1
|
Zhang D, Feng F, Chen Y, Sui J, Ding L. The potential of marine natural products and their synthetic derivatives as drugs targeting ion channels. Eur J Med Chem 2024; 276:116644. [PMID: 38971051 DOI: 10.1016/j.ejmech.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Ion channels are a type of protein channel that play a vital role in numerous physiological functions by facilitating the passage of ions through cell membranes, thereby enabling ion and electrical signal transmission. As a crucial target for drug action, ion channels have been implicated in various diseases. Many natural products from marine organisms, such as fungi, algae, sponges, and sea cucumber, etc. have been found to have activities related to ion channels for decades. These interesting natural product molecules undoubtedly bring good news for the treatment of neurological and cardiovascular diseases. In this review, 92 marine natural products and their synthetic derivatives with ion channel-related activities that were identified during the period 2000-2024 were systematically reviewed. The synthesis and mechanisms of action of selected compounds were also discussed, aiming to offer insights for the development of drugs targeting ion channels.
Collapse
Affiliation(s)
- Dashuai Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fangjian Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Chen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jingyao Sui
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Guo Q, Fu J, Yuan L, Liao Y, Li M, Li X, Yi B, Zhang J, Gao B. Diversity analysis of sea anemone peptide toxins in different tissues of Heteractis crispa based on transcriptomics. Sci Rep 2024; 14:7684. [PMID: 38561372 PMCID: PMC10985097 DOI: 10.1038/s41598-024-58402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Peptide toxins found in sea anemones venom have diverse properties that make them important research subjects in the fields of pharmacology, neuroscience and biotechnology. This study used high-throughput sequencing technology to systematically analyze the venom components of the tentacles, column, and mesenterial filaments of sea anemone Heteractis crispa, revealing the diversity and complexity of sea anemone toxins in different tissues. A total of 1049 transcripts were identified and categorized into 60 families, of which 91.0% were proteins and 9.0% were peptides. Of those 1049 transcripts, 416, 291, and 307 putative proteins and peptide precursors were identified from tentacles, column, and mesenterial filaments respectively, while 428 were identified when the datasets were combined. Of these putative toxin sequences, 42 were detected in all three tissues, including 33 proteins and 9 peptides, with the majority of peptides being ShKT domain, β-defensin, and Kunitz-type. In addition, this study applied bioinformatics approaches to predict the family classification, 3D structures, and functional annotation of these representative peptides, as well as the evolutionary relationships between peptides, laying the foundation for the next step of peptide pharmacological activity research.
Collapse
Affiliation(s)
- Qiqi Guo
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Jinxing Fu
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Lin Yuan
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
- Department of Pharmacy, 928th Hospital of PLA Joint Logistics Support Force, Haikou, China
| | - Yanling Liao
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Ming Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Xinzhong Li
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Bo Yi
- Department of Pharmacy, 928th Hospital of PLA Joint Logistics Support Force, Haikou, China
| | - Junqing Zhang
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.
| |
Collapse
|
3
|
Sanapala P, Pola S, Nageswara Rao Reddy N, Pallaval VB. Expanding Role of Marine Natural Compounds in Immunomodulation: Challenges and Future Perspectives. MARINE BIOMATERIALS 2022:307-349. [DOI: 10.1007/978-981-16-5374-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Jiang Y, Castro J, Blomster LV, Agwa AJ, Maddern J, Schober G, Herzig V, Chow CY, Cardoso FC, Demétrio De Souza França P, Gonzales J, Schroeder CI, Esche S, Reiner T, Brierley SM, King GF. Pharmacological Inhibition of the Voltage-Gated Sodium Channel Na V1.7 Alleviates Chronic Visceral Pain in a Rodent Model of Irritable Bowel Syndrome. ACS Pharmacol Transl Sci 2021; 4:1362-1378. [PMID: 34423271 DOI: 10.1021/acsptsci.1c00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/12/2022]
Abstract
The human nociceptor-specific voltage-gated sodium channel 1.7 (hNaV1.7) is critical for sensing various types of somatic pain, but it appears not to play a primary role in acute visceral pain. However, its role in chronic visceral pain remains to be determined. We used assay-guided fractionation to isolate a novel hNaV1.7 inhibitor, Tsp1a, from tarantula venom. Tsp1a is 28-residue peptide that potently inhibits hNaV1.7 (IC50 = 10 nM), with greater than 100-fold selectivity over hNaV1.3-hNaV1.6, 45-fold selectivity over hNaV1.1, and 24-fold selectivity over hNaV1.2. Tsp1a is a gating modifier that inhibits NaV1.7 by inducing a hyperpolarizing shift in the voltage-dependence of channel inactivation and slowing recovery from fast inactivation. NMR studies revealed that Tsp1a adopts a classical knottin fold, and like many knottin peptides, it is exceptionally stable in human serum. Remarkably, intracolonic administration of Tsp1a completely reversed chronic visceral hypersensitivity in a mouse model of irritable bowel syndrome. The ability of Tsp1a to reduce visceral hypersensitivity in a model of irritable bowel syndrome suggests that pharmacological inhibition of hNaV1.7 at peripheral sensory nerve endings might be a viable approach for eliciting analgesia in patients suffering from chronic visceral pain.
Collapse
Affiliation(s)
- Yan Jiang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Linda V Blomster
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Akello J Agwa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Paula Demétrio De Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Otorhinolaryngology & Head and Neck Surgery, Federal University of São Paulo, São Paulo 04021-001, Brazil
| | - Junior Gonzales
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Bian J, Cai F, Chen H, Tang Z, Xi K, Tang J, Wu L, Xu Y, Deng L, Gu Y, Cui W, Chen L. Modulation of Local Overactive Inflammation via Injectable Hydrogel Microspheres. NANO LETTERS 2021; 21:2690-2698. [PMID: 33543616 DOI: 10.1021/acs.nanolett.0c04713] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although injectable hydrogel microsphere has demonstrated tremendous promise in clinical applications, local overactive inflammation in degenerative diseases could jeopardize biomaterial implantation's therapeutic efficacy. Herein, an injectable "peptide-cell-hydrogel" microsphere was constructed by covalently coupling of APETx2 and further loading of nucleus pulposus cells, which could inhibit local inflammatory cytokine storms to regulate the metabolic balance of ECM in vitro. The covalent coupling of APETx2 preserved the biocompatibility of the microspheres and achieved a controlled release of APETx2 for more than 28 days in an acidic environment. By delivering "peptide-cell-hydrogel" microspheres to a rat degenerative intervertebral disc at 4 weeks, the expression of ASIC-3 and IL-1β was significantly decreased for 3.53-fold and 7.29-fold, respectively. Also, the content of ECM was significantly recovered at 8 weeks. In summary, the proposed strategy provides an effective approach for tissue regeneration under overactive inflammatory responses.
Collapse
Affiliation(s)
- Jiang Bian
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Feng Cai
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Hao Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Zhenzhou Tang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Kun Xi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Jincheng Tang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Liang Wu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Yichang Xu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Yong Gu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Liang Chen
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
6
|
Osmakov DI, Khasanov TA, Andreev YA, Lyukmanova EN, Kozlov SA. Animal, Herb, and Microbial Toxins for Structural and Pharmacological Study of Acid-Sensing Ion Channels. Front Pharmacol 2020; 11:991. [PMID: 32733241 PMCID: PMC7360831 DOI: 10.3389/fphar.2020.00991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are of the most sensitive molecular sensors of extracellular pH change in mammals. Six isoforms of these channels are widely represented in membranes of neuronal and non-neuronal cells, where these molecules are involved in different important regulatory functions, such as synaptic plasticity, learning, memory, and nociception, as well as in various pathological states. Structural and functional studies of both wild-type and mutant ASICs are essential for human care and medicine for the efficient treatment of socially significant diseases and ensure a comfortable standard of life. Ligands of ASICs serve as indispensable tools for these studies. Such bioactive compounds can be synthesized artificially. However, to date, the search for such molecules has been most effective amongst natural sources, such as animal venoms or plants and microbial extracts. In this review, we provide a detailed and comprehensive structural and functional description of natural compounds acting on ASICs, as well as the latest information on structural aspects of their interaction with the channels. Many of the examples provided in the review demonstrate the undoubted fundamental and practical successes of using natural toxins. Without toxins, it would not be possible to obtain data on the mechanisms of ASICs' functioning, provide detailed study of their pharmacological properties, or assess the contribution of the channels to development of different pathologies. The selectivity to different isoforms and variety in the channel modulation mode allow for the appraisal of prospective candidates for the development of new drugs.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
7
|
Li X, Wang S, Zhu X, Zhangsun D, Wu Y, Luo S. Effects of Cyclization on Activity and Stability of α-Conotoxin TxIB. Mar Drugs 2020; 18:E180. [PMID: 32235388 PMCID: PMC7230940 DOI: 10.3390/md18040180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
α-Conotoxin TxIB specifically blocked α6/α3β2β3 acetylcholine receptors (nAChRs), and it could be a potential probe for studying addiction and other diseases related to α6/α3β2β3 nAChRs. However, as a peptide, TxIB may suffer from low stability, short half-life, and poor bioavailability. In this study, cyclization of TxIB was used to improve its stability. Four cyclic mutants of TxIB (cTxIB) were synthesized, and the inhibition of these analogues on α6/α3β2β3 nAChRs as well as their stability in human serum were measured. All cyclized analogues had similar activity compared to wild-type TxIB, which indicated that backbone cyclization of TxIB had no significant effect on its activity. Cyclization of TxIB with a seven-residue linker improved its stability significantly in human serum. Besides this, the results showed that cyclization maintained the activity of α-conotoxin TxIB, which is conducive to its future application.
Collapse
Affiliation(s)
- Xincan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Shuai Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.L.); (S.W.); (X.Z.); (D.Z.)
- Medical School, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Ramírez-Carreto S, Vera-Estrella R, Portillo-Bobadilla T, Licea-Navarro A, Bernaldez-Sarabia J, Rudiño-Piñera E, Verleyen JJ, Rodríguez E, Rodríguez-Almazán C. Transcriptomic and Proteomic Analysis of the Tentacles and Mucus of Anthopleura dowii Verrill, 1869. Mar Drugs 2019; 17:md17080436. [PMID: 31349621 PMCID: PMC6722582 DOI: 10.3390/md17080436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Sea anemone venom contains a complex and diverse arsenal of peptides and proteins of pharmacological and biotechnological interest, however, only venom from a few species has been explored from a global perspective to date. In the present study, we identified the polypeptides present in the venom of the sea anemone Anthopleura dowii Verrill, 1869 through a transcriptomic and proteomic analysis of the tentacles and the proteomic profile of the secreted mucus. In our transcriptomic results, we identified 261 polypeptides related to or predicted to be secreted in the venom, including proteases, neurotoxins that could act as either potassium (K+) or sodium (Na+) channels inhibitors, protease inhibitors, phospholipases A2, and other polypeptides. Our proteomic data allowed the identification of 156 polypeptides—48 exclusively identified in the mucus, 20 in the tentacles, and 88 in both protein samples. Only 23 polypeptides identified by tandem mass spectrometry (MS/MS) were related to the venom and 21 exclusively identified in the mucus, most corresponding to neurotoxins and hydrolases. Our data contribute to the knowledge of evolutionary and venomic analyses of cnidarians, particularly of sea anemones.
Collapse
Affiliation(s)
- Santos Ramírez-Carreto
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Rosario Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Tobías Portillo-Bobadilla
- Unidad de Bioinformática, Bioestadística y Biología Computacional. Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México-Instituto Nacional De Ciencias Médicas y Nutrición Salvador Zubirán, Calle Vasco de Quiroga 15, Tlalpan, C.P. 14080, Ciudad de México, México
| | - Alexei Licea-Navarro
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, BC C.P. 22860, México
| | - Johanna Bernaldez-Sarabia
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, BC C.P. 22860, México
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Jerome J Verleyen
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Claudia Rodríguez-Almazán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
9
|
Wulff H, Christophersen P, Colussi P, Chandy KG, Yarov-Yarovoy V. Antibodies and venom peptides: new modalities for ion channels. Nat Rev Drug Discov 2019; 18:339-357. [PMID: 30728472 PMCID: PMC6499689 DOI: 10.1038/s41573-019-0013-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ion channels play fundamental roles in both excitable and non-excitable tissues and therefore constitute attractive drug targets for myriad neurological, cardiovascular and metabolic diseases as well as for cancer and immunomodulation. However, achieving selectivity for specific ion channel subtypes with small-molecule drugs has been challenging, and there currently is a growing trend to target ion channels with biologics. One approach is to improve the pharmacokinetics of existing or novel venom-derived peptides. In parallel, after initial studies with polyclonal antibodies demonstrated the technical feasibility of inhibiting channel function with antibodies, multiple preclinical programmes are now using the full spectrum of available technologies to generate conventional monoclonal and engineered antibodies or nanobodies against extracellular loops of ion channels. After a summary of the current state of ion channel drug discovery, this Review discusses recent developments using the purinergic receptor channel P2X purinoceptor 7 (P2X7), the voltage-gated potassium channel KV1.3 and the voltage-gated sodium channel NaV1.7 as examples of targeting ion channels with biologics.
Collapse
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | | | | | - K George Chandy
- Molecular Physiology Laboratory, Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Vladimir Yarov-Yarovoy
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
10
|
PhcrTx2, a New Crab-Paralyzing Peptide Toxin from the Sea Anemone Phymanthus crucifer. Toxins (Basel) 2018; 10:toxins10020072. [PMID: 29414882 PMCID: PMC5848173 DOI: 10.3390/toxins10020072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022] Open
Abstract
Sea anemones produce proteinaceous toxins for predation and defense, including peptide toxins that act on a large variety of ion channels of pharmacological and biomedical interest. Phymanthus crucifer is commonly found in the Caribbean Sea; however, the chemical structure and biological activity of its toxins remain unknown, with the exception of PhcrTx1, an acid-sensing ion channel (ASIC) inhibitor. Therefore, in the present work, we focused on the isolation and characterization of new P. crucifer toxins by chromatographic fractionation, followed by a toxicity screening on crabs, an evaluation of ion channels, and sequence analysis. Five groups of toxic chromatographic fractions were found, and a new paralyzing toxin was purified and named PhcrTx2. The toxin inhibited glutamate-gated currents in snail neurons (maximum inhibition of 35%, IC50 4.7 µM), and displayed little or no influence on voltage-sensitive sodium/potassium channels in snail and rat dorsal root ganglion (DRG) neurons, nor on a variety of cloned voltage-gated ion channels. The toxin sequence was fully elucidated by Edman degradation. PhcrTx2 is a new β-defensin-fold peptide that shares a sequence similarity to type 3 potassium channels toxins. However, its low activity on the evaluated ion channels suggests that its molecular target remains unknown. PhcrTx2 is the first known paralyzing toxin in the family Phymanthidae.
Collapse
|
11
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2017; 15:md15090273. [PMID: 28850074 PMCID: PMC5618412 DOI: 10.3390/md15090273] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA.
| | | | | |
Collapse
|
12
|
Wu X, Huang YH, Kaas Q, Harvey PJ, Wang CK, Tae HS, Adams DJ, Craik DJ. Backbone cyclization of analgesic conotoxin GeXIVA facilitates direct folding of the ribbon isomer. J Biol Chem 2017; 292:17101-17112. [PMID: 28851841 DOI: 10.1074/jbc.m117.808386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
Conotoxin GeXIVA inhibits the α9α10 nicotinic acetylcholine receptor (nAChR) and is analgesic in animal models of pain. α-Conotoxins have four cysteines that can have three possible disulfide connectivities: globular (CysI-CysIII and CysII-CysIV), ribbon (CysI-CysIV and CysII-CysIII), or bead (CysI-CysII and CysIII-CysIV). Native α-conotoxins preferably adopt the globular connectivity, and previous studies of α-conotoxins have focused on the globular isomers as the ribbon and bead isomers typically have lower potency at nAChRs than the globular form. A recent report showed that the bead and ribbon isomers of GeXIVA are more potent than the globular isomer, with low nanomolar half-maximal inhibitory concentrations (IC50). Despite this high potency, the therapeutic potential of GeXIVA is limited, because like most peptides, it is susceptible to proteolytic degradation and is challenging to synthesize in high yield. Here we used backbone cyclization as a strategy to improve the folding yield as well as increase the serum stability of ribbon GeXIVA while preserving activity at the α9α10 nAChR. Specifically, cyclization of ribbon GeXIVA with a two-residue linker maintained the biological activity at the human α9α10 nAChR and improved stability in human serum. Short linkers led to selective formation of the ribbon disulfide isomer without requiring orthogonal protection. Overall, this study highlights the value of backbone cyclization in directing folding, improving yields, and stabilizing conotoxins with therapeutic potential.
Collapse
Affiliation(s)
- Xiaosa Wu
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Yen-Hua Huang
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Quentin Kaas
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Peta J Harvey
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Conan K Wang
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Han-Shen Tae
- the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - David J Adams
- the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - David J Craik
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| |
Collapse
|
13
|
Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms. Neuropharmacology 2017; 127:173-184. [PMID: 28457973 DOI: 10.1016/j.neuropharm.2017.04.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 01/14/2023]
Abstract
Acid-sensing ion channels (ASICs) are proton-activated cation channels that are expressed in a variety of neuronal and non-neuronal tissues. As proton-gated channels, they have been implicated in many pathophysiological conditions where pH is perturbed. Venom derived compounds represent the most potent and selective modulators of ASICs described to date, and thus have been invaluable as pharmacological tools to study ASIC structure, function, and biological roles. There are now ten ASIC modulators described from animal venoms, with those from snakes and spiders favouring ASIC1, while the sea anemones preferentially target ASIC3. Some modulators, such as the prototypical ASIC1 modulator PcTx1 have been studied in great detail, while some of the newer members of the club remain largely unstudied. Here we review the current state of knowledge on venom derived ASIC modulators, with a particular focus on their molecular interaction with ASICs, what they have taught us about channel structure, and what they might still reveal about ASIC function and pathophysiological roles. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
14
|
Netirojjanakul C, Miranda LP. Progress and challenges in the optimization of toxin peptides for development as pain therapeutics. Curr Opin Chem Biol 2017; 38:70-79. [PMID: 28376346 DOI: 10.1016/j.cbpa.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/25/2017] [Accepted: 03/13/2017] [Indexed: 02/05/2023]
Abstract
The number of new toxin peptide discoveries has been rapidly growing in the past few decades. Because of progress in proteomics, sequencing technologies, and high throughput bioassays, the search for new toxin peptides from venom collections and potency optimization has become manageable. However, to date, only six toxin peptide-derived therapeutics have been approved by the USFDA, with only one, ziconotide, for a pain indication. The challenge of venom-derived peptide therapeutic development remains in improving selectivity to the target and more importantly, in delivery of these peptides to the sites of action in the central and peripheral nervous system. In this review, we highlight peptide toxins that target major therapeutic targets for pain and discuss the challenges of developing toxin peptides as potential therapeutics.
Collapse
Affiliation(s)
- Chawita Netirojjanakul
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Les P Miranda
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| |
Collapse
|
15
|
Rash LD. Acid-Sensing Ion Channel Pharmacology, Past, Present, and Future …. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:35-66. [PMID: 28528673 DOI: 10.1016/bs.apha.2017.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
pH is one of the most strictly controlled parameters in mammalian physiology. An extracellular pH of ~7.4 is crucial for normal physiological processes, and perturbations to this have profound effects on cell function. Acidic microenvironments occur in many physiological and pathological conditions, including inflammation, bone remodeling, ischemia, trauma, and intense synaptic activity. Cells exposed to these conditions respond in different ways, from tumor cells that thrive to neurons that are either suppressed or hyperactivated, often fatally. Acid-sensing ion channels (ASICs) are primary pH sensors in mammals and are expressed widely in neuronal and nonneuronal cells. There are six main subtypes of ASICs in rodents that can form homo- or heteromeric channels resulting in many potential combinations. ASICs are present and activated under all of the conditions mentioned earlier, suggesting that they play an important role in how cells respond to acidosis. Compared to many other ion channel families, ASICs were relatively recently discovered-1997-and there is a substantial lack of potent, subtype-selective ligands that can be used to elucidate their structural and functional properties. In this chapter I cover the history of ASIC channel pharmacology, which began before the proteins were even identified, and describe the current arsenal of tools available, their limitations, and take a glance into the future to predict from where new tools are likely to emerge.
Collapse
Affiliation(s)
- Lachlan D Rash
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
16
|
Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target. Sci Rep 2016; 6:37360. [PMID: 27853274 PMCID: PMC5112591 DOI: 10.1038/srep37360] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.
Collapse
|
17
|
Fang WY, Dahiya R, Qin HL, Mourya R, Maharaj S. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status. Mar Drugs 2016; 14:md14110194. [PMID: 27792168 PMCID: PMC5128737 DOI: 10.3390/md14110194] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/02/2016] [Accepted: 10/15/2016] [Indexed: 12/17/2022] Open
Abstract
Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.
Collapse
Affiliation(s)
- Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, Saint Augustine, Trinidad and Tobago, West Indies.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Rita Mourya
- School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar 196, Ethiopia.
| | - Sandeep Maharaj
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, Saint Augustine, Trinidad and Tobago, West Indies.
| |
Collapse
|
18
|
|
19
|
Abstract
Peptide neurotoxins from cone snails called conotoxins are renowned for their therapeutic potential to treat pain and several neurodegenerative diseases. Inefficient assay-guided discovery methods have been replaced by high-throughput bioassays integrated with advanced MS and next-generation sequencing, ushering in the era of 'venomics'. In this review, we focus on the impact of venomics on the understanding of cone snail biology as well as the application of venomics to accelerate the discovery of new conotoxins. We also discuss the continued importance of medicinal chemistry approaches to optimize conotoxins for clinical use, with a descriptive case study of MrIA featured.
Collapse
|
20
|
Jensen JE, Cristofori-Armstrong B, Anangi R, Rosengren KJ, Lau CHY, Mobli M, Brust A, Alewood PF, King GF, Rash LD. Understanding the molecular basis of toxin promiscuity: the analgesic sea anemone peptide APETx2 interacts with acid-sensing ion channel 3 and hERG channels via overlapping pharmacophores. J Med Chem 2014; 57:9195-203. [PMID: 25337890 DOI: 10.1021/jm501400p] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sea anemone peptide APETx2 is a potent and selective blocker of acid-sensing ion channel 3 (ASIC3). APETx2 is analgesic in a variety of rodent pain models, but the lack of knowledge of its pharmacophore and binding site on ASIC3 has impeded development of improved analogues. Here we present a detailed structure-activity relationship study of APETx2. Determination of a high-resolution structure of APETx2 combined with scanning mutagenesis revealed a cluster of aromatic and basic residues that mediate its interaction with ASIC3. We show that APETx2 also inhibits the off-target hERG channel by reducing the maximal current amplitude and shifting the voltage dependence of activation to more positive potentials. Electrophysiological screening of selected APETx2 mutants revealed partial overlap between the surfaces on APETx2 that mediate its interaction with ASIC3 and hERG. Characterization of the molecular basis of these interactions is an important first step toward the rational design of more selective APETx2 analogues.
Collapse
Affiliation(s)
- Jonas E Jensen
- Institute for Molecular Bioscience, ‡School of Biomedical Sciences, and §Centre for Advanced Imaging, The University of Queensland , St Lucia, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|