1
|
Harper CP, Day A, Tsingos M, Ding E, Zeng E, Stumpf SD, Qi Y, Robinson A, Greif J, Blodgett JAV. Critical analysis of polycyclic tetramate macrolactam biosynthetic gene cluster phylogeny and functional diversity. Appl Environ Microbiol 2024; 90:e0060024. [PMID: 38771054 PMCID: PMC11218653 DOI: 10.1128/aem.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.IMPORTANCEPolycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, including Streptomyces and Lysobacter spp. Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity.
Collapse
Affiliation(s)
| | - Anna Day
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maya Tsingos
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Edward Ding
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elizabeth Zeng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Spencer D. Stumpf
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Adam Robinson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Greif
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
2
|
Das R, Rauf A, Mitra S, Emran TB, Hossain MJ, Khan Z, Naz S, Ahmad B, Meyyazhagan A, Pushparaj K, Wan CC, Balasubramanian B, Rengasamy KR, Simal-Gandara J. Therapeutic potential of marine macrolides: An overview from 1990 to 2022. Chem Biol Interact 2022; 365:110072. [PMID: 35952775 DOI: 10.1016/j.cbi.2022.110072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/05/2023]
Abstract
The sea is a vast ecosystem that has remained primarily unexploited and untapped, resulting in numerous organisms. Consequently, marine organisms have piqued the interest of scientists as an abundant source of natural resources with unique structural features and fascinating biological activities. Marine macrolide is a top-class natural product with a heavily oxygenated polyene backbone containing macrocyclic lactone. In the last few decades, significant efforts have been made to isolate and characterize macrolides' chemical and biological properties. Numerous macrolides are extracted from different marine organisms such as marine microorganisms, sponges, zooplankton, molluscs, cnidarians, red algae, tunicates, and bryozoans. Notably, the prominent macrolide sources are fungi, dinoflagellates, and sponges. Marine macrolides have several bioactive characteristics such as antimicrobial (antibacterial, antifungal, antimalarial, antiviral), anti-inflammatory, antidiabetic, cytotoxic, and neuroprotective activities. In brief, marine organisms are plentiful in naturally occurring macrolides, which can become the source of efficient and effective therapeutics for many diseases. This current review summarizes these exciting and promising novel marine macrolides in biological activities and possible therapeutic applications.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, 94640, Pakistan.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan.
| | - Bashir Ahmad
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan.
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India.
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruit &Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit & Vegetables, College of Agronomy, Jiangxi Agricultural University Nanchang, 330045, Jiangxi, China.
| | | | - Kannan Rr Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
3
|
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. J Med Chem 2022; 65:8735-8771. [PMID: 35766919 DOI: 10.1021/acs.jmedchem.2c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micromonospora, one of the most important actinomycetes genera, is well-known as the treasure trove of bioactive secondary metabolites (SMs). Herein, together with an in-depth genomic analysis of the reported Micromonospora strains, all SMs from this genus are comprehensively summarized, containing structural features, bioactive properties, and mode of actions as well as their biosynthetic and chemical synthesis pathways. The perspective enables a detailed view of Micromonospora-derived SMs, which will enrich the chemical diversity of natural products and inspire new drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Suqi Yan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Zeng
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar Drugs 2022; 20:md20060360. [PMID: 35736163 PMCID: PMC9230918 DOI: 10.3390/md20060360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades (covering 1972 to 2022), astounding progress has been made in the elucidation of structures, bioactivities and biosynthesis of polyene macrolactams (PMLs), but they have only been partially summarized. PMLs possess a wide range of biological activities, particularly distinctive fungal inhibitory abilities, which render them a promising drug candidate. Moreover, the unique biosynthetic pathways including β-amino acid initiation and pericyclic reactions were presented in PMLs, leading to more attention from inside and outside the natural products community. According to current summation, in this review, the chem- and bio-diversity of PMLs from marine and terrestrial sources are considerably rich. A systematic, critical and comprehensive overview is in great need. This review described the PMLs’ general structural features, production strategies, biosynthetic pathways and the mechanisms of bioactivities. The challenges and opportunities for the research of PMLs are also discussed.
Collapse
|
5
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
6
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
7
|
An JS, Shin B, Kim TH, Hwang S, Shin YH, Cui J, Du YE, Yi J, Nam SJ, Hong S, Shin J, Jang J, Yoon YJ, Oh DC. Dumulmycin, an Antitubercular Bicyclic Macrolide from a Riverine Sediment-Derived Streptomyces sp. Org Lett 2021; 23:3359-3363. [DOI: 10.1021/acs.orglett.1c00847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Bora Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Ho Kim
- Molecular Mechanism of Antibiotics, Division of Life Science, Division of Bio & Medical Big Data Department (BK4 Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yern-Hyerk Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinsheng Cui
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eun Du
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungwoo Yi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jichan Jang
- Molecular Mechanism of Antibiotics, Division of Life Science, Division of Bio & Medical Big Data Department (BK4 Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Wang C, Lu Y, Cao S. Antimicrobial compounds from marine actinomycetes. Arch Pharm Res 2020; 43:677-704. [PMID: 32691395 DOI: 10.1007/s12272-020-01251-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 04/03/2023]
Abstract
Marine actinomycetes were the main origin of marine natural products in the past 40 years. This review was to present the sources, structures and antimicrobial activities of 313 new natural products from marine actinomycetes reported from 1976 to 2019.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI, 96720, USA.,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Yuanyu Lu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI, 96720, USA.
| |
Collapse
|
9
|
Qi S, Gui M, Li H, Yu C, Li H, Zeng Z, Sun P. Secondary Metabolites from Marine Micromonospora: Chemistry and Bioactivities. Chem Biodivers 2020; 17:e2000024. [PMID: 32100940 DOI: 10.1002/cbdv.202000024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/25/2020] [Indexed: 02/02/2023]
Abstract
Marine Micromonospora was revealed to be a rather untapped and a rich source of chemically diverse and unique bioactive natural products. This review is aimed to make a comprehensive survey of secondary metabolites that were derived from marine Micromonospora including chemical diversity and biological activities. A total of 116 compounds from 41 marine Micromonospora species have been reported, covering the literatures from 1997 to 2019. These compounds contain several structural classes such as polyketides (PKS), nonribosomal peptides (NRPS), PKS-NRPS hybrids, terpenes and others, and they present cytotoxic, antibacterial, antiparasitic, chemopreventive or antioxidant activities.
Collapse
Affiliation(s)
- Sisi Qi
- School of Resource and Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Ave., Nanchang, 330031, P. R. China
| | - Min Gui
- State Key Laboratory of Dairy Biotechnology, Technology Center and Dairy Research Institute of Bright Dairy and Food Co., Ltd., 1518 West Jiangchang Road, Shanghai, 200436, P. R. China
| | - Huanhuan Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Chunbo Yu
- Department of Pharmacy, Jinhua Central Hospital, 365 Renmin East Road, Jinhua, 321000, P. R. China
| | - Hongji Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| | - Zheling Zeng
- School of Resource and Environmental and Chemical Engineering, Nanchang University, 999 Xuefu Ave., Nanchang, 330031, P. R. China.,State Key Laboratory of Food Science and Technology, Nanchang University, 999 Xuefu Ave., Nanchang, 330047, P. R. China.,Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, 999 Xuefu Ave., Nanchang, 330031, P. R. China
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P. R. China
| |
Collapse
|
10
|
The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. Mar Drugs 2020; 18:md18020114. [PMID: 32075282 PMCID: PMC7074263 DOI: 10.3390/md18020114] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
Tetramic acid (pyrrolidine-2,4-dione) compounds, isolated from a variety of marine and terrestrial organisms, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities. In the past decade, marine-derived microorganisms have become great repositories of novel tetramic acids. Here, we discuss the biological activities of 277 tetramic acids of eight classifications (simple 3-acyl tetramic acids, 3-oligoenoyltetramic acids, 3-decalinoyltetramic acid, 3-spirotetramic acids, macrocyclic tetramic acids, N-acylated tetramic acids, α-cyclopiazonic acid-type tetramic acids, and other tetramic acids) from marine-derived microbes, including fungi, actinobacteria, bacteria, and cyanobacteria, as reported in 195 research studies up to 2019.
Collapse
|
11
|
Three transcriptional regulators positively regulate the biosynthesis of polycyclic tetramate macrolactams in Streptomyces xiamenensis 318. Appl Microbiol Biotechnol 2019; 104:701-711. [DOI: 10.1007/s00253-019-10269-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022]
|
12
|
Jayanetti DR, Braun DR, Barns KJ, Rajski SR, Bugni TS. Bulbiferates A and B: Antibacterial Acetamidohydroxybenzoates from a Marine Proteobacterium, Microbulbifer sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:1930-1934. [PMID: 31181927 PMCID: PMC6660402 DOI: 10.1021/acs.jnatprod.9b00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Here we report the discovery of two new 3-acetamido-4-hydroxybenzoate esters, bulbiferates A (1) and B (2), isolated from Microbulbifer sp. cultivated from the marine tunicate Ecteinascidia turbinata. The structures of 1 and 2 were determined by analysis of 2D NMR and MS data. Additionally, three synthetic analogues (3-5), differing in ester sizes/lengths, were prepared for the purposes of evaluating potential structure-activity relationships; no clear correlations tying ester lengths to activity were evident. Bulbiferates A (1) and B (2) demonstrated antibacterial activity against both Escherichia coli (E. coli) and methicillin-sensitive Staphylococcus aureus (MSSA), whereas the synthetic analogues 3 and 4 displayed activity only against MSSA.
Collapse
Affiliation(s)
- Dinith R. Jayanetti
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Kenneth J. Barns
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Scott Raymond Rajski
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
13
|
Wang RJ, Zhang SY, Ye YH, Yu Z, Qi H, Zhang H, Xue ZL, Wang JD, Wu M. Three New Isoflavonoid Glycosides from the Mangrove-Derived Actinomycete Micromonospora aurantiaca 110B. Mar Drugs 2019; 17:md17050294. [PMID: 31108876 PMCID: PMC6562861 DOI: 10.3390/md17050294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
The mangrove ecosystem is a rich resource for the discovery of actinomycetes with potential applications in pharmaceutical science. Besides the genus Streptomyces, Micromonospora is also a source of new bioactive agents. We screened Micromonospora from the rhizosphere soil of mangrove plants in Fujian province, China, and 51 strains were obtained. Among them, the extracts of 12 isolates inhibited the growth of human lung carcinoma A549 cells. Strain 110B exhibited better cytotoxic activity, and its bioactive constituents were investigated. Consequently, three new isoflavonoid glycosides, daidzein-4'-(2-deoxy-α-l-fucopyranoside) (1), daidzein-7-(2-deoxy-α-l-fucopyranoside) (2), and daidzein-4',7-di-(2-deoxy-α-l-fucopyranoside) (3) were isolated from the fermentation broth of strain 110B. The structures of the new compounds were determined by spectroscopic methods, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESIMS). The result of medium-changing experiments implicated that these new compounds were microbial biotransformation products of strain M. aurantiaca 110B. The three compounds displayed moderate cytotoxic activity to the human lung carcinoma cell line A549, hepatocellular liver carcinoma cell line HepG2, and the human colon tumor cell line HCT116, whereas none of them showed antifungal or antibacterial activities.
Collapse
Affiliation(s)
- Rui-Jun Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Shao-Yong Zhang
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Yang-Hui Ye
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Zhen Yu
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Huan Qi
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Hui Zhang
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Zheng-Lian Xue
- College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Ji-Dong Wang
- College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Min Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
14
|
Subramani R, Sipkema D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Mar Drugs 2019; 17:E249. [PMID: 31035452 PMCID: PMC6562664 DOI: 10.3390/md17050249] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
Collapse
Affiliation(s)
- Ramesh Subramani
- School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji.
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
15
|
Marine Macrolides with Antibacterial and/or Antifungal Activity. Mar Drugs 2019; 17:md17040241. [PMID: 31018512 PMCID: PMC6520931 DOI: 10.3390/md17040241] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/11/2022] Open
Abstract
Currently, the increasing resistance of microorganisms to antibiotics is a serious problem. Marine organisms are the source of thousands of substances, which also have antibacterial and antifungal effects. Among them, marine macrolides are significant. In this review, the antibacterial and/or antifungal activities of 34 groups of marine macrolides are presented. Exemplary groups are chalcomycins, curvulides, halichondramides, lobophorins, macrolactins, modiolides, scytophycins, spongistatins, or zearalanones. In the paper, 74 antibiotics or their analog sets, among which 29 with antifungal activity, 25 that are antibacterial, and 20 that are both antifungal and antibacterial are summarized. Also, 36 macrolides or their sets are produced by bacteria, 18 by fungi, ten by sponges, seven by algae, two by porifera, and one by nudibranch. Moreover, the chemical structures of representatives from each of the 34 groups of these antibiotics are presented. To summarize, marine organisms are rich in natural macrolides. Some of these may be used in the future in the treatment of bacterial and fungal infections. Marine macrolides can also be potential drugs applicable against pathogens resistant to currently known antibiotics.
Collapse
|
16
|
Mehetre GT, J S V, Burkul BB, Desai D, B S, Dharne MS, Dastager SG. Bioactivities and molecular networking-based elucidation of metabolites of potent actinobacterial strains isolated from the Unkeshwar geothermal springs in India. RSC Adv 2019; 9:9850-9859. [PMID: 35520740 PMCID: PMC9062624 DOI: 10.1039/c8ra09449g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/15/2019] [Indexed: 02/03/2023] Open
Abstract
The bioactive potential of Actinobacteria endemic to hot springs has rarely been investigated. This study highlights the cultivable diversity and bioactivities of Actinobacteria associated with the Unkeshwar hot springs, India. Potent strains were evaluated for their biosynthetic potentials and metabolite analysis was performed using effective dereplication molecular networking tools. A total of 86 actinobacterial strains were isolated and grouped into 21 distinct genera, based on 16S rRNA gene sequence analysis. These strains included rare members such as Micromonospora, Marmoricola, Actinomadura, Cellulomonas, Cellulosimicrobium, Janibacter, Rothia, Barrentisimonas, Dietzia and Glycomyces. In antimicrobial screening, Micromonospora sp. strain GH99 and Streptomyces sp. strain GH176 were found to be potent antimicrobial strains. The metabolic extracts of these strains exhibited strong antimicrobial activity against Staphylococcus epidermidis (NCIM 2493), Shigella flexneri (NCIM 5265), Klebsiella pneumonia (NCIM 2098), and Salmonella abony (NCIM 2257). The extracts also displayed strong anti-biofilm and anticancer activities against Pseudomonas aeruginosa (NCIM 5029), Acinetobacter junii (NCIM 5188) and breast cancer cell line MCF7, respectively. Both strains also tested positive for the presence of the PKS biosynthetic gene cluster in their genomes. To effectively delineate the secondary metabolites, the extracts were subjected to MS/MS-guided molecular networking analysis. Structurally diverse compounds including the polyketides 22-dehydroxymethyl-kijanolide (GH99 strain) and Abyssomicin I (GH176 strain) were detected in the extracts. Interestingly, Brevianamide F was detected in the extract of Micromonospora, which has previously been mostly found in fungal species. Other compounds such as cyclic tripeptides, Cyclo(l-Pro-d-Ile) and Cyclo(d-Pro-l-Phe), were also identified in this strain. In summary, for the first time, we explored the diversity of Actinobacteria and evaluated their bioactive potential from the Unkeshwar hot springs. The potent strains isolated in the study could be useful in drug discovery programs. The bioactive potential of Actinobacteria endemic to hot springs has rarely been investigated.![]()
Collapse
Affiliation(s)
- Gajanan T Mehetre
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Vinodh J S
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Bhushan B Burkul
- Centre for Materials Characterization, CSIR-National Chemical Laboratory Pune India
| | - D Desai
- National Center for Nanoscience and Nanotechnology, University of Mumbai India
| | - Santhakumari B
- Centre for Materials Characterization, CSIR-National Chemical Laboratory Pune India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Syed G Dastager
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
17
|
Maglangit F, Tong MH, Jaspars M, Kyeremeh K, Deng H. Legonoxamines A-B, two new hydroxamate siderophores from the soil bacterium, Streptomyces sp. MA37. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.11.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Abbas M, Elshahawi SI, Wang X, Ponomareva LV, Sajid I, Shaaban KA, Thorson JS. Puromycins B-E, Naturally Occurring Amino-Nucleosides Produced by the Himalayan Isolate Streptomyces sp. PU-14G. JOURNAL OF NATURAL PRODUCTS 2018; 81:2560-2566. [PMID: 30418763 PMCID: PMC6393767 DOI: 10.1021/acs.jnatprod.8b00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The isolation and structure elucidation of four new naturally occurring amino-nucleoside [puromycins B-E (1-4)] metabolites from a Himalayan isolate ( Streptomyces sp. PU-14-G, isolated from the Bara Gali region of northern Pakistan) is reported. Consistent with prior reports, comparative antimicrobial assays revealed the need for the free 2″-amine for anti-Gram-positive bacteria and antimycobacterial activity. Similarly, comparative cancer cell line cytotoxicity assays highlighted the importance of the puromycin-free 2″-amine and the impact of 3'-nucleoside substitution. These studies extend the repertoire of known naturally occurring puromycins and their corresponding SAR. Notably, 1 represents the first reported naturally occurring bacterial puromycin-related metabolite with a 3'- N-amino acid substitution that differs from the 3'- N-tyrosinyl of classical puromycin-type natural products. This discovery suggests the biosynthesis of 1 in Streptomyces sp. PU-14G may invoke a uniquely permissive amino-nucleoside synthetase and/or multiple synthetases and sets the stage for further studies to elucidate, and potentially exploit, new biocatalysts for puromycin chemoenzymatic diversification.
Collapse
Affiliation(s)
- Muhammad Abbas
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Xiachang Wang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| |
Collapse
|
19
|
Zhang W, Zhang G, Zhang L, Liu W, Jiang X, Jin H, Liu Z, Zhang H, Zhou A, Zhang C. New polycyclic tetramate macrolactams from marine-derived Streptomyces sp. SCSIO 40060. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Qi Y, Ding E, Blodgett JAV. Native and Engineered Clifednamide Biosynthesis in Multiple Streptomyces spp. ACS Synth Biol 2018; 7:357-362. [PMID: 29249153 DOI: 10.1021/acssynbio.7b00349] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycyclic tetramate macrolactam (PTM) natural products are produced by actinomycetes and other bacteria. PTMs are often bioactive, and the simplicity of their biosynthetic clusters make them attractive for bioengineering. Clifednamide-type PTMs from Streptomyces sp. strain JV178 contain a distinctive ketone group, suggesting the existence of a novel PTM oxidizing enzyme. Here, we report the new cytochrome P450 enzyme (CftA) is required for clifednamide production. Genome mining was used to identify several new clifednamide producers, some having improved clifednamide yields. Using a parallel synthetic biology approach, CftA isozymes were used to engineer the ikarugamycin pathway of Streptomyces sp. strain NRRL F-2890 to yield clifednamides. Further, we observed that strong CftA expression leads to the production of a new PTM, clifednamide C. We demonstrate the utility of both genome mining and synthetic biology to rapidly increase clifednamide production.
Collapse
Affiliation(s)
- Yunci Qi
- Department of Biology, Washington University in St Louis, St Louis, Missouri 63130, United States
| | - Edward Ding
- Department of Biology, Washington University in St Louis, St Louis, Missouri 63130, United States
| | - Joshua A. V. Blodgett
- Department of Biology, Washington University in St Louis, St Louis, Missouri 63130, United States
| |
Collapse
|
21
|
Quezada M, Licona-Cassani C, Cruz-Morales P, Salim AA, Marcellin E, Capon RJ, Barona-Gómez F. Diverse Cone-Snail Species Harbor Closely Related Streptomyces Species with Conserved Chemical and Genetic Profiles, Including Polycyclic Tetramic Acid Macrolactams. Front Microbiol 2017; 8:2305. [PMID: 29225593 PMCID: PMC5705629 DOI: 10.3389/fmicb.2017.02305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 11/08/2017] [Indexed: 12/30/2022] Open
Abstract
Streptomyces are Gram-positive bacteria that occupy diverse ecological niches including host-associations with animals and plants. Members of this genus are known for their overwhelming repertoire of natural products, which has been exploited for almost a century as a source of medicines and agrochemicals. Notwithstanding intense scientific and commercial interest in Streptomyces natural products, surprisingly little is known of the intra- and/or inter-species ecological roles played by these metabolites. In this report we describe the chemical structures, biological properties, and biosynthetic relationships between natural products produced by Streptomyces isolated from internal tissues of predatory Conus snails, collected from the Great Barrier Reef, Australia. Using chromatographic, spectroscopic and bioassays methodology, we demonstrate that Streptomyces isolated from five different Conus species produce identical chemical and antifungal profiles - comprising a suite of polycyclic tetramic acid macrolactams (PTMs). To investigate possible ecological (and evolutionary) relationships we used genome analyses to reveal a close taxonomic relationship with other sponge-derived and free-living PTM producing Streptomyces (i.e., Streptomyces albus). In-depth phylogenomic analysis of PTM biosynthetic gene clusters indicated PTM structure diversity was governed by a small repertoire of genetic elements, including discrete gene acquisition events involving dehydrogenases. Overall, our study shows a Streptomyces-Conus ecological relationship that is concomitant with specific PTM chemical profiles. We provide an evolutionary framework to explain this relationship, driven by anti-fungal properties that protect Conus snails from fungal pathogens.
Collapse
Affiliation(s)
- Michelle Quezada
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Cuauhtemoc Licona-Cassani
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Angela A. Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| |
Collapse
|
22
|
Abstract
A new chlorinated metabolite designated chlokamycin (1), was isolated along with ikarugamycin (2) from the culture broth of the marine-derived Streptomyces sp. MA2–12. The structure of 1 was elucidated based on spectroscopic analyses (1D and 2D NMR data and ROESY correlations). Chlokamycin moderately inhibited the growth of Jurkat cells and HCT116 cells with IC50 values of 24.7 and 33.5 μM, respectively.
Collapse
|
23
|
Greunke C, Glöckle A, Antosch J, Gulder TAM. Biokatalytische Totalsynthese von Ikarugamycin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Greunke
- Gulder Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstraße 4 85748 Garching Deutschland
| | - Anna Glöckle
- Gulder Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstraße 4 85748 Garching Deutschland
| | - Janine Antosch
- Gulder Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstraße 4 85748 Garching Deutschland
| | - Tobias A. M. Gulder
- Gulder Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
24
|
Greunke C, Glöckle A, Antosch J, Gulder TAM. Biocatalytic Total Synthesis of Ikarugamycin. Angew Chem Int Ed Engl 2017; 56:4351-4355. [DOI: 10.1002/anie.201611063] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Christian Greunke
- Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstrasse 4 85748 Garching Germany
| | - Anna Glöckle
- Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstrasse 4 85748 Garching Germany
| | - Janine Antosch
- Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstrasse 4 85748 Garching Germany
| | - Tobias A. M. Gulder
- Biosystems Chemistry; Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM); Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
25
|
Yu HL, Jiang SH, Bu XL, Wang JH, Weng JY, Yang XM, He KY, Zhang ZG, Ao P, Xu J, Xu MJ. Structural diversity of anti-pancreatic cancer capsimycins identified in mangrove-derived Streptomyces xiamenensis 318 and post-modification via a novel cytochrome P450 monooxygenase. Sci Rep 2017; 7:40689. [PMID: 28098172 PMCID: PMC5241641 DOI: 10.1038/srep40689] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/08/2016] [Indexed: 01/12/2023] Open
Abstract
Polycyclic tetramate macrolactams (PTMs) were identified as distinct secondary metabolites of the mangrove-derived Streptomyces xiamenensis 318. Together with three known compounds—ikarugamycin (1), capsimycin (2) and capsimycin B (3)—two new compounds, capsimycin C (4) with trans-diols and capsimycin D (5) with trans-configurations at C-13/C-14, have been identified. The absolute configurations of the tert/tert-diols moiety was determined in 4 by NMR spectroscopic analysis, CD spectral comparisons and semi-synthetic method. The post-modification mechanism of the carbocyclic ring at C-14/C-13 of compound 1 in the biosynthesis of an important intermediate 3 was investigated. A putative cytochrome P450 superfamily gene, SXIM_40690 (ikaD), which was proximally localized to the ikarugamycin biosynthetic pathway, was characterized. In vivo gene inactivation and complementation experiment confirmed that IkaD catalysed the epoxide-ring formation reaction and further hydroxylation of ethyl side chain to form capsimycin G (3′). Binding affinities and kinetic parameters for the interactions between ikarugamycin (1) and capsimycin B (3) with IkaD were measured with Surface Plasmon Resonance. The intermediate compound 3′ was isolated and identified as 30-hydroxyl-capsimycin B. The caspimycins 2 and 3, were transferred to methoxyl derivatives, 6 and 7, under acidic and heating conditions. Compounds 1–3 exhibited anti-proliferative activities against pancreatic carcinoma with IC50 values of 1.30–3.37 μM.
Collapse
Affiliation(s)
- He-Lin Yu
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu-Liang Bu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Institute of Oceanology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia-Hua Wang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Institute of Oceanology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing-Yi Weng
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kun-Yan He
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Ao
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Institute of Oceanology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min-Juan Xu
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Saha S, Zhang W, Zhang G, Zhu Y, Chen Y, Liu W, Yuan C, Zhang Q, Zhang H, Zhang L, Zhang W, Zhang C. Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams. Chem Sci 2016; 8:1607-1612. [PMID: 28451290 PMCID: PMC5361873 DOI: 10.1039/c6sc03875a] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/21/2016] [Indexed: 12/24/2022] Open
Abstract
We report the activation of a PTM gene cluster in marine-derived Streptomyces pactum, leading to the discovery of six new PTMs, the pactamides A-F.
Polycyclic tetramate macrolactams (PTMs) are a growing class of natural products and are derived from a hybrid polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway. PTM biosynthetic gene clusters are conserved and widely distributed in bacteria, however, most of them remain silent. Herein we report the activation of a PTM gene cluster in marine-derived Streptomyces pactum SCSIO 02999 by promoter engineering and heterologous expression, leading to the discovery of six new PTMs, pactamides A–F (11–16), with potent cytotoxic activity upon several human cancer cell lines. In vivo gene disruption experiments and in vitro biochemical assays reveal a reductive cyclization cascade for polycycle formation, with reactions sequentially generating the 5, 5/5 and 5/5/6 carbocyclic ring systems, catalysed by the phytoene dehydrogenase PtmB2, the oxidoreductase PtmB1, and the alcohol dehydrogenase PtmC, respectively. Furthermore, PtmC was demonstrated as a bifunctional cyclase for catalyzing the formation of the inner five-membered ring in ikarugamycin. This study suggests the possibility of finding more bioactive PTMs by genome mining and discloses a general mechanism for the formation of 5/5/6-type carbocyclic rings in PTMs.
Collapse
Affiliation(s)
- Subhasish Saha
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Wenjun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Guangtao Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China , Guangdong Institute of Microbiology , 100 Central Xianlie Road , Guangzhou 510070 , China
| | - Wei Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ; .,State Key Laboratory of Applied Microbiology Southern China , South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC) , China
| | - Chengshan Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Haibo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ;
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China , Guangdong Institute of Microbiology , 100 Central Xianlie Road , Guangzhou 510070 , China
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology , Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology , Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , China . ; .,State Key Laboratory of Applied Microbiology Southern China , South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC) , China
| |
Collapse
|
27
|
Talukdar M, Das D, Bora C, Bora TC, Deka Boruah HP, Singh AK. Complete genome sequencing and comparative analyses of broad-spectrum antimicrobial-producing Micromonospora sp. HK10. Gene 2016; 594:97-107. [PMID: 27609432 DOI: 10.1016/j.gene.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 01/21/2023]
Abstract
Micromonospora genus produces >700 bioactive compounds of medical relevance. In spite of its ability to produce high number of bioactive compounds, no genome sequence is available with comprehensive secondary metabolite gene clusters analysis for anti-microbial producing Micromonospora strains. Thus, here we contribute the full genome sequence of Micromonospora sp. HK10 strain, which has high antibacterial activity against several important human pathogens like, Mycobacterium abscessus, Mycobacterium smegmatis, Bacillus subtillis, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella and Escherichia coli. We have generated whole genome sequence data of Micromonospora sp. HK10 strain using Illumina NexSeq 500 sequencing platform (2×150bp paired end library) and assembled it de novo. The sequencing of HK10 genome enables identification of various genetic clusters associated with known- and probably unknown- antimicrobial compounds, which can pave the way for new antimicrobial scaffolds.
Collapse
Affiliation(s)
- Madhumita Talukdar
- Department of Biotechnology, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
| | - Dhrubajyoti Das
- Department of Biotechnology, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
| | - Chiranjeeta Bora
- Department of Biotechnology, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
| | - Tarun Chandra Bora
- Department of Biotechnology, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
| | - Hari Prasanna Deka Boruah
- Department of Biotechnology, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
| | - Anil Kumar Singh
- Department of Biotechnology, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research, Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
28
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
29
|
Rathore SS, Ramamurthy V, Allen S, Selva Ganesan S, Ramakrishnan J. Novel approach of adaptive laboratory evolution: triggers defense molecules in Streptomyces sp. against targeted pathogen. RSC Adv 2016. [DOI: 10.1039/c6ra15952d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adaptive laboratory evolution by competition-based co-culture: triggers and enhance specific bioactive molecules against targeted pathogen.
Collapse
Affiliation(s)
- Sudarshan Singh Rathore
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| | - Vigneshwari Ramamurthy
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| | - Sally Allen
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| | - S. Selva Ganesan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - Jayapradha Ramakrishnan
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| |
Collapse
|
30
|
Trujillo ME, Riesco R, Benito P, Carro L. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants. Front Microbiol 2015; 6:1341. [PMID: 26648923 PMCID: PMC4664631 DOI: 10.3389/fmicb.2015.01341] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and as an endophytic bacterium with the capacity to colonize the internal plant tissues which are protected from the invasion of other soil microbes were identified. The genome data also revealed the potential of M. lupini Lupac 08 as a plant growth promoting bacterium. Several loci involved in plant growth promotion features such as the production of siderophores, phytohormones, and the degradation of chitin (biocontrol) were also located on the genome and the functionality of these genes was confirmed in the laboratory. In addition, when several host plants species were inoculated with Micromonospora strains, the plant growth enhancing effect was evident under greenhouse conditions. Unexpectedly, a high number of plant-cell wall degrading enzymes were also detected, a trait usually found only in pathogenic bacteria. Thus, Micromonospora can be added to the list of new plant-microbe interactions. The current data indicate that this microorganism may have an important application in agriculture and other biotechnological processes. The available information is promising but limited, much research is still needed to determine which is the ecological function of Micromonospora in interaction with nitrogen fixing plants.
Collapse
Affiliation(s)
- Martha E Trujillo
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Raúl Riesco
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Patricia Benito
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| | - Lorena Carro
- Departamento de Microbiología y Genética, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
31
|
Azman AS, Othman I, Velu SS, Chan KG, Lee LH. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front Microbiol 2015; 6:856. [PMID: 26347734 PMCID: PMC4542535 DOI: 10.3389/fmicb.2015.00856] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.
Collapse
Affiliation(s)
- Adzzie-Shazleen Azman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus Selangor, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus Selangor, Malaysia
| | - Saraswati S Velu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus Selangor, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus Selangor, Malaysia
| |
Collapse
|
32
|
Rateb ME, Zhai Y, Ehrner E, Rath CM, Wang X, Tabudravu J, Ebel R, Bibb M, Kyeremeh K, Dorrestein PC, Hong K, Jaspars M, Deng H. Legonaridin, a new member of linaridin RiPP from a Ghanaian Streptomyces isolate. Org Biomol Chem 2015; 13:9585-92. [DOI: 10.1039/c5ob01269d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we describe the identification of a new linaridin RiPP, legonaridin, from the new soil bacterium Streptomyces sp. CT34.
Collapse
|
33
|
Greunke C, Antosch J, Gulder TAM. Promiscuous hydroxylases for the functionalization of polycyclic tetramate macrolactams – conversion of ikarugamycin to butremycin. Chem Commun (Camb) 2015; 51:5334-6. [DOI: 10.1039/c5cc00843c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Application of PTM hydroxylases facilitates the selective late-stage functionalization of complex PTM core structuresin vivoandin vitro.
Collapse
Affiliation(s)
- Christian Greunke
- Biosystems Chemistry
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM)
- Technische Universität München
- 85747 Garching
- Germany
| | - Janine Antosch
- Biosystems Chemistry
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM)
- Technische Universität München
- 85747 Garching
- Germany
| | - Tobias A. M. Gulder
- Biosystems Chemistry
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM)
- Technische Universität München
- 85747 Garching
- Germany
| |
Collapse
|
34
|
Hamedi J, Mohammadipanah F, Panahi HKS. Biotechnological Exploitation of Actinobacterial Members. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis. Mar Drugs 2014; 13:128-40. [PMID: 25551780 PMCID: PMC4306928 DOI: 10.3390/md13010128] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
A bioassay guided fractionation of the ethyl acetate extract from culture broths of the strain Streptomyces zhaozhouensis CA-185989 led to the isolation of three new polycyclic tetramic acid macrolactams (1-3) and four known compounds. All the new compounds were structurally related to the known Streptomyces metabolite ikarugamycin (4). Their structural elucidation was accomplished using a combination of electrospray-time of flight mass spectrometry (ESI-TOF MS) and 1D and 2D NMR analyses. Compounds 1-3 showed antifungal activity against Aspergillus fumigatus, Candida albicans and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
|
36
|
Xu DB, Ye WW, Han Y, Deng ZX, Hong K. Natural products from mangrove actinomycetes. Mar Drugs 2014; 12:2590-613. [PMID: 24798926 PMCID: PMC4052306 DOI: 10.3390/md12052590] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/31/2014] [Accepted: 04/15/2014] [Indexed: 12/12/2022] Open
Abstract
Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery.
Collapse
Affiliation(s)
- Dong-Bo Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Wan-Wan Ye
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Ying Han
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Zi-Xin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|