1
|
Boulebd H. Mechanistic Insights into the Antioxidant and Pro-oxidant Activities of Bromophenols from Marine Algae: A DFT Investigation. J Org Chem 2024; 89:8168-8177. [PMID: 38810117 DOI: 10.1021/acs.joc.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Marine algae are a rich source of aromatic secondary metabolites, with bromophenols (BPs) receiving particular attention due to their health benefits. Despite extensive research on BPs, the understanding of their antioxidant potential, as well as their mechanisms of action at the molecular level, remains incomplete. This study utilized density functional theory (DFT) to systematically elucidate the antioxidant and pro-oxidant mechanisms of the main BP scaffolds under physiological conditions. It was found that BPs exhibit potent antioxidant capacity in both polar and lipid environments. In lipid media, the formal hydrogen transfer mechanism has been identified as the exclusive antiradical pathway. The position of bromine atoms significantly influenced the activity, particularly in scaffolds containing one hydroxyl group. However, no significant effect was observed in scaffolds with two hydroxyl groups. In water, monodeprotonated BPs showed key radical scavenging activity, with different mechanisms favored depending on the configuration of the hydroxyl groups. Additionally, BPs, particularly those bearing a catechol moiety, exhibit secondary antioxidant activity by reducing the production of hydroxyl radicals via the ascorbic acid anion pathway. These findings provide further validation of the potent antioxidant properties of BPs and shed light on their mechanism of action in physiological environments.
Collapse
Affiliation(s)
- Houssem Boulebd
- Department of Chemistry, Faculty of Exact Science, University of Constantine 1, Constantine 25000, Algeria
| |
Collapse
|
2
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Algal Metabolites Can Be an Immune Booster against COVID-19 Pandemic. Antioxidants (Basel) 2022; 11:antiox11030452. [PMID: 35326102 PMCID: PMC8944855 DOI: 10.3390/antiox11030452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
The world has faced the challenges of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) for the last two years, first diagnosed at the end of 2019 in Wuhan and widely distributed worldwide. As a result, the WHO has proclaimed the illness brought on by this virus to be a global pandemic. To combat COVID-19, researcher communities continuously develop and implement rapid diagnoses, safe and effective vaccinations and other alternative therapeutic procedures. However, synthetic drug-related side effects and high costs have piqued scientists’ interest in natural product-based therapies and medicines. In this regard, antiviral substances derived from natural resources and some medicines have seen a boom in popularity. For instance, algae are a rich source of compounds such as lectins and sulfated polysaccharides, which have potent antiviral and immunity-boosting properties. Moreover, Algae-derived compounds or metabolites can be used as antibodies and vaccine raw materials against COVID-19. Furthermore, some algal species can boost immunity, reduce viral activity in humans and be recommended for usage as a COVID-19 preventative measure. However, this field of study is still in its early stages of development. Therefore, this review addresses critical characteristics of algal metabolites, their antioxidant potential and therapeutic potential in COVID-19.
Collapse
|
4
|
Tziveleka LA, Tammam MA, Tzakou O, Roussis V, Ioannou E. Metabolites with Antioxidant Activity from Marine Macroalgae. Antioxidants (Basel) 2021; 10:1431. [PMID: 34573063 PMCID: PMC8470618 DOI: 10.3390/antiox10091431] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) attack biological molecules, such as lipids, proteins, enzymes, DNA, and RNA, causing cellular and tissue damage. Hence, the disturbance of cellular antioxidant homeostasis can lead to oxidative stress and the onset of a plethora of diseases. Macroalgae, growing in stressful conditions under intense exposure to UV radiation, have developed protective mechanisms and have been recognized as an important source of secondary metabolites and macromolecules with antioxidant activity. In parallel, the fact that many algae can be cultivated in coastal areas ensures the provision of sufficient quantities of fine chemicals and biopolymers for commercial utilization, rendering them a viable source of antioxidants. This review focuses on the progress made concerning the discovery of antioxidant compounds derived from marine macroalgae, covering the literature up to December 2020. The present report presents the antioxidant potential and biogenetic origin of 301 macroalgal metabolites, categorized according to their chemical classes, highlighting the mechanisms of antioxidative action when known.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Mohamed A. Tammam
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Olga Tzakou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| |
Collapse
|
5
|
Mateos R, Pérez-Correa JR, Domínguez H. Bioactive Properties of Marine Phenolics. Mar Drugs 2020; 18:E501. [PMID: 33007997 PMCID: PMC7601137 DOI: 10.3390/md18100501] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds from marine organisms are far less studied than those from terrestrial sources since their structural diversity and variability require powerful analytical tools. However, both their biological relevance and potential properties make them an attractive group deserving increasing scientific interest. The use of efficient extraction and, in some cases, purification techniques can provide novel bioactives useful for food, nutraceutical, cosmeceutical and pharmaceutical applications. The bioactivity of marine phenolics is the consequence of their enzyme inhibitory effect and antimicrobial, antiviral, anticancer, antidiabetic, antioxidant, or anti-inflammatory activities. This review presents a survey of the major types of phenolic compounds found in marine sources, as well as their reputed effect in relation to the occurrence of dietary and lifestyle-related diseases, notably type 2 diabetes mellitus, obesity, metabolic syndrome, cancer and Alzheimer's disease. In addition, the influence of marine phenolics on gut microbiota and other pathologies is also addressed.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain;
| | - José Ricardo Pérez-Correa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Macul, Santiago 7810000, Chile;
| | - Herminia Domínguez
- CINBIO, Department of Chemical Engineering, Faculty of Sciences, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
6
|
Dong H, Dong S, Erik Hansen P, Stagos D, Lin X, Liu M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar Drugs 2020; 18:E411. [PMID: 32759739 PMCID: PMC7459620 DOI: 10.3390/md18080411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antiradical, antimicrobial, anticancer, antidiabetic, anti-inflammatory effects, and so on. Here, we briefly review the recent progress of these marine algae biomaterials and their derivatives from 2011 to 2020, with respect to structure, bioactivities, and their potential application as pharmaceuticals.
Collapse
Affiliation(s)
- Hui Dong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (H.D.); (S.D.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songtao Dong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (H.D.); (S.D.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Poul Erik Hansen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece;
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Jiangyang, Luzhou 646000, China;
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (H.D.); (S.D.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
7
|
Hofer S, Hartmann A, Orfanoudaki M, Nguyen Ngoc H, Nagl M, Karsten U, Heesch S, Ganzera M. Development and Validation of an HPLC Method for the Quantitative Analysis of Bromophenolic Compounds in the Red Alga Vertebrata lanosa. Mar Drugs 2019; 17:md17120675. [PMID: 31795441 PMCID: PMC6950000 DOI: 10.3390/md17120675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 12/25/2022] Open
Abstract
Bromophenols are a class of compounds occurring in red algae that are thought to play a role in chemical protection; however, their exact function is still not fully known. In order to investigate their occurrence, pure standards of seven bromophenols were isolated from a methanolic extract of the epiphytic red alga Vertebrata lanosa collected in Brittany, France. The structures of all compounds were determined by NMR and MS. Among the isolated substances, one new natural product, namely, 2-amino-5-(3-(2,3-dibromo-4,5-dihydroxybenzyl)ureido)pentanoic acid was identified. An HPLC method for the separation of all isolated substances was developed using a Phenomenex C8(2) Luna column and a mobile phase comprising 0.05% trifluoroacetic acid in water and acetonitrile. Method validation showed that the applied procedure is selective, linear (R2 ≥ 0.999), precise (intra-day ≤ 6.28%, inter-day ≤ 5.21%), and accurate (with maximum displacement values of 4.93% for the high spikes, 4.80% for the medium spikes, and 4.30% for the low spikes). For all standards limits of detection (LOD) were lower than 0.04 μg/mL and limits of quantification (LOQ) lower than 0.12 μg/mL. Subsequently, the method was applied to determine the bromophenol content in Vertebrata lanosa samples from varying sampling sites and collection years showing values between 0.678 and 0.005 mg/g dry weight for different bromophenols with significant variations between the sampling years. Bioactivity of seven isolated bromophenols was tested in agar diffusion tests against Staphylococcus aureus and Escherichia coli bacteria. Three compounds showed a small zone of inhibition against both test organisms at a concentration of 100 µg/mL.
Collapse
Affiliation(s)
- Stefanie Hofer
- Department of Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.H.); (M.O.); (M.G.)
| | - Anja Hartmann
- Department of Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.H.); (M.O.); (M.G.)
- Correspondence:
| | - Maria Orfanoudaki
- Department of Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.H.); (M.O.); (M.G.)
| | - Hieu Nguyen Ngoc
- Department of Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.H.); (M.O.); (M.G.)
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria;
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology & Phycology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (U.K.); (S.H.)
| | - Svenja Heesch
- Institute of Biological Sciences, Applied Ecology & Phycology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (U.K.); (S.H.)
| | - Markus Ganzera
- Department of Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.H.); (M.O.); (M.G.)
| |
Collapse
|
8
|
Polyphenols of marine red macroalga Symphyocladia latiuscula ameliorate diabetic peripheral neuropathy in experimental animals. Heliyon 2019; 5:e01781. [PMID: 31193485 PMCID: PMC6529741 DOI: 10.1016/j.heliyon.2019.e01781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/24/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Aims Chronic hyperglycaemia activates the polyol pathway of glucose metabolism thereby stimulating the activation aldose reductase enzyme that in turn initiates a cascade of deleterious events, eventually, leading to nerve damage or neuropathy. Marine macroalgae and their isolated chemical constituents have been found to possess potential antidiabetic activity and have proved beneficial in the treatment of diabetes. In this study the neuroprotective effect of polyphenols isolated from the red macroalga Symphyocladia latiuscula was evaluated in experimental diabetic peripheral neuropathy. Main methods The polyphenolic fraction from Symphyocladia latiuscula was isolated. Diabetic peripheral neuropathy (DPN) was induced in animals by intraperitoneal injection of streptozotocin (45 mg/kg, b. w) and maintained for 6 weeks followed by treatment with SLPP or epalrestat. Nerve Conduction Velocity (NCV) and Compound Muscle Action Potential (CMAP) were measured using a non-invasive method followed by muscular grip strength test. Sciatic nerve aldose reductase activity, sorbitol accumulation, Na+K+-ATPase activity, production of pro-inflammatory cytokines and expression of AR and PKC were assessed. Key findings The Symphyocladia latiuscula polyphenols (SLPP) were found to inhibit aldose reductase activity as well as their expression in diabetic animals thereby improving the NCV, CMAP and muscle grip strength. Improvements in the sciatic nerve Na+K+-ATPase activity and intraneural accumulation of sorbitol, an index of aldose reductase overactivity, were evident with SLPP treatment. The production of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and expression of protein kinase C (PKC) were also diminished. Significance The data suggest that the polyphenols of Symphyocladia latiuscula have neuroprotective potential against experimental DPN.
Collapse
|
9
|
Paudel P, Wagle A, Seong SH, Park HJ, Jung HA, Choi JS. A New Tyrosinase Inhibitor from the Red Alga Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae). Mar Drugs 2019; 17:md17050295. [PMID: 31108882 PMCID: PMC6562427 DOI: 10.3390/md17050295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
A marine red alga, Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae), is a rich source of bromophenols with a wide array of biological activities. This study investigates the anti-tyrosinase activity of the alga. Moderate activity was demonstrated by the methanol extract of S. latiuscula, and subsequent column chromatography identified three bromophenols: 2,3,6-tribromo-4,5-dihydroxybenzyl methyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether) (3). Bromophenols 1 and 3 exhibited potent competitive tyrosinase inhibitory activity against l-tyrosine substrates, with IC50 values of 10.78 ± 0.19 and 2.92 ± 0.04 μM, respectively. Against substrate l-3,4-dihydroxyphenylalanine (l-DOPA), compounds 1 and 3 demonstrated moderate activity, while 2 showed no observable effect. The experimental data were verified by a molecular docking study that found catalytic hydrogen and halogen interactions were responsible for the activity. In addition, compounds 1 and 3 exhibited dose-dependent inhibitory effects in melanin and intracellular tyrosinase levels in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. Compounds 3 and 1 were the most effective tyrosinase inhibitors. In addition, increasing the bromine group number increased the mushroom tyrosinase inhibitory activity.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Aditi Wagle
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hye Jin Park
- Department of Food Science and Nutrition, Changshin University, Gyeongsangnam-do 51352, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
10
|
Xu X, Yang H, Khalil ZG, Yin L, Xiao X, Salim AA, Song F, Capon RJ. Bromocatechol conjugates from a Chinese marine red alga, Symphyocladia latiuscula. PHYTOCHEMISTRY 2019; 158:20-25. [PMID: 30447546 DOI: 10.1016/j.phytochem.2018.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/10/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
This study describes an investigation into polybromocatechol conjugates isolated from a marine red alga, Symphyocladia latiuscula (Harvey) Yamada, collected from coastal waters off Qingdao, China. We report on the isolation and characterisation of eight undescribed aconitic acid conjugates, symphyocladins R-X, including a likely solvolysis artifact of symphyocladin S, and an undescribed furanoyl conjugate, symphyocladin Y. Structure elucidation was achieved by detailed spectroscopic analysis. A plausible biosynthetic pathway linking all these co-metabolites through a cascade of quinone methide additions is proposed.
Collapse
Affiliation(s)
- Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, PR China
| | - Haijin Yang
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, PR China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Liyuan Yin
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, PR China
| | - Xue Xiao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Angela A Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Fuhang Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Jesus A, Correia-da-Silva M, Afonso C, Pinto M, Cidade H. Isolation and Potential Biological Applications of Haloaryl Secondary Metabolites from Macroalgae. Mar Drugs 2019; 17:E73. [PMID: 30678253 PMCID: PMC6409842 DOI: 10.3390/md17020073] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
Macroalgae have been reported as an important source of halogenated aromatic secondary metabolites, being the majority of these derivatives isolated from red algae. Halophenols and haloindoles are the most common haloaryl secondary metabolites isolated from these marine organisms. Nevertheless, some halogenated aromatic sesquiterpenes and naphthalene derivatives have also been isolated. Most of these secondary metabolites showed interesting biological activities, such as antitumor, antimicrobial, antidiabetic, and antioxidant. This review describes in a systematic way the distribution and natural occurrence of halogenated aromatic secondary metabolites from extracts of red, brown, and green algae, as well as biological activities reported for these compounds.
Collapse
Affiliation(s)
- Ana Jesus
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Marta Correia-da-Silva
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 4450-208 Matosinhos, Portugal.
| | - Carlos Afonso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 4450-208 Matosinhos, Portugal.
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 4450-208 Matosinhos, Portugal.
| | - Honorina Cidade
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 4450-208 Matosinhos, Portugal.
| |
Collapse
|
12
|
Yuan HX, Feng XE, Liu EL, Ge R, Zhang YL, Xiao BG, Li QS. 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone attenuates LPS-induced inflammation and ROS production in EA.hy926 cells via HMBOX1 induction. J Cell Mol Med 2018; 23:453-463. [PMID: 30358079 PMCID: PMC6307801 DOI: 10.1111/jcmm.13948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammation and reactive oxygen species (ROS) are important factors in the pathogenesis of atherosclerosis (AS). 5,2′‐dibromo‐2,4′,5′‐trihydroxydiphenylmethanone (TDD), possess anti‐atherogenic properties; however, its underlying mechanism of action remains unclear. Therefore, we sought to understand the therapeutic molecular mechanism of TDD in inflammatory response and oxidative stress in EA.hy926 cells. Microarray analysis revealed that the expression of homeobox containing 1 (HMBOX1) was dramatically upregulated in TDD‐treated EA.hy926 cells. According to the gene ontology (GO) analysis of microarray data, TDD significantly influenced the response to lipopolysaccharide (LPS); it suppressed the LPS‐induced adhesion of monocytes to EA.hy926 cells. Simultaneously, TDD dose‐dependently inhibited the production or expression of IL‐6, IL‐1β, MCP‐1, TNF‐α, VCAM‐1, ICAM‐1 and E‐selectin as well as ROS in LPS‐stimulated EA.hy926 cells. HMBOX1 knockdown using RNA interference attenuated the anti‐inflammatory and anti‐oxidative effects of TDD. Furthermore, TDD inhibited LPS‐induced NF‐κB and MAPK activation in EA.hy926 cells, but this effect was abolished by HMBOX1 knockdown. Overall, these results demonstrate that TDD activates HMBOX1, which is an inducible protective mechanism that inhibits LPS‐induced inflammation and ROS production in EA.hy926 cells by the subsequent inhibition of redox‐sensitive NF‐κB and MAPK activation. Our study suggested that TDD may be a potential novel agent for treating endothelial cells dysfunction in AS.
Collapse
Affiliation(s)
- Hong-Xia Yuan
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| | - Xiu-E Feng
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - En-Li Liu
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Rui Ge
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Yuan-Lin Zhang
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Bao-Guo Xiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| | - Qing-Shan Li
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| |
Collapse
|
13
|
Chemical Diversity from a Chinese Marine Red Alga, Symphyocladia latiuscula. Mar Drugs 2017; 15:md15120374. [PMID: 29194381 PMCID: PMC5742834 DOI: 10.3390/md15120374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/07/2023] Open
Abstract
This study describes an investigation into secondary metabolites that are produced by a marine red alga, Symphyocladia latiuscula, which was collected from coastal waters off Qingdao, China. A combination of normal, reversed phase, and gel chromatography was used to isolate six citric acid derived natural products, aconitates A-F (1-6), together with two known and ten new polybrominated phenols, symphyocladins C/D (7a/b), and symphyocladins H-Q (8a/b, 9a/b and 10-15), respectively. Structure elucidation was achieved by detailed spectroscopic (including X-ray crystallographic) analysis. We propose a plausible and convergent biosynthetic pathway involving a key quinone methide intermediate, linking aconitates and symphyocladins.
Collapse
|
14
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2017; 15:md15090273. [PMID: 28850074 PMCID: PMC5618412 DOI: 10.3390/md15090273] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA.
| | | | | |
Collapse
|
15
|
Woolner VH, Jones CM, Field JJ, Fadzilah NH, Munkacsi AB, Miller JH, Keyzers RA, Northcote PT. Polyhalogenated Indoles from the Red Alga Rhodophyllis membranacea: The First Isolation of Bromo-Chloro-Iodo Secondary Metabolites. JOURNAL OF NATURAL PRODUCTS 2016; 79:463-469. [PMID: 26756908 DOI: 10.1021/acs.jnatprod.5b00831] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An unusual tetrahalogenated indole with the exceptionally rare inclusion of the three halogens bromine, chlorine, and iodine was found using mass spectrometry within a fraction of a semipurified extract obtained from the red alga Rhodophyllis membranacea. We report herein the isolation and structure elucidation, using a combination of NMR spectroscopy and mass spectrometry, of 11 new tetrahalogenated indoles (1-11), including four bromochloroiodoindoles (5-7, 10). Several were evaluated for cytotoxic and antifungal activities against the HL-60 promyelocytic cell line and Saccharomyces cerevisiae, respectively.
Collapse
Affiliation(s)
- Victoria H Woolner
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Cori M Jones
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Jessica J Field
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Nazmi H Fadzilah
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Andrew B Munkacsi
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - John H Miller
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Peter T Northcote
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| |
Collapse
|
16
|
Abstract
This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
17
|
Gribble GW. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar Drugs 2015; 13:4044-136. [PMID: 26133553 PMCID: PMC4515607 DOI: 10.3390/md13074044] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023] Open
Abstract
This review presents the biological activity-antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity-of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
18
|
Xu X, Yin L, Gao J, Gao L, Song F. Antifungal bromophenols from marine red alga Symphyocladia latiuscula. Chem Biodivers 2015; 11:807-11. [PMID: 24827691 DOI: 10.1002/cbdv.201300239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Indexed: 11/11/2022]
Abstract
Three new highly brominated polyphenols, 1-3, together with one known bromophenol, 4, were isolated from the EtOH extract of a marine red alga Symphyocladia latiuscula collected from the coast of Qingdao, P. R. China. Their structures were identified by extensive spectroscopic experiments (NMR and MS) and comparison with literature data. Compounds 3 and 4 showed activities against the Candida albicans with the MIC values of 25 and 12.5 μg/ml, respectively.
Collapse
Affiliation(s)
- Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, P. R. China, (phone: +86-10-82319124; fax: +86-10-82320065).
| | | | | | | | | |
Collapse
|