Amarne H, Helal W, Wang S. Synthesis, structure and density functional theory calculations of a novel photoluminescent trisarylborane-bismuth(III) complex.
LUMINESCENCE 2019;
34:731-738. [PMID:
31251465 DOI:
10.1002/bio.3667]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/12/2019] [Accepted: 05/28/2019] [Indexed: 11/09/2022]
Abstract
A novel trisarylborane-Bi(III) complex, tris(4-(dimesitylboryl)phenyl)bismuthine [Bi(PhBMes2 )3 ], in which (Ph = phenyl, and Mes = mesityl), was synthesized via the reaction of bismuth (III) chloride (BiCl3 ) with three equivalents of lithiated (4-bromophenyl)- dimesitylborane [BrPhBMes2 ]. The new trisarylbismuthine was characterized by elemental analysis, ultraviolet-visible (UV-vis) spectroscopy, and NMR (1 H and 13 C) spectroscopy. The molecular structure of Bi(PhBMes2 )3 in the solid state was determined using single-crystal X-ray diffraction analysis, which showed short intermolecular C-H···H-C contact. The complex is a fluorescent emitter (λmax = 395 nm) at room temperature and a phosphorescent emitter (λmax = 423 nm) at 77 K, which displayed a long lifetime of 495 ms. The UV-vis transitions were investigated using density function theory (DFT) and time-dependent (TD)-DFT calculations. Natural bond orbital analysis showed that the bismuth (III) center was mainly Lewis acidic in nature.
Collapse