1
|
Chi J, Miao J, Chen JH, Wang H, Yu X, Huang Y. DSTAN: A Deformable Spatial-temporal Attention Network with Bidirectional Sequence Feature Refinement for Speckle Noise Removal in Thyroid Ultrasound Video. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-023-00935-5. [PMID: 38839673 DOI: 10.1007/s10278-023-00935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 06/07/2024]
Abstract
Thyroid ultrasound video provides significant value for thyroid diseases diagnosis, but the ultrasound imaging process is often affected by the speckle noise, resulting in poor quality of the ultrasound video. Numerous video denoising methods have been proposed to remove noise while preserving texture details. However, existing methods still suffer from the following problems: (1) relevant temporal features in the low-contrast ultrasound video cannot be accurately aligned and effectively aggregated by simple optical flow or motion estimation, resulting in the artifacts and motion blur in the video; (2) fixed receptive field in spatial features integration lacks the flexibility of aggregating features in the global region of interest and is susceptible to interference from irrelevant noisy regions. In this work, we propose a deformable spatial-temporal attention denoising network to remove speckle noise in thyroid ultrasound video. The entire network follows the bidirectional feature propagation mechanism to efficiently exploit the spatial-temporal information of the whole video sequence. In this process, two modules are proposed to address the above problems: (1) a deformable temporal attention module (DTAM) is designed after optical flow pre-alignment to further capture and aggregate relevant temporal features according to the learned offsets between frames, so that inter-frame information can be better exploited even with the imprecise flow estimation under the low contrast of ultrasound video; (2) a deformable spatial attention module (DSAM) is proposed to flexibly integrate spatial features in the global region of interest through the learned intra-frame offsets, so that irrelevant noisy information can be ignored and essential information can be precisely exploited. Finally, all these refined features are rectified and merged through residual convolution blocks to recover the clean video frames. Experimental results on our thyroid ultrasound video (US-V) dataset and the DDTI dataset demonstrate that our proposed method exceeds 1.2 ∼ 1.3 dB on PSNR and has clearer texture detail compared to other state-of-the-art methods. In the meantime, the proposed model can also assist thyroid nodule segmentation methods to achieve more accurate segmentation effect, which provides an important basis for thyroid diagnosis. In the future, the proposed model can be improved and extended to other medical image sequence datasets, including CT and MRI slice denoising. The code and datasets are provided at https://github.com/Meta-MJ/DSTAN .
Collapse
Affiliation(s)
- Jianning Chi
- Faculty of Robot Science and Engineering, Northeastern University, Zhihui Street, Shenyang, 110169, Liaoning, China.
- Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Zhihui Street, Shenyang, 110169, Liaoning, China.
| | - Jian Miao
- Faculty of Robot Science and Engineering, Northeastern University, Zhihui Street, Shenyang, 110169, Liaoning, China
| | - Jia-Hui Chen
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Huan Wang
- Faculty of Robot Science and Engineering, Northeastern University, Zhihui Street, Shenyang, 110169, Liaoning, China
| | - Xiaosheng Yu
- Faculty of Robot Science and Engineering, Northeastern University, Zhihui Street, Shenyang, 110169, Liaoning, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
2
|
Nazir N, Sarwar A, Saini BS. Recent developments in denoising medical images using deep learning: An overview of models, techniques, and challenges. Micron 2024; 180:103615. [PMID: 38471391 DOI: 10.1016/j.micron.2024.103615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Medical imaging plays a critical role in diagnosing and treating various medical conditions. However, interpreting medical images can be challenging even for expert clinicians, as they are often degraded by noise and artifacts that can hinder the accurate identification and analysis of diseases, leading to severe consequences such as patient misdiagnosis or mortality. Various types of noise, including Gaussian, Rician, and Salt-pepper noise, can corrupt the area of interest, limiting the precision and accuracy of algorithms. Denoising algorithms have shown the potential in improving the quality of medical images by removing noise and other artifacts that obscure essential information. Deep learning has emerged as a powerful tool for image analysis and has demonstrated promising results in denoising different medical images such as MRIs, CT scans, PET scans, etc. This review paper provides a comprehensive overview of state-of-the-art deep learning algorithms used for denoising medical images. A total of 120 relevant papers were reviewed, and after screening with specific inclusion and exclusion criteria, 104 papers were selected for analysis. This study aims to provide a thorough understanding for researchers in the field of intelligent denoising by presenting an extensive survey of current techniques and highlighting significant challenges that remain to be addressed. The findings of this review are expected to contribute to the development of intelligent models that enable timely and accurate diagnoses of medical disorders. It was found that 40% of the researchers used models based on Deep convolutional neural networks to denoise the images, followed by encoder-decoder (18%) and other artificial intelligence-based techniques (15%) (Like DIP, etc.). Generative adversarial network was used by 12%, transformer-based approaches (13%) and multilayer perceptron was used by 2% of the researchers. Moreover, Gaussian noise was present in 35% of the images, followed by speckle noise (16%), poisson noise (14%), artifacts (10%), rician noise (7%), Salt-pepper noise (6%), Impulse noise (3%) and other types of noise (9%). While the progress in developing novel models for the denoising of medical images is evident, significant work remains to be done in creating standardized denoising models that perform well across a wide spectrum of medical images. Overall, this review highlights the importance of denoising medical images and provides a comprehensive understanding of the current state-of-the-art deep learning algorithms in this field.
Collapse
|
3
|
Nazari S, Keyanfar A, Van Hulle MM. Spiking image processing unit based on neural analog of Boolean logic operations. Cogn Neurodyn 2023; 17:1649-1660. [PMID: 37974579 PMCID: PMC10640458 DOI: 10.1007/s11571-022-09917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
McCulloch and Pitts hypothesized in 1943 that the brain is entirely composed of logic gates, akin to current computers' IP cores, which led to several neural analogs of Boolean logic. The current study proposes a spiking image processing unit (SIPU) based on spiking frequency gates and coordinate logic operations, as a dynamical model of synapses and spiking neurons. SIPU can imitate DSP functions like edge recognition, picture magnification, noise reduction, etc. but can be extended to cater for more advanced computing tasks. The proposed spiking Boolean logic platform can be used to develop advanced applications without relying on learning or specialized datasets. It could aid in gaining a deeper understanding of complex brain functions and spur new forms of neural analogs.
Collapse
Affiliation(s)
- Soheila Nazari
- Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
| | - Alireza Keyanfar
- Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
| | - Marc M. Van Hulle
- Department of Neurosciences, Laboratory for Neuro- and Psychophysiology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Gao W, Wang C, Li Q, Zhang X, Yuan J, Li D, Sun Y, Chen Z, Gu Z. Application of medical imaging methods and artificial intelligence in tissue engineering and organ-on-a-chip. Front Bioeng Biotechnol 2022; 10:985692. [PMID: 36172022 PMCID: PMC9511994 DOI: 10.3389/fbioe.2022.985692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Organ-on-a-chip (OOC) is a new type of biochip technology. Various types of OOC systems have been developed rapidly in the past decade and found important applications in drug screening and precision medicine. However, due to the complexity in the structure of both the chip-body itself and the engineered-tissue inside, the imaging and analysis of OOC have still been a big challenge for biomedical researchers. Considering that medical imaging is moving towards higher spatial and temporal resolution and has more applications in tissue engineering, this paper aims to review medical imaging methods, including CT, micro-CT, MRI, small animal MRI, and OCT, and introduces the application of 3D printing in tissue engineering and OOC in which medical imaging plays an important role. The achievements of medical imaging assisted tissue engineering are reviewed, and the potential applications of medical imaging in organoids and OOC are discussed. Moreover, artificial intelligence - especially deep learning - has demonstrated its excellence in the analysis of medical imaging; we will also present the application of artificial intelligence in the image analysis of 3D tissues, especially for organoids developed in novel OOC systems.
Collapse
Affiliation(s)
- Wanying Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Science Researching and Training Center, Beijing, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xijing Zhang
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Dianfu Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Children’s Medical Imaging Research Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
5
|
An evolutionary block based network for medical image denoising using Differential Evolution. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.108776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Xu P, Liu H, Xie X, Zhou S, Shu M, Wang Y. Interpatient ECG Arrhythmia Detection by Residual Attention CNN. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2323625. [PMID: 35432590 PMCID: PMC9012615 DOI: 10.1155/2022/2323625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
The precise identification of arrhythmia is critical in electrocardiogram (ECG) research. Many automatic classification methods have been suggested so far. However, efficient and accurate classification is still a challenge due to the limited feature extraction and model generalization ability. We integrate attention mechanism and residual skip connection into the U-Net (RA-UNET); besides, a skip connection between the RA-UNET and a residual block is executed as a residual attention convolutional neural network (RA-CNN) for accurate classification. The model was evaluated using the MIT-BIH arrhythmia database and achieved an accuracy of 98.5% and F 1 scores for the classes S and V of 82.8% and 91.7%, respectively, which is far superior to other approaches.
Collapse
Affiliation(s)
- Pengyao Xu
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hui Liu
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoyun Xie
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuwang Zhou
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Minglei Shu
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yinglong Wang
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
7
|
Perceptual adversarial non-residual learning for blind image denoising. Soft comput 2022. [DOI: 10.1007/s00500-022-06853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Gil Zuluaga FH, Bardozzo F, Rios Patino JI, Tagliaferri R. Blind microscopy image denoising with a deep residual and multiscale encoder/decoder network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3483-3486. [PMID: 34891990 DOI: 10.1109/embc46164.2021.9630502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In computer-aided diagnosis (CAD) focused on microscopy, denoising improves the quality of image analysis. In general, the accuracy of this process may depend both on the experience of the microscopist and on the equipment sensitivity and specificity. A medical image could be corrupted by several perturbations during image acquisition. Nowadays, CAD deep learning applications pre-process images with image denoising models to reinforce learning and prediction. In this work, an innovative and lightweight deep multiscale convolutional encoder-decoder neural network is proposed. Specifically, the encoder uses deterministic mapping to map features into a hidden representation. Then, the latent representation is rebuilt to generate the reconstructed denoised image. Residual learning strategies are used to improve and accelerate the training process using skip connections in bridging across convolutional and deconvolutional layers. The proposed model reaches on average 38.38 of PSNR and 0.98 of SSIM on a test set of 57458 images overcoming state-of-the-art models in the same application domain.Clinical relevance - Encoder-decoder based denoiser enables industry experts to provide more accurate and reliable medical interpretation and diagnosis in a variety of fields, from microscopy to surgery, with the benefit of real-time processing.
Collapse
|
9
|
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising. SENSORS 2021; 21:s21092998. [PMID: 33923320 PMCID: PMC8123214 DOI: 10.3390/s21092998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022]
Abstract
Image denoising is a challenging task that is essential in numerous computer vision and image processing problems. This study proposes and applies a generative adversarial network-based image denoising training architecture to multiple-level Gaussian image denoising tasks. Convolutional neural network-based denoising approaches come across a blurriness issue that produces denoised images blurry on texture details. To resolve the blurriness issue, we first performed a theoretical study of the cause of the problem. Subsequently, we proposed an adversarial Gaussian denoiser network, which uses the generative adversarial network-based adversarial learning process for image denoising tasks. This framework resolves the blurriness problem by encouraging the denoiser network to find the distribution of sharp noise-free images instead of blurry images. Experimental results demonstrate that the proposed framework can effectively resolve the blurriness problem and achieve significant denoising efficiency than the state-of-the-art denoising methods.
Collapse
|
10
|
Ayyad SM, Shehata M, Shalaby A, Abou El-Ghar M, Ghazal M, El-Melegy M, Abdel-Hamid NB, Labib LM, Ali HA, El-Baz A. Role of AI and Histopathological Images in Detecting Prostate Cancer: A Survey. SENSORS (BASEL, SWITZERLAND) 2021; 21:2586. [PMID: 33917035 PMCID: PMC8067693 DOI: 10.3390/s21082586] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023]
Abstract
Prostate cancer is one of the most identified cancers and second most prevalent among cancer-related deaths of men worldwide. Early diagnosis and treatment are substantial to stop or handle the increase and spread of cancer cells in the body. Histopathological image diagnosis is a gold standard for detecting prostate cancer as it has different visual characteristics but interpreting those type of images needs a high level of expertise and takes too much time. One of the ways to accelerate such an analysis is by employing artificial intelligence (AI) through the use of computer-aided diagnosis (CAD) systems. The recent developments in artificial intelligence along with its sub-fields of conventional machine learning and deep learning provide new insights to clinicians and researchers, and an abundance of research is presented specifically for histopathology images tailored for prostate cancer. However, there is a lack of comprehensive surveys that focus on prostate cancer using histopathology images. In this paper, we provide a very comprehensive review of most, if not all, studies that handled the prostate cancer diagnosis using histopathological images. The survey begins with an overview of histopathological image preparation and its challenges. We also briefly review the computing techniques that are commonly applied in image processing, segmentation, feature selection, and classification that can help in detecting prostate malignancies in histopathological images.
Collapse
Affiliation(s)
- Sarah M. Ayyad
- Computers and Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35511, Egypt; (S.M.A.); (N.B.A.-H.); (L.M.L.); (H.A.A.)
| | - Mohamed Shehata
- BioImaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.S.); (A.S.)
| | - Ahmed Shalaby
- BioImaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.S.); (A.S.)
| | - Mohamed Abou El-Ghar
- Department of Radiology, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt;
| | - Mohammed Ghazal
- Department of Electrical and Computer Engineering, College of Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Moumen El-Melegy
- Department of Electrical Engineering, Assiut University, Assiut 71511, Egypt;
| | - Nahla B. Abdel-Hamid
- Computers and Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35511, Egypt; (S.M.A.); (N.B.A.-H.); (L.M.L.); (H.A.A.)
| | - Labib M. Labib
- Computers and Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35511, Egypt; (S.M.A.); (N.B.A.-H.); (L.M.L.); (H.A.A.)
| | - H. Arafat Ali
- Computers and Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35511, Egypt; (S.M.A.); (N.B.A.-H.); (L.M.L.); (H.A.A.)
| | - Ayman El-Baz
- BioImaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (M.S.); (A.S.)
| |
Collapse
|
11
|
Song H, Mehdi SR, Zhang Y, Shentu Y, Wan Q, Wang W, Raza K, Huang H. Development of Coral Investigation System Based on Semantic Segmentation of Single-Channel Images. SENSORS 2021; 21:s21051848. [PMID: 33800839 PMCID: PMC7961541 DOI: 10.3390/s21051848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
Among aquatic biota, corals provide shelter with sufficient nutrition to a wide variety of underwater life. However, a severe decline in the coral resources can be noted in the last decades due to global environmental changes causing marine pollution. Hence, it is of paramount importance to develop and deploy swift coral monitoring system to alleviate the destruction of corals. Performing semantic segmentation on underwater images is one of the most efficient methods for automatic investigation of corals. Firstly, to design a coral investigation system, RGB and spectral images of various types of corals in natural and artificial aquatic sites are collected. Based on single-channel images, a convolutional neural network (CNN) model, named DeeperLabC, is employed for the semantic segmentation of corals, which is a concise and modified deeperlab model with encoder-decoder architecture. Using ResNet34 as a skeleton network, the proposed model extracts coral features in the images and performs semantic segmentation. DeeperLabC achieved state-of-the-art coral segmentation with an overall mean intersection over union (IoU) value of 93.90%, and maximum F1-score of 97.10% which surpassed other existing benchmark neural networks for semantic segmentation. The class activation map (CAM) module also proved the excellent performance of the DeeperLabC model in binary classification among coral and non-coral bodies.
Collapse
|