: Direct bonding to bone-like hydroxyapatite at nanoscale. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111665. [PMID: 33579433 DOI: 10.1016/j.msec.2020.111665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Osseointegration resulting from biomineralization means tight bone-implant attachment, which is clinically essential for successful dental implant treatment. The osseointegration ability of ceria-stabilized zirconia, a promising implant material, has been questionable and is unclear despite its clinical use due to zirconia's bioinert nature. The purpose of this research was to investigate the osseointegration ability of ceria-stabilized zirconia by clarifying its bioactivity. Here we show that ceria-stabilized zirconia is highly bioactive, contrary to the general consensus. Transmission electron microscopy observation revealed that the zirconia nanocrystals of a ceria-stabilized zirconia substrate directly bonded to osteoblastic cell-precipitated hydroxyapatite crystals at lattice fringe scale. This bonding was achieved without chemical treatment of the substrate surface before use. Hydroxyapatite crystals exhibited a morphology of flexible nanofibers less than 10 nm wide with nanometer-thick plates filling the spaces between nanofibers. Elemental analysis of the hydroxyapatites showed that they contained alkaline metal cations (Na, Mg, and K) as minor elements and that their average Ca/P atomic % ratio was ~1.40, similar to those of bone apatite. High bioactivity of ceria-stabilized zirconia resulted in direct bonding to bone-like hydroxyapatite, suggesting nanoscale direct osseointegration with bone in vivo that contributes to improving the success rate of dental implant treatment.
Collapse
Affiliation(s)
- Mari M Saito
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Kazuo Onuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| |
Collapse
|
39
|
Romanos GE, Fischer GA, Delgado-Ruiz R. Titanium Wear of Dental Implants from Placement, under Loading and Maintenance Protocols. Int J Mol Sci 2021; 22:1067. [PMID: 33494539 PMCID: PMC7865642 DOI: 10.3390/ijms22031067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The objective of this review was to analyze the process of wear of implants leading to the shedding of titanium particles into the peri-implant hard and soft tissues. Titanium is considered highly biocompatible with low corrosion and toxicity, but recent studies indicate that this understanding may be misleading as the properties of the material change drastically when titanium nanoparticles (NPs) are shed from implant surfaces. These NPs are immunogenic and are associated with a macrophage-mediated inflammatory response by the host. The literature discussed in this review indicates that titanium NPs may be shed from implant surfaces at the time of implant placement, under loading conditions, and during implant maintenance procedures. We also discuss the significance of the micro-gap at the implant-abutment interface and the effect of size of the titanium particles on their toxicology. These findings are significant as the titanium particles can have adverse effects on local soft and hard tissues surrounding implants, implant health and prognosis, and even the health of systemic tissues and organs.
Collapse
Affiliation(s)
- Georgios E. Romanos
- Department of Periodontology, Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, 106 Rockland Hall, Stony Brook, NY 11794-8700, USA;
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, Johann Wolfgang Goethe University, 60590 Frankfurt, Germany
| | - Gerard A. Fischer
- Department of Periodontology, Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, 106 Rockland Hall, Stony Brook, NY 11794-8700, USA;
| | - Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794-8700, USA;
| |
Collapse
|
40
|
Camargo SEA, Roy T, Xia X, Fares C, Hsu SM, Ren F, Clark AE, Neal D, Esquivel-Upshaw JF. Novel Coatings to Minimize Corrosion of Titanium in Oral Biofilm. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E342. [PMID: 33445481 PMCID: PMC7827847 DOI: 10.3390/ma14020342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
The aim of this work is to investigate the effects produced by polymicrobial biofilm (Porphyromonas gingivalis, Streptococcus mutans, Streptococcus sanguinis, and Streptococcus salivarius) on the corrosion behavior of titanium dental implants. Pure titanium disks were polished and coated with titanium nitride (TiN) and silicon carbide (SiC) along with their quarternized versions. Next, the disks were cultivated in culture medium (BHI) with P. gingivalis, S. mutans, S. sanguinis, and S. salivarius and incubated anaerobically at 37 °C for 30 days. Titanium corrosion was evaluated through surface observation using Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). Furthermore, the Ti release in the medium was evaluated by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). SEM images showed that coated Ti disks exhibited lower corrosion compared to non-coated disks, except for the quartenized TiN. This was confirmed by AFM, where the roughness was higher in non-coated Ti disks. ICP showed that Ti levels were low in all coating disks. These results indicate that these SiC and TiN-based coatings could be a useful tool to reduce surface corrosion on titanium implant surfaces.
Collapse
Affiliation(s)
- Samira Esteves Afonso Camargo
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.); (A.E.C.)
| | - Tanaya Roy
- Department of Materials Science Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Xinyi Xia
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Chaker Fares
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.); (A.E.C.)
| | - Fan Ren
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Arthur E. Clark
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.); (A.E.C.)
| | - Dan Neal
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.); (A.E.C.)
| |
Collapse
|
41
|
Change in Pull-Out Force during Resorption of Magnesium Compression Screws for Osteosynthesis of Mandibular Condylar Fractures. MATERIALS 2021; 14:ma14020237. [PMID: 33418924 PMCID: PMC7825024 DOI: 10.3390/ma14020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Magnesium has been used as degradable fixation material for osteosynthesis, but it seems that mechanical strength is still a current issue in these fixations. The aim of this study was to evaluate the axial pull-out force of compression headless screws made of magnesium alloy during their resorption. METHODS The tests included screws made for osteosynthesis of the mandible head: 2.2 mm diameter magnesium alloy MgYREZr (42 screws) and 2.5 mm diameter polylactic-co-glycolic acid (PLGA) (42 pieces, control). The screws were resorbed in Sørensen's buffer for 2, 4, 8, 12, and 16 weeks, and force was measured as the screw was pulled out from the polyurethane block. RESULTS The force needed to pull the screw out was significantly higher for MgYREZr screws than for PLGA ones (p < 0.01). Within eight weeks, the pull-out force for MgYREZr significantly decreased to one third of its initial value (p < 0.01). The dynamics of this decrease were greater than those of the pull-out force for PLGA screws (p < 0.05). After these eight weeks, the values for metal and polymer screws equalized. It seems that the described reduction of force requires taking into account when using magnesium screws. This will provide more stable resorbable metallic osteosynthesis.
Collapse
|
42
|
Lorusso F, Noumbissi S, Francesco I, Rapone B, Khater AGA, Scarano A. Scientific Trends in Clinical Research on Zirconia Dental Implants: A Bibliometric Review. MATERIALS 2020; 13:ma13235534. [PMID: 33291827 PMCID: PMC7730252 DOI: 10.3390/ma13235534] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
Background: The clinical use of zirconia implants has been shown to increase steadily due to their biological, aesthetic, and physical properties; therefore, this bibliometric study aimed to review the clinical research and co-authors in the field of zirconia dental implant rehabilitation. Methods: We searched Scopus and Web of Science databases using a comprehensive search strategy to 5 October 2020, and independently paired reviewers who screened studies, and collected data with inclusion criteria restricted to clinical research only (either prospective or retrospective). Data on article title, co-authors, number of citations received, journal details, publication year, country and institution involved, funding, study design, marginal bone loss, survival rate, failure, follow-up, and the author’s bibliometric data were collected and evaluated. Results: A total of 29 clinical studies were published between 2008 and 2020 as 41.4% were prospective cohort studies and 48.3% originated from Germany. Most of the included studies had been published in Clinical Oral Implant Research (n = 12), and the most productive institution was the Medical Center of University of Freiburg. The author with the largest number of clinical studies on zirconia implants was Kohal R.J. (n = 10), followed by Spies B.C. (n = 8). Conclusions: This study revealed that zirconia implants have been more prominent in the last ten years, which is a valuable option for oral rehabilitation with marginal bone loss and survival rate comparable to titanium dental implants.
Collapse
Affiliation(s)
- Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.L.); (S.N.)
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20910, USA
| | - Sammy Noumbissi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.L.); (S.N.)
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20910, USA
| | - Inchingolo Francesco
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Biagio Rapone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Ahmad G. A. Khater
- Faculty of Oral and Dental Medicine, Ahram Canadian University, 6th of October City, 8655 Giza, Egypt;
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.L.); (S.N.)
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20910, USA
- Correspondence: ; Tel.: +39-0871-355-4084; Fax: +39-0871-355-4099
| |
Collapse
|
43
|
Stuani VT, Kim DM, Nagai M, Chen CY, Sant'Ana ACP. Effectiveness and surface changes of different decontamination protocols at smooth and minimally rough titanium surfaces. J Periodontol 2020; 92:704-715. [PMID: 32946119 DOI: 10.1002/jper.20-0324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The objective of this study is to evaluate titanium decontamination after different protocols while assessing changes in surface roughness, chemical composition, and wettability. METHODS Ninety-six smooth (S) and 96 minimally rough (R) titanium microimplants were used. Pristine microimplants were reserved for negative control (S-nC/R-nC, n = 9), while the remaining microimplants were incubated in Escherichia coli culture. Non-decontaminated microimplants were used as positive control (S-pC/R-pC, n = 3). The other microimplants were divided into seven different decontamination protocols (12 S/R per group): 24% EDTA, 2% chlorhexidine (CHL), gauze soaked in 2% chlorhexidine (GCHL), gauze soaked in ultrapure water (GMQ), scaling (SC), titanium brush (TiB), and implantoplasty (IP). Contaminated areas were assessed by scanning electron microscope images, chemical composition by energy dispersive X-ray spectroscopy, wettability by meniscus technique, and roughness by an optical profiler. RESULTS Higher residual bacteria were observed in R-pC compared with S-pC (P <0.0001). When comparing S and R with their respective pC groups, the best results were obtained with GCHL, SC, TiB, and IP, with no difference between these protocols (P >0.05). Changes in surface roughness were observed after all treatments, with S/R-IP presenting the smoother and a less hydrophilic surface (P <0.05). Apart from IP protocol, all the other groups presented a more hydrophilic surface in R than in S microimplants (P <0.003). All decontamination protocols resulted in a lower percentage of superficial Ti when compared with S/R-nC (P <0.002). CONCLUSIONS All decontamination protocols resulted in changes in roughness, wettability, and chemical composition, but GCHL, SC, TiB, an IP presented the best decontamination outcomes.
Collapse
Affiliation(s)
- Vitor T Stuani
- Department of Periodontology, Bauru School of Dentistry-University of Sao Paulo, Bauru, SP, Brazil.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - David M Kim
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Masazumi Nagai
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Chia-Yu Chen
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Adriana C P Sant'Ana
- Department of Periodontology, Bauru School of Dentistry-University of Sao Paulo, Bauru, SP, Brazil
| |
Collapse
|
44
|
A Comprehensive Review on the Corrosion Pathways of Titanium Dental Implants and Their Biological Adverse Effects. METALS 2020. [DOI: 10.3390/met10091272] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The main aim of this work was to perform a comprehensive review of findings reported by previous studies on the corrosion of titanium dental implants and consequent clinical detrimental effects to the patients. Most studies were performed by in vitro electrochemical tests and complemented with microscopic techniques to evaluate the corrosion behavior of the protective passive oxide film layer, namely TiO2. Results revealed that bacterial accumulation, dietary, inflammation, infection, and therapeutic solutions decrease the pH of the oral environment leading to the corrosion of titanium. Some therapeutic products used as mouthwash negatively affect the corrosion behavior of the titanium oxide film and promote changes on the implant surface. In addition, toothpaste and bleaching agents, can amplify the chemical reactivity of titanium since fluor ions interacting with the titanium oxide film. Furthermore, the number of in vivo studies is limited although corrosion signs have been found in retrieved implants. Histological evaluation revealed titanium macro- and micro-scale particles on the peri-implant tissues. As a consequence, progressive damage of the dental implants and the evolution of inflammatory reactions depend on the size, chemical composition, and concentration of submicron- and nanoparticles in the surrounding tissues and internalized by the cells. In fact, the damage of the implant surfaces results in the loss of material that compromises the implant surfaces, implant-abutment connections, and the interaction with soft tissues. The corrosion can be an initial trigger point for the development of biological or mechanical failures in dental implants.
Collapse
|
45
|
Kotsakis GA, Black R, Kum J, Berbel L, Sadr A, Karoussis I, Simopoulou M, Daubert D. Effect of implant cleaning on titanium particle dissolution and cytocompatibility. J Periodontol 2020; 92:580-591. [PMID: 32846000 DOI: 10.1002/jper.20-0186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Peri-implantitis treatments are mainly based on protocols for teeth but have not shown favorable outcomes for implants. The potential role of titanium dissolution products in peri-implantitis necessitate the consideration of material properties in devising treatment protocols. We assessed implant cleaning interventions on (1) bacterial removal from Ti-bound biofilms, (2) Ti surface alterations and related Ti particle dissolution, and (3) cytocompatibility. METHODS Acid-etched Ti discs were inoculated with human peri-implant plaque biofilms and mechanical antimicrobial interventions were applied on the Ti-bound biofilms for 30 seconds each: (1) rotary nylon brush; (2) Ti brush; (3) water-jet on high and (4) low, and compared to sterile, untreated and Chlorhexidine-treated controls. We assessed colony forming units (CFU) counts, biofilm removal, surface changes via scanning electron microscopy (SEM) and atomic force microscopy (AFM), and Ti dissolution via light microscopy and Inductively-coupled Mass Spectrometry (ICP-MS). Biological effects of Ti particles and surfaces changes were assessed using NIH/3T3 fibroblasts and MG-63 osteoblastic cell lines, respectively. RESULTS Sequencing revealed that the human biofilm model supported a diverse biofilm including known peri-implant pathogens. WJ and Nylon brush were most effective in reducing CFU counts (P < 0.01 versus control), whereas Chlorhexidine was least effective; biofilm imaging results were confirmatory. Ti brushes led to visible streaks on the treated surfaces, reduced corrosion resistance and increased Ti dissolution over 30 days of material aging as compared to controls, which increase was amplified in the presence of bacteria (all P-val < 0.05). Ti particles exerted cytotoxic effects against fibroblasts, whereas surfaces altered by Ti brushes exhibited reduced osteoconductivity versus controls (P < 0.05). CONCLUSIONS Present findings support that mechanical treatment strategies selected for implant biofilm removal may lead to Ti dissolution. Ti dissolution should become an important consideration in the clinical selection of peri-implantitis treatments and a necessary criterion for the regulatory approval of instruments for implant hygiene.
Collapse
Affiliation(s)
| | | | - Jason Kum
- Private Practice, Indianapolis, Indiana, USA
| | - Larissa Berbel
- Nuclear and Energy Research Institute-IPEN, University of São Paulo, São Paulo, Brazil
| | - Ali Sadr
- Comprehensive Dentistry, University of Washington, Seattle, Washington, USA
| | - Ioannis Karoussis
- Periodontics, National and Kapodistrian University of Athens, Athens, Greece
| | - Mara Simopoulou
- Experimental Physiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Diane Daubert
- Periodontics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
46
|
Jain SS, Schramm STJ, Siddiqui DA, Huo W, Palmer KL, Wilson TG, Rodrigues DC. Effects of multiple implantations of titanium healing abutments: Surface characteristics and microbial colonization. Dent Mater 2020; 36:e279-e291. [PMID: 32591158 PMCID: PMC7429256 DOI: 10.1016/j.dental.2020.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/06/2020] [Accepted: 05/24/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Very few studies have investigated dental implant components involved in the early stage of healing, especially the implant healing abutment (IHA), despite its vital role in soft tissue contouring and shaping after implant placement. Although these components are labelled by the manufacturer for "single-use only," it is a common clinical practice to clean, sterilize, and reuse them. METHODS In the present study, IHAs after single and multiple implantations were retrieved as per standard procedures, and biological material isolated from the surface was subjected to 16S rRNA sequence analysis. The microbiome analysis was followed by cleaning and sterilization in order to replicate clinical sterilization techniques. Following sterilization, retrievals were subjected to surface characterization with optical and scanning electron microscopy to investigate surface features, and electrochemical testing was performed to evaluate corrosion behavior. RESULTS The microbiota was comprised of early colonizers including Streptococcus species and secondary anaerobic colonizers such as Fusobacterium, Capnocytophaga, and Prevotella species. The surface analysis revealed that irrespective of the cleaning and sterilization techniques, the pristine, homogeneous surface of the new, unused IHAs could not be restored. Both single and multiple-use IHAs had severe surface changes including discoloration, major abrasions, biological contamination, and the IHA retrievals exhibited higher corrosion rate as compared to control specimens. SIGNIFICANCE Reusing IHAs multiple times may not be a prudent practice as the microbial colonization and surface changes caused by using this component multiple times may affect the performance of IHAs in soft tissue healing.
Collapse
Affiliation(s)
- Sanjana S Jain
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sareda T J Schramm
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Danyal A Siddiqui
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Wenwen Huo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | | | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
47
|
Eduok U, Szpunar J. In vitro corrosion studies of stainless-steel dental substrates during Porphyromonas gingivalis biofilm growth in artificial saliva solutions: providing insights into the role of resident oral bacterium. RSC Adv 2020; 10:31280-31294. [PMID: 35520668 PMCID: PMC9056404 DOI: 10.1039/d0ra05500j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/19/2020] [Indexed: 02/02/2023] Open
Abstract
Stainless-steel AISI 321 is an effective material for fabricating dental crowns and other implants utilized dental restorative protocols for elderly and pediatric populations. This unique clinical application is possible through the mechanical stability and corrosion-resistance properties of this metallic material. However, stainless-steel dental implants eventually fail, leading to the creation of surface cavities and cracks within their microstructures during persistent mechanical stresses and biocorrosion. In this study, the in vitro corrosion behaviour of a medical-grade stainless-steel dental substrate was investigated during Porphyromonas gingivalis biofilm growth process in artificial saliva culture suspension (ASCS). Among the causative bioagents of corrosion, P. gingivalis was chosen for this study since it is also responsible for oral periodontitis and a major contributing factor to corrosion in most dental implants. Increased P. gingivalis growth was observed within the incubation period under study as compact cellular clusters fouled the metal surfaces in ASCS media. This led to the corrosion of steel substrates after bacterial growth maturity within 90 days. Corrosion rate increased with higher CFU and bacterial incubation period for all test substrates due to biocorrosion incited by the volatile sulphide products of P. gingivalis metabolism. The presence of some of these volatile compounds has been observed from experimental evidences. Significant anodic degradation in the forms of localized pitting were also recorded by surface analytical techniques. Residual fluorinated ions within the ASCS media also increased the rate of anodic dissolution due to media acidity. This study has provided extensive insights into the fate of stainless-steel dental crown in oral environments infected by a resident oral bacterium. Influences of oral conditions similar to fluoride-enriched mouthwashes were reflected in a view to understanding the corrosion patterns of stainless-steel dental substrates. A stainless-steel 321 dental substrate significantly corroded within Porphyromonas gingivalis growth culture in artificial saliva culture suspension, with and without NaF additive.![]()
Collapse
Affiliation(s)
- Ubong Eduok
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan 57 Campus Drive Saskatoon S7N 5A9 Saskatchewan Canada +1 (306) 966 5427 +1 (306) 966 7752
| | - Jerzy Szpunar
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan 57 Campus Drive Saskatoon S7N 5A9 Saskatchewan Canada +1 (306) 966 5427 +1 (306) 966 7752
| |
Collapse
|
48
|
Wilson TG. Bone loss around implants-is it metallosis? J Periodontol 2020; 92:181-185. [PMID: 32729118 DOI: 10.1002/jper.20-0208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/28/2022]
Abstract
Most would agree that the etiology of dental implant failure is related to oral biofilm. At present one group of scientists and clinicians feel that biofilm is solely responsible for bone loss around the devices. However, there is strong evidence that particles and ions of titanium released into the surrounding tissues by the action of biofilm and/or mechanical forces, a process termed metallosis, can be responsible for bone loss around some dental implants. These findings are reinforced by similar responses found around failed metal on metal joint prostheses. Both possible etiologies are discussed in detail in this commentary.
Collapse
|
49
|
Arrés M, Salama M, Rechena D, Paradiso P, Reis L, Alves MM, Botelho do Rego AM, Carmezim MJ, Vaz MF, Deus AM, Santos C. Surface and mechanical properties of a nanostructured citrate hydroxyapatite coating on pure titanium. J Mech Behav Biomed Mater 2020; 108:103794. [PMID: 32469718 DOI: 10.1016/j.jmbbm.2020.103794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 01/13/2023]
Abstract
The presence of a biomimetic HAP coating on titanium surface, which reduces the structural stiffness, is essential to improve implants biocompatibility and osteointegration. In this study, new citrate-HAP (cHAP) coatings were produced by a simple hydrothermal method on pure titanium (Ti) surface, without requiring any additional pretreatment on this metal surface. The formed cHAP coatings consisting of nanorod-like hydroxyapatite particles, conferred nanoroughness and wettability able to endow improved biological responses. Indeed, the presence of citrate species in the precipitate medium seems to be responsible for controlling the morphology of the new coatings. The presence of citrate groups on the surface of cHAP coatings, identified by chemical composition analysis, due to their implication in bone metabolism can additionally bring an add-value for bone implant applications. From a mechanical point of view, the Finite Element algorithm showing that cHAP coatings tend to decrease the mechanical stress at pure Ti, further favors these new coatings applicability. Overall, the simple and expedite strategy used to developed new biomimetic coatings of citrate-HAP resulted in improved physicochemical, morphological and mechanical properties of Ti, which can endeavor improved implantable materials in bone healing surgical procedures.
Collapse
Affiliation(s)
- Mar Arrés
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Salama
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo Rechena
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Patrizia Paradiso
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Luis Reis
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Marta M Alves
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Botelho do Rego
- CQFM (IN) and BSIRG (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Carmezim
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; ESTSetubal, CDP2T, Instituto Politécnico de Setúbal, Setúbal, Portugal
| | - Maria Fátima Vaz
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Augusto M Deus
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Santos
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; ESTSetubal, CDP2T, Instituto Politécnico de Setúbal, Setúbal, Portugal.
| |
Collapse
|
50
|
Degirmenci K, Saridag S. Effect of different surface treatments on the shear bond strength of luting cements used with implant-supported prosthesis: An in vitro study. J Adv Prosthodont 2020; 12:75-82. [PMID: 32377320 PMCID: PMC7183856 DOI: 10.4047/jap.2020.12.2.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the shear bond strength of luting cements used with implant retained restorations on to titanium specimens after different surface treatments. MATERIALS AND METHODS One hundred twenty disc shaped specimens were used. They were divided into three groups considering the surface treatments (no treatment, sandblasting, and oxygen plasma treatment). Water contact angle of specimens were determined. The specimens were further divided into four subgroups (n=10) according to applied cement types: polycarboxylate cement (Adhesor Carbofine-AC), temporary zinc oxide free cement (Temporary Cement-ZOC), non eugenol provisional cement for implant retained prosthesis (Premier Implant Cement-PI), and non eugenol acrylic-urethane polymer based provisional cement for implant luting (Cem Implant Cement-CI). Shear bond strength values were evaluated. Two-way ANOVA test and Regression analysis were used to statistical analyze the results. RESULTS Overall shear bond strength values of luting cements defined in sandblasting groups were considerably higher than other surfaces (P<.05). The cements can be ranked as AC > CI > PI > ZOC according to shear bond strength values for all surface treatment groups (P<.05). Water contact angles of surface treatments (control, sandblasting, and plasma treatment group) were 76.17° ± 3.99, 110.45° ± 1.41, and 73.80° ± 4.79, respectively. Regression analysis revealed that correlation between the contact angle of different surfaces and shear bond strength was not strong (P>.05). CONCLUSION The retentive strength findings of all luting cements were higher in sandblasting and oxygen plasma groups than in control groups. Oxygen plasma treatment can improve the adhesion ability of titanium surfaces without any mechanical damage to titanium structure.
Collapse
Affiliation(s)
- Kubra Degirmenci
- Faculty of Dentistry, Department of Prosthodontics, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Serkan Saridag
- Faculty of Dentistry, Department of Prosthodontics, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|