1
|
Zhang L, Ma D, Yu Y, Luo W, Jiang S, Feng S, Chen Z. Advances in biomacromolecule-functionalized magnetic particles for phytopathogen detection. Talanta 2025; 281:126876. [PMID: 39277940 DOI: 10.1016/j.talanta.2024.126876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Due to the increasing crop losses caused by common and newly emerging phytopathogens, there is a pressing need for the development of rapid and reliable methods for phytopathogen detection and analysis. Leveraging advancements in biochemical engineering technologies and nanomaterial sciences, researchers have put considerable efforts on utilizing biofunctionalized magnetic micro- and nanoparticles (MPs) to develop rapid and reliable systems for phytopathogen detection. MPs facilitate the rapid, high-throughput analysis and in-field applications, while the biomacromolecules, which play key roles in the biorecognitions, interactions and signal amplification, determine the specificity, sensitivity, reliability, and portability of pathogen detection systems. The integration of MPs and biomacromolecules provides dimensionality- and composition-dependent properties, representing a novel approach to develop phytopathogen detection systems. In this review, we summarize and discuss the general properties, synthesis and characterization of MPs, and focus on biomacromolecule-functionalized MPs as well as their representative applications for phytopathogen detection and analysis reported over the past decade. Extensively studied bioreceptors, such as antibodies, phages and phage proteins, nucleic acids, and glycans that are involved in the recognitions and interactions, are covered and discussed. Additionally, the integration of MPs-based detection system with portable microfluidic devices to facilitate their in-field applications is also discussed. Overall, this review focuses on biomacromolecule-functionalized MPs and their applications for phytopathogen detection, aiming to highlight their potential in developing advanced biosensing systems for effective plant protection.
Collapse
Affiliation(s)
- Libo Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Dumei Ma
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Youbo Yu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Wiewei Luo
- The Ninth Medical Center of Chinese PLA General Hospital, Chaoyang District, Beijing, 100101, China
| | - Shilong Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Sheng Feng
- Department of Pathology and Laboratory Medicine, Boston University, Boston, MA, 02118, USA
| | - Zhuo Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
2
|
Sanli S. Single-drop electrochemical immunosensor with 3D-printed magnetic attachment for onsite smartphone detection of amoxicillin in raw milk. Food Chem 2024; 437:137823. [PMID: 37897821 DOI: 10.1016/j.foodchem.2023.137823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Amoxicillin is a beta-lactam group of antibiotics used against bacterial infections. The growth of the antibiotic market and abuse of amoxicillin led to its accumulation in nature, especially in foods. Thus, rapid amoxicillin tests are needed to protect human health and increase food safety. In this study, a single drop, mobile electrochemical amoxicillin immunosensor was developed for the first time. The immunosensor platform is based on amoxicillin antibodies conjugated magnetic nanoparticles. A 3-Dimensional (3D) cell capable of accumulating amoxicillin molecules, which interact with antibody-conjugated magnetic nanoparticles on the electrode surface was designed and 3D-printed. A small potentiostat connected to an Android mobile phone was used to detect amoxicillin in a single-drop raw milk sample in a 3D-printed cell. Results demonstrated linearity between 0.5 and 100 µM with an LOD of 0.44 µM. Due to its rapid and portable application, the designed immunosensor shows good potential in on-site amoxicillin detection from milk samples.
Collapse
Affiliation(s)
- Serdar Sanli
- Department of Chemistry, Faculty of Science and Arts, Ordu University, 52200, Altınordu, Ordu, Turkiye.
| |
Collapse
|
3
|
Zolotova MO, Znoyko SL, Orlov AV, Nikitin PI, Sinolits AV. Efficient Chlorostannate Modification of Magnetite Nanoparticles for Their Biofunctionalization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:349. [PMID: 38255517 PMCID: PMC10820483 DOI: 10.3390/ma17020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Magnetite nanoparticles (MNPs) are highly favored materials for a wide range of applications, from smart composite materials and biosensors to targeted drug delivery. These multifunctional applications typically require the biofunctional coating of MNPs that involves various conjugation techniques to form stable MNP-biomolecule complexes. In this study, a cost-effective method is developed for the chlorostannate modification of MNP surfaces that provides efficient one-step conjugation with biomolecules. The proposed method was validated using MNPs obtained via an optimized co-precipitation technique that included the use of degassed water, argon atmosphere, and the pre-filtering of FeCl2 and FeCl3 solutions followed by MNP surface modification using stannous chloride. The resulting chlorostannated nanoparticles were comprehensively characterized, and their efficiency was compared with both carboxylate-modified and unmodified MNPs. The biorecognition performance of MNPs was verified via magnetic immunochromatography. Mouse monoclonal antibodies to folic acid served as model biomolecules conjugated with the MNP to produce nanobioconjugates, while folic acid-gelatin conjugates were immobilized on the test lines of immunochromatography lateral flow test strips. The specific trapping of the obtained nanobioconjugates via antibody-antigen interactions was registered via the highly sensitive magnetic particle quantification technique. The developed chlorostannate modification of MNPs is a versatile, rapid, and convenient tool for creating multifunctional nanobioconjugates with applications that span in vitro diagnostics, magnetic separation, and potential in vivo uses.
Collapse
Affiliation(s)
- Maria O. Zolotova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Artem V. Sinolits
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russia
| |
Collapse
|
4
|
Wilkirson EC, Singampalli KL, Li J, Dixit DD, Jiang X, Gonzalez DH, Lillehoj PB. Affinity-based electrochemical sensors for biomolecular detection in whole blood. Anal Bioanal Chem 2023:10.1007/s00216-023-04627-5. [PMID: 36917265 PMCID: PMC10011785 DOI: 10.1007/s00216-023-04627-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023]
Abstract
The detection and/or quantification of biomarkers in blood is important for the early detection, diagnosis, and treatment of a variety of diseases and medical conditions. Among the different types of sensors for detecting molecular biomarkers, such as proteins, nucleic acids, and small-molecule drugs, affinity-based electrochemical sensors offer the advantages of high analytical sensitivity and specificity, fast detection times, simple operation, and portability. However, biomolecular detection in whole blood is challenging due to its highly complex matrix, necessitating sample purification (i.e., centrifugation), which involves the use of bulky, expensive equipment and tedious sample-handling procedures. To address these challenges, various strategies have been employed, such as purifying the blood sample directly on the sensor, employing micro-/nanoparticles to enhance the detection signal, and coating the electrode surface with blocking agents to reduce nonspecific binding, to improve the analytical performance of affinity-based electrochemical sensors without requiring sample pre-processing steps or laboratory equipment. In this article, we present an overview of affinity-based electrochemical sensor technologies that employ these strategies for biomolecular detection in whole blood.
Collapse
Affiliation(s)
- Elizabeth C Wilkirson
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kavya L Singampalli
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jiran Li
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xue Jiang
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Diego H Gonzalez
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Popova V, Poletaeva Y, Chubarov A, Dmitrienko E. pH-Responsible Doxorubicin-Loaded Fe3O4@CaCO3 Nanocomposites for Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15030771. [PMID: 36986632 PMCID: PMC10053241 DOI: 10.3390/pharmaceutics15030771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
A magnetic nanocomposite (MNC) is an integrated nanoplatform that combines a set of functions of two types of materials. A successful combination can give rise to a completely new material with unique physical, chemical, and biological properties. The magnetic core of MNC provides the possibility of magnetic resonance or magnetic particle imaging, magnetic field-influenced targeted delivery, hyperthermia, and other outstanding applications. Recently, MNC gained attention for external magnetic field-guided specific delivery to cancer tissue. Further, drug loading enhancement, construction stability, and biocompatibility improvement may lead to high progress in the area. Herein, the novel method for nanoscale Fe3O4@CaCO3 composites synthesis was proposed. For the procedure, oleic acid-modified Fe3O4 nanoparticles were coated with porous CaCO3 using an ion coprecipitation technique. PEG-2000, Tween 20, and DMEM cell media was successfully used as a stabilization agent and template for Fe3O4@CaCO3 synthesis. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) data were used for the Fe3O4@CaCO3 MNC’s characterization. To improve the nanocomposite properties, the concentration of the magnetic core was varied, yielding optimal size, polydispersity, and aggregation ability. The resulting Fe3O4@CaCO3 had a size of 135 nm with narrow size distributions, which is suitable for biomedical applications. The stability experiment in various pH, cell media, and fetal bovine serum was also evaluated. The material showed low cytotoxicity and high biocompatibility. An excellent anticancer drug doxorubicin (DOX) loading of up to 1900 µg/mg (DOX/MNC) was demonstrated. The Fe3O4@CaCO3/DOX displayed high stability at neutral pH and efficient acid-responsive drug release. The series of DOX-loaded Fe3O4@CaCO3 MNCs indicated effective inhibition of Hela and MCF-7 cell lines, and the IC 50 values were calculated. Moreover, 1.5 μg of the DOX-loaded Fe3O4@CaCO3 nanocomposite is sufficient to inhibit 50% of Hela cells, which shows a high prospect for cancer treatment. The stability experiments for DOX-loaded Fe3O4@CaCO3 in human serum albumin solution indicated the drug release due to the formation of a protein corona. The presented experiment showed the “pitfalls” of DOX-loaded nanocomposites and provided step-by-step guidance on efficient, smart, anticancer nanoconstruction fabrication. Thus, the Fe3O4@CaCO3 nanoplatform exhibits good performance in the cancer treatment area.
Collapse
Affiliation(s)
| | | | - Alexey Chubarov
- Correspondence: or (A.C.); (E.D.); Tel.: +7-913-763-1420 (A.C.); +7-913-904-1742 (E.D.)
| | - Elena Dmitrienko
- Correspondence: or (A.C.); (E.D.); Tel.: +7-913-763-1420 (A.C.); +7-913-904-1742 (E.D.)
| |
Collapse
|
6
|
Maity D, Gupta U, Saha S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management. NANOSCALE 2022; 14:13950-13989. [PMID: 36124943 DOI: 10.1039/d2nr03944c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current agricultural sector is not only in its most vulnerable state but is also becoming a threat to our environment due to expanding population and growing food demands along with worsening climatic conditions. In addition, numerous agrochemicals presently being used as fertilizers and pesticides have low efficiency and high toxicity. However, the rapid growth of nanotechnology has shown great promise to tackle these issues replacing conventional agriculture industries. Since the last decade, nanomaterials especially metal oxide nanoparticles (MONPs) have been attractive for improving agricultural outcomes due to their large surface area, higher chemical/thermal stability and tunable unique physicochemical characteristics. Further, to achieve sustainability, researchers have been extensively working on ecological and cost-effective biological approaches to synthesize MONPs. Hereby, we have elaborated on recent successful biosynthesis methods using various plants/microbes. Furthermore, we have elucidated different mechanisms for the interaction of MONPs with plants, including their uptake/translocation/internalization, photosynthesis, antioxidant activity, and gene alteration, which could revolutionize crop productivity/yield through increased nutrient amount, photosynthesis rate, antioxidative enzyme level, and gene upregulations. Besides, we have briefly discussed about functionalization of MONPs and their application in agricultural-waste-management. We have further illuminated recent developments of various MONPs (Fe2O3/ZnO/CuO/Al2O3/TiO2/MnO2) as nanofertilizers, nanopesticides and antimicrobial agents and their implications for enhanced plant growth and pest/disease management. Moreover, the potential use of MONPs as nanobiosensors for detecting nutrients/pathogens/toxins and safeguarding plant/soil health is also illuminated. Overall, this review attempts to provide a clear insight into the latest advances in biosynthesized MONPs for sustainable crop production, protection and management and their scope in the upcoming future of eco-friendly agricultural nanotechnology.
Collapse
Affiliation(s)
- Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Urvashi Gupta
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
| |
Collapse
|
7
|
Abstract
Magnetic nanoparticles (MNPs) have great potential in biochemistry and medical science. In particular, iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications due to their high magnetic properties, large surface area, stability, and easy functionalization. However, colloidal stability, biocompatibility, and potential toxicity of MNPs in physiological environments are crucial for their in vivo application. In this context, many research articles focused on the possible procedures for MNPs coating to improve their physic-chemical and biological properties. This review highlights one viable fabrication strategy of biocompatible iron oxide nanoparticles using human serum albumin (HSA). HSA is mainly a transport protein with many functions in various fundamental processes. As it is one of the most abundant plasma proteins, not a single drug in the blood passes without its strength test. It influences the stability, pharmacokinetics, and biodistribution of different drug-delivery systems by binding or forming its protein corona on the surface. The development of albumin-based drug carriers is gaining increasing importance in the targeted delivery of cancer therapy. Considering this, HSA is a highly potential candidate for nanoparticles coating and theranostics area and can provide biocompatibility, prolonged blood circulation, and possibly resolve the drug-resistance cancer problem.
Collapse
|
8
|
Pohanka M. Biosensors and Bioanalytical Devices based on Magnetic Particles: A Review. Curr Med Chem 2021; 28:2828-2841. [PMID: 32744958 DOI: 10.2174/0929867327666200730213721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
Magnetic particles play an important role in current technology, and this field of technology extends to a broader progression. The term magnetic particles typically cover the paramagnetic particles and super-paramagnetic particles. Various materials like iron oxide are common, but other materials are available as well; a survey of such materials has been included in this work. They can serve for technological purposes like separation and isolation of chemical products or toxic waste, their use in the diagnosis of pathologies, drug delivery and other similar applications. In this review, biosensors, bioanalytical devices and bioassays, have been discussed. Materials for magnetic particles preparation, methods of assay, biosensors and bioassays working in stationary as well as flow-through arrangements are described here. A survey of actual literature has been provided as well.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
9
|
Pushkarev AV, Orlov AV, Znoyko SL, Bragina VA, Nikitin PI. Rapid and Easy-to-Use Method for Accurate Characterization of Target Binding and Kinetics of Magnetic Particle Bioconjugates for Biosensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:2802. [PMID: 33921145 PMCID: PMC8071512 DOI: 10.3390/s21082802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
The ever-increasing use of magnetic particle bioconjugates (MPB) in biosensors calls for methods of comprehensive characterization of their interaction with targets. Label-free optical sensors commonly used for studying inter-molecular interactions have limited potential for MPB because of their large size and multi-component non-transparent structure. We present an easy-to-use method that requires only three 20-min express measurements to determine the key parameters for selection of optimal MPB for a biosensor: kinetic and equilibrium characteristics, and a fraction of biomolecules on the MPB surface that are capable of active targeting. The method also provides a prognostic dependence of MPB targeting efficiency upon interaction duration and sample volume. These features are possible due to joining a magnetic lateral flow assay, a highly sensitive sensor for MPB detection by the magnetic particle quantification technique, and a novel mathematical model that explicitly describes the MPB-target interactions and does not comprise parameters to be fitted additionally. The method was demonstrated by experiments on MPB targeting of cardiac troponin I and staphylococcal enterotoxin B. The validation by an independent label-free technique of spectral-correlation interferometry showed good correlation between the results obtained by both methods. The presented method can be applied to other targets for faster development and selection of MPB for affinity sensors, analytical technologies, and realization of novel concepts of MPB-based biosensing in vivo.
Collapse
Affiliation(s)
- Averyan V. Pushkarev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
- Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, 141700 Moscow Region, Russia
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Vera A. Bragina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| |
Collapse
|
10
|
Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Adv Colloid Interface Sci 2020; 286:102297. [PMID: 33142210 DOI: 10.1016/j.cis.2020.102297] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Food industry is always looking for more innovative and accurate ways to monitor the food safety and quality control of final products. Current detection techniques of analytes are costly and time-consuming, and occasionally require professional experts and specialized tools. The usage of nanomaterials in sensory systems has eliminated not only these drawbacks but also has advantages such as higher sensitivity and selectivity. This article first presents a general overview of the current studies conducted on the detection of spoilage and adulteration in foods from 2015 to 2020. Then, the sensory properties of nanomaterials including metal and magnetic nanoparticles, carbon nanostructures (nanotubes, graphene and its derivatives, and nanofibers), nanowires, and electrospun nanofibers are presented. The latest investigations and advancements in the application of nanomaterial-based sensors in detecting spoilage (food spoilage pathogens, toxins, pH changes, and gases) and adulterants (food additives, glucose, melamine, and urea) have also been discussed in the following sections. To conclude, these sensors can be applied in the smart packaging of food products to meet the demand of consumers in the new era.
Collapse
|
11
|
Al Mubarak ZH, Premaratne G, Dharmaratne A, Mohammadparast F, Andiappan M, Krishnan S. Plasmonic nucleotide hybridization chip for attomolar detection: localized gold and tagged core/shell nanomaterials. LAB ON A CHIP 2020; 20:717-721. [PMID: 32009138 DOI: 10.1039/c9lc01150a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a large amplification of surface plasmon signals for a double hybridization microarray chip assembly that bridges localized gold and detection probe-carrying-core/shell Fe3O4@Au nanoparticles for detection of as low as 80 aM miRNA-155 marker in solution. The plasmonic wavelength match of the gold shell with surface localized gold nanoparticles and the additional scattering band of the core/shell material in resonance with the incident 800 nm light source are the underlying factors for the observed remarkable analyte signal at ultra-low (10-18 order) concentrations.
Collapse
Affiliation(s)
- Zainab H Al Mubarak
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | - Gayan Premaratne
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | - Asantha Dharmaratne
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | - Farshid Mohammadparast
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Marimuthu Andiappan
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| |
Collapse
|
12
|
Abstract
Magnetic nanoparticles are a class of nanoparticle that can be manipulated using magnetic fields [...]
Collapse
|
13
|
Abstract
The field of nanomedicine has recently emerged as a product of the expansion of a range of nanotechnologies into biomedical science, pharmacology and clinical practice. Due to the unique properties of nanoparticles and the related nanostructures, their applications to medical diagnostics, imaging, controlled drug and gene delivery, monitoring of therapeutic outcomes, and aiding in medical interventions, provide a new perspective for challenging problems in such demanding issues as those involved in the treatment of cancer or debilitating neurological diseases. In this review, we evaluate the role and contributions that the applications of magnetic nanoparticles (MNPs) have made to various aspects of nanomedicine, including the newest magnetic particle imaging (MPI) technology allowing for outstanding spatial and temporal resolution that enables targeted contrast enhancement and real-time assistance during medical interventions. We also evaluate the applications of MNPs to the development of targeted drug delivery systems with magnetic field guidance/focusing and controlled drug release that mitigate chemotherapeutic drugs’ side effects and damage to healthy cells. These systems enable tackling of multiple drug resistance which develops in cancer cells during chemotherapeutic treatment. Furthermore, the progress in development of ROS- and heat-generating magnetic nanocarriers and magneto-mechanical cancer cell destruction, induced by an external magnetic field, is also discussed. The crucial roles of MNPs in the development of biosensors and microfluidic paper array devices (µPADs) for the detection of cancer biomarkers and circulating tumor cells (CTCs) are also assessed. Future challenges concerning the role and contributions of MNPs to the progress in nanomedicine have been outlined.
Collapse
|
14
|
Iron Oxide/Chitosan Magnetic Nanocomposite Immobilized Manganese Peroxidase for Decolorization of Textile Wastewater. Processes (Basel) 2019. [DOI: 10.3390/pr8010005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Because of its effectiveness in organic pollutant degradation, manganese peroxidase (MnP) enzyme has attracted significant attention in recent years regarding its use for wastewater treatment. Herein, MnP was extracted from Anthracophyllum discolor fungi and immobilized on the surface of magnetic nanocomposite Fe3O4/chitosan. The prepared nanocomposite offered a high surface area for MnP immobilization. The influence of several environmental factors like temperature, pH, as well as storage duration on the activity of the extracted enzyme has been studied. Fourier transmission infrared spectroscopy (FT-IR), scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM) techniques were used for the characterization of the prepared MnP/Fe3O4/chitosan nanocomposite. The efficiencies of the prepared MnP/Fe3O4/chitosan nanocomposite for the elimination of reactive orange 16 (RO 16) and methylene blue (MB) industrial dyes were determined. According to the results, the immobilization of MnP on Fe3O4/chitosan nanocomposite increases its capacity to decolorize MB and RO 16. This nanocomposite allowed the removal of 96% ± 2% and 98% ± 2% of MB and RO 16, respectively. The reusability of the synthesized nanocomposite was studied for five successive cycles showing the ability to retain its efficiency even after five cycles. Thus, the prepared MnP/Fe3O4/chitosan nanocomposite has potential to be a promising material for textile wastewater bioremediation.
Collapse
|