1
|
Ruiz‐Molina A, Pech‐Puch D, Millán RE, Ageitos L, Villegas‐Hernández H, Pachón J, Pérez Sestelo J, Sánchez‐Céspedes J, Rodríguez J, Jiménez C. Uncovering the Potent Antiviral Activity of the Sesterterpenoids from the Sponge Ircinia Felix Against Human Adenoviruses: from the Natural Source to the Total Synthesis. Chemistry 2024; 30:e202401844. [PMID: 39301783 PMCID: PMC11590176 DOI: 10.1002/chem.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Human Adenovirus (HAdV) infections in immunocompromised patients can result in disseminated diseases with high morbidity and mortality rates due to the absence of available treatments for these infections. The sponge Ircinia felix was selected for the significant anti-HAdV activity displayed by its organic extracts. Its chemical analysis yielded three novel sesterterpene lactams, ircinialactams J-L, along with three known sesterterpene furans which structures were established by a deep spectrometric analysis. Ircinialactam J displayed significant antiviral activity against HAdV without significant cytotoxicity, showing an effectiveness 11 times greater than that of the standard treatment, cidofovir®. Comparison of the antiviral evaluation results of the isolated compounds allowed us to deduce some structure-activity relationships. Mechanistic assays suggest that ircinialactam J targets an early step of the HAdV replicative cycle before HAdV genome reaches the nucleus of the host cell. The first total synthesis of ircinialactam J was also accomplished to prove the structure and to provide access to analogues. Key steps are a regio- and stereoselective construction of the trisubstituted Z-olefin at Δ7 by iron-catalyzed carbometallation of a homopropargylic alcohol, a stereoselective methylation to generate the stereogenic center at C18, and the formation of the (Z)-Δ20 by stereoselective aldol condensation to introduce the tetronic acid unit. Ircinialactam J is a promising chemical lead to new potent antiviral drugs against HAdV infections.
Collapse
Affiliation(s)
- Ana Ruiz‐Molina
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y ParasitologíaInstituto de Biomedicina de Sevilla (IBiS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- Instituto de Biomedicina de Sevilla (IBiS)Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de SevillaSevillaSpain
| | - Dawrin Pech‐Puch
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
- Departamento de Biología MarinaUniversidad Autónoma de Yucatán (UADY), Carretera Mérida-Xmatkuilkm. 15.5, A.P. 4–116 ItzimnáMéridaCP 97100Mexico
- Escuela Nacional de Estudios Superiores Unidad Mérida (ENES Mérida)Universidad Nacional Autónoma de México (UNAM)Carretera Mérida-Tetiz, km 4.5Tablaje, Catastral No. 6998, Ucú CP97357Mexico
| | - Ramón E. Millán
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
| | - Lucía Ageitos
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
| | - Harold Villegas‐Hernández
- Departamento de Biología MarinaUniversidad Autónoma de Yucatán (UADY), Carretera Mérida-Xmatkuilkm. 15.5, A.P. 4–116 ItzimnáMéridaCP 97100Mexico
- Escuela Nacional de Estudios Superiores Unidad Mérida (ENES Mérida)Universidad Nacional Autónoma de México (UNAM)Carretera Mérida-Tetiz, km 4.5Tablaje, Catastral No. 6998, Ucú CP97357Mexico
| | - Jerónimo Pachón
- Instituto de Biomedicina de Sevilla (IBiS)Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de SevillaSevillaSpain
- Departamento de MedicinaFacultad de MedicinaUniversidad de Sevilla41009SevillaSpain
| | - José Pérez Sestelo
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
| | - Javier Sánchez‐Céspedes
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y ParasitologíaInstituto de Biomedicina de Sevilla (IBiS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- Instituto de Biomedicina de Sevilla (IBiS)Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de SevillaSevillaSpain
- CIBERINFEC, ISCIII - CIBER de Enfermedades InfecciosasInstituto de Salud Carlos IIIMadridSpain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
| | - Carlos Jiménez
- CICA-Centro Interdisciplinar de Química e BioloxíaDepartamento de Química, Facultade de Ciencias, Universidade da CoruñaA Coruña15071, Spain
| |
Collapse
|
2
|
Peng BR, Zheng LG, Chen LY, El-Shazly M, Hwang TL, Su JH, Lee MH, Lai KH, Sung PJ. Nor-24-homoscalaranes, Neutrophilic Inflammatory Mediators from the Marine Sponge Lendenfeldia sp. Pharmaceuticals (Basel) 2023; 16:1258. [PMID: 37765066 PMCID: PMC10537518 DOI: 10.3390/ph16091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The marine sponge Lendenfeldia sp., collected from the Southern waters of Taiwan, was subjected to chemical composition screening, resulting in the isolation of four new 24-homoscalarane compounds, namely lendenfeldaranes R-U (1-4). The structures and relative stereochemistry of the new metabolites 1-4 were assigned based on NMR studies. The absolute configurations of compounds 1-4 were determined by comparing the calculated and experimental values of specific optical rotation. The antioxidant and anti-inflammatory activities of the isolated compounds were assayed using superoxide anion generation and elastase release assays. These assays are used to determine neutrophilic inflammatory responses of respiratory burst and degranulation. Compounds 2 and 4 inhibited superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB) with IC50: 3.98-4.46 μM. Compounds 2 and 4 inhibited fMLP/CB-induced elastase release, with IC50 values ranging from 4.73 to 5.24 μM. These findings suggested that these new 24-homoscalarane compounds possess unique structures and potential anti-inflammatory activity.
Collapse
Affiliation(s)
- Bo-Rong Peng
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.-R.P.); (L.-Y.C.); (M.-H.L.)
| | - Li-Guo Zheng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan;
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.-R.P.); (L.-Y.C.); (M.-H.L.)
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt;
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan;
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Mei-Hsien Lee
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.-R.P.); (L.-Y.C.); (M.-H.L.)
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.-R.P.); (L.-Y.C.); (M.-H.L.)
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404394, Taiwan
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
3
|
Nabil-Adam A, Youssef FS, Ashour ML, Shreadah MA. Neuroprotective and nephroprotective effects of Ircinia sponge in polycyclic aromatic hydrocarbons (PAHs) induced toxicity in animal model: a pharmacological and computational approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82162-82177. [PMID: 37316629 PMCID: PMC10349714 DOI: 10.1007/s11356-023-27916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/20/2023] [Indexed: 06/16/2023]
Abstract
The present study investigated the neuroprotective and nephroprotective effects of the sponge Ircinia sp. ethyl acetate extract (ISPE) against persistent aromatic pollutants in vitro and in vivo. Different exponential experimental assays were applied to this study. An in vitro study to investigate the potential therapeutic effect of ISPE using antioxidants (for example, ABTS and DPPH) and anti-Alzheimer assays (inhibition of acetylcholinesterase); the in-vivo study was designed to evaluate the protective effect of ISPE as neuroprotective and nephroprotective against the destructive effect of PAH. Several assays included oxidative assays (LPO), antioxidant biomarkers (GSH, GST), and inflammatory and neurodegenerative biomarkers (PTK,SAA). Additionally, the results were confirmed using histopathological examination. The in silico screening study improved the in vitro and in vivo findings through interaction between the aryl hydrocarbon receptor (AHR) and the polyphenolic content of ISPE extract, which was determined using LCMSM. The results and discussion showed that ISPE exhibited a promising antioxidant and anti-acetylcholinesterase activity as evidenced by IC50 values of 49.74, 28.25, and 0.18 µg/mL in DPPH, ABTS, and acetylcholinesterase inhibition assays, respectively. In vivo, the study showed that animals receiving ISPE before poly aromatic hydrocarbons administration PAHs (Prot, ISPE) showed significant amelioration in kidney functions manifested by the reduction of serum urea, uric acid, and creatinine by 40.6%, 66.4%, and 134.8%, respectively, concerning PAH-injected mice (HAA). Prot, ISPE revealed a decline in malondialdehyde (MDA) and total proteins (TP) in kidney and brain tissues by 73.63% and 50.21%, respectively, for MDA and 59.82% and 80.41%, respectively, for TP with respect to HAA. Prot, ISPE showed significant elevation in reduced glutathione (GSH) and glutathione transferase (GST) in kidney and brain tissues and reduction in the inflammatory and pre-cancerous biomarkers, namely, serum protein tyrosine kinases (PTKs) and serum amyloid A (SAA). These findings were further supported by histopathological examination of kidney and brain tissues, which revealed normal structure approaching normal control. Metabolic profiling of ISPE using LC-MS-MS showed the presence of fourteen polyphenolic compounds belonging mainly to phenolic acids and flavonoids. In silico study revealed that all the tested compounds exerted certain binding with the aryl hydrocarbon receptor, where rutin showed the best fitting (ΔG = - 7.6 kcal/mol-1) with considerable pharmacokinetic and pharmacodynamic properties revealed from in silico ADME (Absorption, Distribution, Metabolism, and Excretion) study. Hence, it can be concluded that the Ircinia sponge showed a promising protective effect versus kidney and brain toxicity triggered by PAHs.
Collapse
Affiliation(s)
- Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria, Egypt
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, 11566 Cairo Egypt
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, 11566 Cairo Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah, 21442 Saudi Arabia
| | - Mohamed A. Shreadah
- Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
4
|
Chen ZH, Guo YW, Li XW. Recent advances on marine mollusk-derived natural products: chemistry, chemical ecology and therapeutical potential. Nat Prod Rep 2023; 40:509-556. [PMID: 35942896 DOI: 10.1039/d2np00021k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2011-2021Marine mollusks, which are well known as rich sources of diverse and biologically active natural products, have attracted significant attention from researchers due to their chemical and pharmacological properties. The occurrence of some of these marine mollusk-derived natural products in their preys, predators, and associated microorganisms has also gained interest in chemical ecology research. Based on previous reviews, herein, we present a comprehensive summary of the recent advances of interesting secondary metabolites from marine mollusks, focusing on their structural features, possible chemo-ecological significance, and promising biological activities, covering the literature from 2011 to 2021.
Collapse
Affiliation(s)
- Zi-Hui Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
5
|
Majer T, Bhattarai K, Straetener J, Pohlmann J, Cahill P, Zimmermann MO, Hübner MP, Kaiser M, Svenson J, Schindler M, Brötz-Oesterhelt H, Boeckler FM, Gross H. Discovery of Ircinianin Lactones B and C-Two New Cyclic Sesterterpenes from the Marine Sponge Ircinia wistarii. Mar Drugs 2022; 20:532. [PMID: 36005535 PMCID: PMC9410537 DOI: 10.3390/md20080532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Two new ircinianin-type sesterterpenoids, ircinianin lactone B and ircinianin lactone C (7 and 8), together with five known entities from the ircinianin compound family (1, 3-6) were isolated from the marine sponge Ircinia wistarii. Ircinianin lactones B and C (7 and 8) represent new ircinianin terpenoids with a modified oxidation pattern. Despite their labile nature, the structures could be established using a combination of spectroscopic data, including HRESIMS and 1D/2D NMR techniques, as well as computational chemistry and quantum-mechanical calculations. In a broad screening approach for biological activity, the class-defining compound ircinianin (1) showed moderate antiprotozoal activity against Plasmodium falciparum (IC50 25.4 μM) and Leishmania donovani (IC50 16.6 μM).
Collapse
Affiliation(s)
- Thomas Majer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Justus Pohlmann
- Institute for Medical Virology and Epidemiology, Section Molecular Virology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Markus O. Zimmermann
- Lab for Molecular Design and Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology, Section Molecular Virology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Frank M. Boeckler
- Lab for Molecular Design and Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Yu HB, Chen HY, Duan S, Zhu YP, Hu B, He Y, Cheng ST, Jiao BH, Liu XY. Bioactive Scalarane-Type Sesterterpenoids from Marine Sources. Chem Biodivers 2022; 19:e202200049. [PMID: 35393745 DOI: 10.1002/cbdv.202200049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/07/2022] [Indexed: 11/11/2022]
Abstract
Scalarane-type sesterterpenoids have received considerable attention in the scientific literature due to their diverse carbon skeletons and various biological activities and pharmacological properties. Among all these derivatives are commonly isolated from marine sponges and are occasionally derived from shell-less mollusks, such as nudibranchs. This review comprehensively discusses the marine-derived natural sources that give rise to these scalarane-type sesterterpenoids, providing the names, their chemical structures, biological properties, with emphasis on anticancer activity and literature references related to these metabolites. A critical summary of the 221 compounds generated from January 2010 up to December 2021 for their potential as anticancer agents is presented.
Collapse
Affiliation(s)
- Hao-Bing Yu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Hai-Yan Chen
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Song Duan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Yu-Ping Zhu
- College of Basic Medical Sciences, Experimental Teaching Center, Naval Medical University, Shanghai, 200433, China
| | - Bo Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Ying He
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Si-Tong Cheng
- WLSA Shanghai Academy, Shanghai, 2004333, P. R. China
| | - Bing-Hua Jiao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Xiao-Yu Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Wu WB, Mu BS, Yu JS, Zhou J. Me 2(CH 2CH)SiCN: a bifunctional ethylene equivalent for Diels–Alder reaction based controllable tandem synthesis. Chem Sci 2022; 13:3519-3525. [PMID: 35432855 PMCID: PMC8943849 DOI: 10.1039/d2sc00147k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/24/2022] [Indexed: 01/06/2023] Open
Abstract
A bifunctional silyl reagent Me2(CH2CH)SiCN has been developed as a novel ethylene equivalent for the Diels–Alder (DA) reaction. The use of this reagent enables the controllable synthesis of value-added cyclohexenyl ketones or 2-acyl cyclohexancarbonitrile derivatives through a five- or six-step tandem sequence based on a Wittig/cyanosilylation/DA reaction/retro-cyanosilylation/isomerization sequence that involves a temporary silicon-tethered intramolecular DA reaction. We report an unprecedented tandem Wittig/cyanosilylation/DA reaction/retro-cyanosilylation/isomerization sequence by using our designed bifunctional ethylene equivalent Me2(CH2CH)SiCN.![]()
Collapse
Affiliation(s)
- Wen-Biao Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Bo-Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
8
|
Scalarane-Type Sesterterpenoids from the Marine Sponge Lendenfeldia sp. Alleviate Inflammation in Human Neutrophils. Mar Drugs 2021; 19:md19100561. [PMID: 34677460 PMCID: PMC8541400 DOI: 10.3390/md19100561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
Sponge-derived scalaranes are remarkable sesterterpenoids previously found to exhibit profound inhibitory effects against neutrophilic inflammation. In our current work, we constructed the metabolomic profile of marine sponge Lendenfeldia sp. for the first time using a tandem mass spectrometry (MS/MS) molecular networking approach. The results highlighted the rich chemical diversity of these scalaranes, motivating us to conduct further research to discover novel scalaranes targeting neutrophilic inflammation. MS- and NMR-assisted isolation and elucidation led to the discovery of seven new homoscalaranes, lendenfeldaranes K–Q (1–7), characterized by methylation at C-24, together with five known derivatives, lendenfeldarane B (8), 25-nor-24-methyl-12,24-dioxoscalar-16-en-22-oic acid (9), 24-methyl-12,24,25-trioxoscalar-16-en-22-oic acid (10), felixin B (11), and 23-hydroxy-20-methyldeoxoscalarin (12). Scalaranes 1–4 and 6–12 were assayed against superoxide anion generation and elastase release, which represented the neutrophilic inflammatory responses of respiratory burst and degranulation, respectively. The results indicated that 1–3 and 6–12 exhibited potential anti-inflammatory activities (IC50 for superoxide anion scavenging: 0.87~6.57 μM; IC50 for elastase release: 1.12~6.97 μM).
Collapse
|
9
|
Li XL, Li SW, Yao LG, Mollo E, Gavagnin M, Guo YW. The chemical and chemo-ecological studies on Weizhou nudibranch Glossodoris atromarginata. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:554-560. [PMID: 31729061 DOI: 10.1002/mrc.4949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 09/15/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
A detailed chemical investigation of the nudibranch Glossodoris atromarginata collected from Weizhou Island, South China Sea, yielded a new spongian-type diterpene 1, together with the four known-related compounds 2-5. The structure of the new compound 1 was elucidated by the detailed spectroscopic analysis, the comparison of the spectroscopic data with the known diterpene isoagatholactone, and the 13 C chemical shift calculation. In addition, evidence for the absolute stereochemistry of the known compound 2 was, for the first time, provided by the application of time-dependent density functional theory electronic circular dichroism calculation.
Collapse
Affiliation(s)
- Xiao-Lu Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Song-Wei Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ernesto Mollo
- Consiglio Nazionaledelle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Pozzuoli, Italy
| | - Margherita Gavagnin
- Consiglio Nazionaledelle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Pozzuoli, Italy
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Li K, Gustafson KR. Sesterterpenoids: chemistry, biology, and biosynthesis. Nat Prod Rep 2020; 38:1251-1281. [PMID: 33350420 DOI: 10.1039/d0np00070a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Covering: July 2012 to December 2019Over the last seven years, expanding research efforts focused on sesterterpenoids has led to the isolation, identification, and characterization of numerous structurally novel and biologically active sesterterpenoids. These newly reported sesterterpenoids provide diverse structures that often incorporate unprecedented ring systems and new carbon skeletons, as well as unusual functional group arrays. Biological activities of potential biomedical importance including suppression of cancer cell growth, inhibition of enzymatic activity, and modulation of receptor signaling, as well as ecologically important functions such as antimicrobial effects and deterrence of herbivorous insects have been associated with a variety of sesterterpenoids. There has also been a rapid growth in our knowledge of the genomics, enzymology, and specific pathways associated with sesterterpene biosynthesis. This has opened up new opportunities for future sesterterpene discovery and diversification through the expression of new cryptic metabolites and the engineered manipulation of associated biosynthetic machinery and processes. In this paper we reviewed 498 new sesterterpenoids, including their structures, source organisms, country of origin, relevant bioactivities, and biosynthesis.
Collapse
Affiliation(s)
- Keke Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | | |
Collapse
|
11
|
Peng BR, Lai KH, Chang YC, Chen YY, Su JH, Huang YM, Chen PJ, Yu SSF, Duh CY, Sung PJ. Sponge-Derived 24-Homoscalaranes as Potent Anti-Inflammatory Agents. Mar Drugs 2020; 18:md18090434. [PMID: 32825198 PMCID: PMC7551342 DOI: 10.3390/md18090434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 02/08/2023] Open
Abstract
Scalarane-type sesterterpenoids are known for their therapeutic potential in cancer treatments. However, the anti-inflammatory properties of this class of metabolites remain elusive. Our current work aimed to investigate the anti-inflammatory scalaranes from marine sponge Lendenfeldia sp., resulting in the isolation of six new 24-homoscalaranes, lendenfeldaranes E–J (1–6). The structures of the new metabolites were determined by extensive spectroscopic analyses, and the absolute configuration of 1 was established by electronic circular dichroism (ECD) calculations. Compounds 2 and 3 were discovered to individually reduce the generation of superoxide anions, and compound 1 displayed an inhibitor effect on the release of elastase. These three compounds were proven to be the first anti-neutrophilic scalaranes.
Collapse
Affiliation(s)
- Bo-Rong Peng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan;
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115201, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan; (Y.-Y.C.); (J.-H.S.)
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan;
| | - Yu-Chia Chang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan;
| | - You-Ying Chen
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan; (Y.-Y.C.); (J.-H.S.)
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan; (Y.-Y.C.); (J.-H.S.)
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944401, Taiwan
| | - Yusheng M. Huang
- Department of Marine Recreation, National Penghu University of Science and Technology, Penghu 880011, Taiwan;
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung 433303, Taiwan;
| | - Steve Sheng-Fa Yu
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115201, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Correspondence: (S.S.-F.Y.); (C.-Y.D.); (P.-J.S.); Tel.: +886-2-5572-8650 (S.S.-F.Y.); +886-7-525-2000 (ext. 5036) (C.-Y.D.); +886-8-882-5037 (P.-J.S.); Fax: + 886-2-2783-1237 (S.S.-F.Y.); +886-7-525-5020 (C.-Y.D.); +886-8-882-5087 (P.-J.S.)
| | - Chang-Yih Duh
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Correspondence: (S.S.-F.Y.); (C.-Y.D.); (P.-J.S.); Tel.: +886-2-5572-8650 (S.S.-F.Y.); +886-7-525-2000 (ext. 5036) (C.-Y.D.); +886-8-882-5037 (P.-J.S.); Fax: + 886-2-2783-1237 (S.S.-F.Y.); +886-7-525-5020 (C.-Y.D.); +886-8-882-5087 (P.-J.S.)
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan; (Y.-Y.C.); (J.-H.S.)
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944401, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404333, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Correspondence: (S.S.-F.Y.); (C.-Y.D.); (P.-J.S.); Tel.: +886-2-5572-8650 (S.S.-F.Y.); +886-7-525-2000 (ext. 5036) (C.-Y.D.); +886-8-882-5037 (P.-J.S.); Fax: + 886-2-2783-1237 (S.S.-F.Y.); +886-7-525-5020 (C.-Y.D.); +886-8-882-5087 (P.-J.S.)
| |
Collapse
|
12
|
Unique Polyhalogenated Peptides from the Marine Sponge Ircinia sp. Mar Drugs 2020; 18:md18080396. [PMID: 32731567 PMCID: PMC7460063 DOI: 10.3390/md18080396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022] Open
Abstract
Two new bromopyrrole peptides, haloirciniamide A (1) and seribunamide A (2), have been isolated from an Indonesian marine sponge of the genus Ircinia collected in the Thousand Islands (Indonesia). The planar structure of both compounds was assigned on the basis of extensive 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configuration of the amino acid residues in 1 and 2 was determined by the application of Marfey’s method. Compound 1 is the first dibromopyrrole cyclopeptide having a chlorohistidine ring, while compound 2 is a rare peptide possessing a tribromopyrrole ring. Both compounds failed to show significant cytotoxicity against four human tumor cell lines, and neither compound was able to inhibit the enzyme topoisomerase I or impair the interaction between programmed cell death protein PD1 and its ligand, PDL1.
Collapse
|
13
|
Li YL, Gao Y, Liu CY, Sun CJ, Zhao ZT, Lou HX. Asperunguisins A-F, Cytotoxic Asperane Sesterterpenoids from the Endolichenic Fungus Aspergillus unguis. JOURNAL OF NATURAL PRODUCTS 2019; 82:1527-1534. [PMID: 31117521 DOI: 10.1021/acs.jnatprod.8b01066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Six new asperane-type sesterterpenoids, asperunguisins A-F (1-6), were isolated from the endolichenic fungus Aspergillus unguis, together with a known analogue, aspergilloxide (7); these are rare asperane-type sesterterpenoids, characterized by a unique hydroxylated 7/6/6/5 tetracyclic system. The structures of asperunguisins A-F (1-6) were elucidated on the basis of spectroscopic methods (NMR and HRESIMS), X-ray single-crystal diffraction analysis, ECD calculations, and biogenetic considerations. Asperunguisin C (3) showed cytotoxicity against the human cancer cell line A549 with an IC50 value of 6.2 μM. Further investigation revealed that the observed cell death was a result of G0/G1 cell cycle arrest via DNA damage followed by cellular apoptosis.
Collapse
Affiliation(s)
- Yue-Lan Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Yun Gao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Chun-Yu Liu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Chun-Jing Sun
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Zun-Tian Zhao
- College of Life Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| |
Collapse
|
14
|
Costa M, Fernández R, Pérez M, Thorsteinsdottir M. Two new spongian diterpene analogues isolated from the marine sponge Acanthodendrilla sp. Nat Prod Res 2018; 34:1053-1060. [DOI: 10.1080/14786419.2018.1548448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Margarida Costa
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Marta Pérez
- PharmaMar S.A, Research & Development Department, Madrid, Spain
| | - Margrét Thorsteinsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
- ArcticMass, Reykjavík, Iceland
| |
Collapse
|
15
|
Trinh TTV, Truong BN, Longeon A, Doan TMH, Deville A, Chau VM, Pham VC, Bourguet-Kondracki ML. New 9α-Hydroxy-5α,6α-epoxyhydroxysterols from the Vietnamese Marine Sponge Ircinia echinata. Mar Drugs 2018; 16:md16110424. [PMID: 30388820 PMCID: PMC6267468 DOI: 10.3390/md16110424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
Chemical investigation of the methanol extract of the Vietnamese marine sponge Ircinia echinata led to the isolation of six new 9α-hydroxy-5α,6α-epoxysterols: 5α,6α-epoxycholesta-7,22(E)-dien-3β,9α-diol (1), 5α,6α-epoxycholesta-7,24(28)-dien-3β,9α-diol (2), (24R)-5α,6α-epoxy-24-ethyl-cholesta-7-en-3β,9α-diol (3), 5α,6α-epoxycholesta-7-en-3β,9α-diol (4), (24S)-5α,6α-epoxyergosta-7,22-dien-3β,9α-diol (5), and (24R)-5α,6α-epoxy-24-methyl-cholesta-7-en-3β,9α-diol (6) along with the known 5α-6α-epoxysterols: 5α,6α-epoxystigmasta-7-en-3β-ol (7), 5α,6α-epoxystigmasta-7,22-dien-3β-ol (8), and 5α,6α-epoxyergosta-7-en-3β-ol (9). Their structures and their configurations were established on the basis of high resolution mass spectra and extensive 1D and 2D NMR spectroscopic data and by comparison with the literature. Their cytotoxic activity, evaluated against three human cancer cell lines, MCF-7, Hep-G2 and LU-1, revealed that only compounds 3 and 4 exhibited significant antiproliferative activity and compound 3 showed a selective inhibition towards the MCF-7 human breast cancer cells.
Collapse
Affiliation(s)
- Thi Thanh Van Trinh
- Advanced Center for Bioorganic Chemistry of the Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay 8424, Hanoi, Vietnam.
| | - Bich Ngan Truong
- Advanced Center for Bioorganic Chemistry of the Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay 8424, Hanoi, Vietnam.
| | - Arlette Longeon
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (CP54), 75005 Paris, France.
| | - Thi Mai Huong Doan
- Advanced Center for Bioorganic Chemistry of the Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay 8424, Hanoi, Vietnam.
| | - Alexandre Deville
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (CP54), 75005 Paris, France.
| | - Van Minh Chau
- Advanced Center for Bioorganic Chemistry of the Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay 8424, Hanoi, Vietnam.
| | - Van Cuong Pham
- Advanced Center for Bioorganic Chemistry of the Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay 8424, Hanoi, Vietnam.
| | - Marie-Lise Bourguet-Kondracki
- Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (CP54), 75005 Paris, France.
| |
Collapse
|
16
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
17
|
Lai KH, Liu YC, Su JH, El-Shazly M, Wu CF, Du YC, Hsu YM, Yang JC, Weng MK, Chou CH, Chen GY, Chen YC, Lu MC. Antileukemic Scalarane Sesterterpenoids and Meroditerpenoid from Carteriospongia (Phyllospongia) sp., Induce Apoptosis via Dual Inhibitory Effects on Topoisomerase II and Hsp90. Sci Rep 2016; 6:36170. [PMID: 27796344 PMCID: PMC5086919 DOI: 10.1038/srep36170] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/07/2016] [Indexed: 01/24/2023] Open
Abstract
Two new scalarane sesterterpenoids, 12β-(3′β-hydroxybutanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-25-al (1) and 12β-(3′β-hydroxypentanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-25-al (2), along with one known tetraprenyltoluquinol-related metabolite (3), were isolated from the sponge Carteriospongia sp. In leukemia Molt 4 cells, 1 at 0.0625 μg/mL (125 nM) triggered mitochondrial membrane potential (MMP) disruption and apoptosis showing more potent effect than 2 and 3. The isolates inhibited topoisomerase IIα expression. The apoptotic-inducing effect of 3 was supported by the in vivo experiment through suppressing the volume of xenograft tumor growth (47.58%) compared with the control. Compound 1 apoptotic mechanism of action in Molt 4 cells was further elucidated through inducing ROS generation, calcium release and ER stress. Using the molecular docking analysis, 1 exhibited more binding affinity to N-terminal ATP-binding pocket of Hsp90 protein than 17-AAG, a standard Hsp90 inhibitor. The expression of Hsp90 client proteins, Akt, p70S6k, NFκB, Raf-1, p-GSK3β, and XIAP, MDM 2 and Rb2, and CDK4 and Cyclin D3, HIF 1 and HSF1 were suppressed by the use of 1. However, the expression of Hsp70, acetylated tubulin, and activated caspase 3 were induced after 1 treatment. Our results suggested that the proapoptotic effect of the isolates is mediated through the inhibition of Hsp90 and topoisomerase activities.
Collapse
Affiliation(s)
- Kuei-Hung Lai
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.,Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jui-Hsin Su
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt
| | - Chih-Fung Wu
- Division of Surgical Oncology, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ying-Chi Du
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Ming Hsu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Juan-Cheng Yang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Kai Weng
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan
| | - Chia-Hua Chou
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan
| | - Guan-Yu Chen
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan
| |
Collapse
|
18
|
New Cytotoxic 24-Homoscalarane Sesterterpenoids from the Sponge Ircinia felix. Int J Mol Sci 2015; 16:21950-8. [PMID: 26378524 PMCID: PMC4613290 DOI: 10.3390/ijms160921950] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 11/28/2022] Open
Abstract
Two new 24-homoscalarane sesterterpenoids, felixins F (1) and G (2), were isolated from the sponge Ircinia felix. The structures of new homoscalaranes 1 and 2 were elucidated by extensive spectroscopic methods, particularly with one-dimensional (1D) and two-dimensional (2D) NMR, and, by comparison, the spectral data with those of known analogues. The cytotoxicity of 1 and 2 against the proliferation of a limited panel of tumor cell lines was evaluated and 1 was found to show cytotoxicity toward the leukemia K562, MOLT-4, and SUP-T1 cells (IC50 ≤ 5.0 μM).
Collapse
|