1
|
Borah B, Sharma S, Chavada SK, Swain S, Chowhan LR. Photochemical domino reaction driven C-H/S-H functionalization of bioactive molecules to access xanthene scaffolds. Org Biomol Chem 2024; 22:8453-8458. [PMID: 39331024 DOI: 10.1039/d4ob01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A visible-light-induced C(sp2)-H functionalization of indoles by using Schreiner's thiourea as the organocatalyst has been reported. With the aid of a three-component domino reaction between 2-hydroxybenzaldehydes, cyclic-1,3-diketones, and a variety of indoles, the corresponding densely functionalized xanthene scaffolds were isolated in good to excellent yields. Apart from these, a broad range of other bioactive natural products including kojic acid, lawsone, and 4-hydroxycoumarin were also investigated instead of indoles for the present work. All the molecules participated in the photochemical reaction smoothly and provided the desired xanthenes in synthetically valuable yields. Therefore, the present energy-efficient catalytic strategy was also very successful in executing challenging carbon-sulfur bond formation reactions, demonstrating the synthetic potentiality of the work. Notably, this air-stable, transition metal-free approach with broad functional group tolerability provides an alternative to conventional methods.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Central University of Gujarat, Sector-30, Gandhinagar-382030, India.
- Royal School of Applied & Pure Sciences, The Assam Royal Global University, Guwahati-781035, Assam, India
| | - Samrita Sharma
- School of Applied Material Sciences, Central University of Gujarat, Sector-30, Gandhinagar-382030, India.
| | - Snehalkumar K Chavada
- School of Applied Material Sciences, Central University of Gujarat, Sector-30, Gandhinagar-382030, India.
| | - Sidharth Swain
- School of Applied Material Sciences, Central University of Gujarat, Sector-30, Gandhinagar-382030, India.
| | - L Raju Chowhan
- School of Applied Material Sciences, Central University of Gujarat, Sector-30, Gandhinagar-382030, India.
- School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India.
| |
Collapse
|
2
|
Borah B, Chowhan LR. Photoredox-Catalyzed Cross-Coupling of In Situ Generated Quinoxalinones with Indoles for the Synthesis of Tertiary Alcohols. J Org Chem 2024; 89:14740-14754. [PMID: 39374938 DOI: 10.1021/acs.joc.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A visible light-driven photoredox-catalyzed direct C(sp2)-H functionalization of N-H free indoles with quinoxalinones generated in situ from 2,2-dihydroxy-1H-indene-1,3(2H)-dione and phenylene-1,2-diamines has been reported with the aid of Na2-Eosin Y as the photocatalyst and the Hünig base as the sacrificial electron and proton donor. The reaction provides easy access to a variety of quaternary-centered C-3 selective indole-substituted tertiary alcohols in good yields. Mechanistic studies demonstrated the realization of photoredox-catalyzed in situ quinoxalinone formation and their proton-coupled single electron reduction to the corresponding ketyl radicals followed by cross-coupling with indoles. The potential applications of the synthesized tertiary alcohols in photoacid-catalyzed carbon-carbon and carbon-sulfur bond-forming reactions feature the key findings of the present work.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
- Department of Chemistry, Royal School of Applied & Pure Sciences, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
- School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| |
Collapse
|
3
|
Hu YG, Battini N, Fang B, Zhou CH. Discovery of indolylacryloyl-derived oxacins as novel potential broad-spectrum antibacterial candidates. Eur J Med Chem 2024; 270:116392. [PMID: 38608408 DOI: 10.1016/j.ejmech.2024.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 μg/mL) and hydroxyethyl IDO 10e (0.25-1 μg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.
Collapse
Affiliation(s)
- Yue-Gao Hu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Chen YL, Xiong LA, Ma LF, Fang L, Zhan ZJ. Natural product-derived ferroptosis mediators. PHYTOCHEMISTRY 2024; 219:114002. [PMID: 38286199 DOI: 10.1016/j.phytochem.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
It has been 11 years since ferroptosis, a new mode of programmed cell death, was first proposed. Natural products are an important source of drug discovery. In the past five years, natural product-derived ferroptosis regulators have been discovered in an endless stream. Herein, 178 natural products discovered so far to trigger or resist ferroptosis are classified into 6 structural classes based on skeleton type, and the mechanisms of action that have been reported are elaborated upon. If pharmacodynamic data are sufficient, the structure and bioactivity relationship is also presented. This review will provide medicinal chemists with some effective ferroptosis regulators, which will promote the research of natural product-based treatment of ferroptosis-related diseases in the future.
Collapse
Affiliation(s)
- Yi-Li Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lin-An Xiong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, PR China.
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
5
|
Tsybulin SV, Kaplanskiy MV, Antonov AS. Transition-Metal-Free Synthesis of 2-Substituted Benzo[cd]Indoles via the Reaction of 1-Halo-8-lithionaphthalenes with Nitriles. Chemistry 2024; 30:e202303768. [PMID: 38197193 DOI: 10.1002/chem.202303768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
A simple and effective organolithium approach to the synthesis of 2-substituted benzo[cd]indoles from peri-dihalonaphthalenes and nitriles has been developed. The reaction proceeds via a surprisingly easy intramolecular aromatic nucleophilic substitution facilitated by the "clothespin effect". The discovered transformation provides good isolated yields, allows usage of an extensive range of nitriles, and demonstrates a good substituents tolerance. UV-absorption and NMR spectra of the obtained benzo[cd]indoles and their protonated forms demonstrated exclusive protonation to the indole nitrogen atom even in the presence of two NMe2 groups in positions 5 and 6 (i. e. "proton sponge" moiety).
Collapse
Affiliation(s)
- Semyon V Tsybulin
- St. Petersburg State University, 198504, St. Petersburg, Russian Federation
| | - Mark V Kaplanskiy
- St. Petersburg State University, 198504, St. Petersburg, Russian Federation
| | - Alexander S Antonov
- Institute of Organic Chemistry, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
6
|
Liu Z, Sun W, Hu Z, Wang W, Zhang H. Marine Streptomyces-Derived Novel Alkaloids Discovered in the Past Decade. Mar Drugs 2024; 22:51. [PMID: 38276653 PMCID: PMC10821133 DOI: 10.3390/md22010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Natural alkaloids originating from actinomycetes and synthetic derivatives have always been among the important suppliers of small-molecule drugs. Among their biological sources, Streptomyces is the highest and most extensively researched genus. Marine-derived Streptomyces strains harbor unconventional metabolic pathways and have been demonstrated to be efficient producers of biologically active alkaloids; more than 60% of these compounds exhibit valuable activity such as antibacterial, antitumor, anti-inflammatory activities. This review comprehensively summarizes novel alkaloids produced by marine Streptomyces discovered in the past decade, focusing on their structural features, biological activity, and pharmacological mechanisms. Future perspectives on the discovery and development of novel alkaloids from marine Streptomyces are also provided.
Collapse
Affiliation(s)
| | | | | | | | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.L.); (W.S.); (Z.H.); (W.W.)
| |
Collapse
|
7
|
Kumar S, Fatma L, Vaishanv NK, Mohanan K. CsF-Mediated Reaction of Trifluorodiazoethane with 3-Nitroindoles Enables Access to Trifluoromethylpyrazolo[4,3- b]indoles. J Org Chem 2024; 89:761-769. [PMID: 38145929 DOI: 10.1021/acs.joc.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
A mild and metal-free strategy for the construction of trifluoromethylated pyrazolo[4,3-b]indoles through the reaction of N-substituted 3-nitroindoles with trifluorodiazoethane is reported. This operationally simple transformation involves a [3 + 2] cycloaddition of trifluorodiazoethane with 3-nitroindole, followed by the elimination of the nitro group to furnish pyrazole-fused indoles. The synthetic utility of this method is further demonstrated by applying it to other heterocycles, such as 3-nitrobenzothiophene and 2-nitrobenzofuran.
Collapse
Affiliation(s)
- Sandeep Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Lubina Fatma
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Narendra Kumar Vaishanv
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Kishor Mohanan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. Oxygen Dependent Switchable Selectivity during Ruthenium Catalyzed Selective Synthesis of C3-Alkylated Indoles and Bis(indolyl)methanes. J Org Chem 2023. [PMID: 38015094 DOI: 10.1021/acs.joc.3c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein, we report a ligand-centered redox-controlled oxygen-dependent switchable selectivity during ruthenium-catalyzed selective synthesis of C3-alkylated indoles and bis(indolyl)methanes (BIMs). A wide variety of C3-alkylated indoles and BIMs were prepared selectively in moderate to good isolated yields by coupling a wide variety of indoles and alcohols, catalyzed by a well-defined, air-stable, and easy-to-prepare Ru(II)-catalyst (1a) bearing a redox-active tridentate pincer (L1a). Catalyst 1a efficiently catalyzed the C3-alkylation of indoles under an argon atmosphere while, under an oxygen environment, exclusively producing the BIMs. A few drug molecules containing BIMs were also synthesized efficiently. 1a exhibited excellent chemoselectivity with alcohols containing internal carbon-carbon double bonds. Mechanistic investigation revealed that the coordinated azo-aromatic ligand actively participates during the catalysis. During the dehydrogenation of alcohols, the azo-moiety of the ligand stores the hydrogen removed from the alcohols and subsequently transfers the hydrogen to the alkylideneindolenine intermediate, forming the C3-alkylated indoles. While under an oxygen environment, the transfer of hydrogen from the ligand scaffold to the molecular oxygen generates H2O2, leaving no scope for hydrogenation of the alkylideneindolenine intermediate, rather than it undergoing 1,4-Michael-type addition forming the BIMs.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
9
|
Madrigal-Trejo D, Sánchez-Pérez J, Espinosa-Asuar L, Valdivia-Anistro JA, Eguiarte LE, Souza V. A Metagenomic Time-Series Approach to Assess the Ecological Stability of Microbial Mats in a Seasonally Fluctuating Environment. MICROBIAL ECOLOGY 2023; 86:2252-2270. [PMID: 37393557 PMCID: PMC10640475 DOI: 10.1007/s00248-023-02231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/23/2023] [Indexed: 07/04/2023]
Abstract
Microbial mats are complex ecological assemblages that have been present in the rock record since the Precambrian and can still be found in extant marginalized environments. These structures are considered highly stable ecosystems. In this study, we evaluate the ecological stability of dome-forming microbial mats in a modern, water-level fluctuating, hypersaline pond located in the Cuatro Ciénegas Basin, Mexico. We conducted metagenomic sampling of the site from 2016 to 2019 and detected 2250 genera of Bacteria and Archaea, with only <20 belonging to the abundant taxa (>1%). The microbial community was dominated by Proteobacteria, Euryarchaeota, Bacteroidetes, Firmicutes, and Cyanobacteria, and was compositionally sensitive to disturbances, leading to high taxonomic replacement even at the phylum level, with a significant increase in Archaea from [Formula: see text]1-4% to [Formula: see text]33% throughout the 2016-2019 study period. Although a core community represented most of the microbial community (>75%), relative abundances shifted significantly between samples, as demonstrated by changes in the abundance of Coleofasciculus from 10.2% in 2017 to 0.05% in 2019. Although functional differences between seasons were subtle, co-occurrence networks suggest differential ecological interactions between the seasons, with the addition of a new module during the rainy season and the potential shift in hub taxa. Functional composition was slightly more similar between samples, but basic processes such as carbohydrate, amino acid, and nucleic acid metabolisms were widely distributed among samples. Major carbon fixation processes included sulfur oxidation, nitrogen fixation, and photosynthesis (both oxygenic and anoxygenic), as well as the Wood-Ljundgahl and Calvin cycles.
Collapse
Affiliation(s)
- David Madrigal-Trejo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Jazmín Sánchez-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Laura Espinosa-Asuar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Jorge A Valdivia-Anistro
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico.
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile.
| |
Collapse
|
10
|
Holland DC, Carroll AR. Marine indole alkaloid diversity and bioactivity. What do we know and what are we missing? Nat Prod Rep 2023; 40:1595-1607. [PMID: 36790012 DOI: 10.1039/d2np00085g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Covering: marine indole alkaloids (n = 2048) and their reported bioactivities up to the end of 2021Despite increasing numbers of marine natural products (MNPs) reported each year, most have only been examined for cytotoxic, antibacterial, and/or antifungal biological activities with the majority found to be inactive in these assays. In this context, why are natural products continuing to be examined in assays they are unlikely to show significant activity in, and what targets might be more useful for expanding knowledge of their biologically relevant chemical space? We have undertaken a meta-analysis of the biological activities for 2048 marine indole alkaloids (MIAs), a diverse sub-class of MNPs reported up to the end of 2021, and this has highlighted that the bioactivity potentials for up to 86% of published MIAs remains underexplored and/or undefined. Although most published MIAs are not cytotoxic or antimicrobial, there is a continued focus on using these assays to evaluate new structurally related analogues. Using cheminformatics analyses, the chemical diversity of the 2048 MIAs were clustered using fragment based fingerprints and their reported bioactivity potency towards specific disease targets was assessed for structure activity trends. These analyses showed that there are groups of MIAs that possess potent and diverse activities and that many analogues, previously tested only in cellular toxicity assays, could be better exploited to generate structure activity relationships associated with leads to treat emerging diseases. A collection of indole drug and drug-lead structures from non-natural sources were also incorporated into the dataset providing complementary bioactivity profiles that were further used to predict underexplored areas of potential new activity and to better direct future testing of MIAs. Our findings clearly suggest the biological evaluation of MIAs continues to be conducted on a narrow range of bioassays and disease targets, and that shifting the focus to non-toxic disease targets should provide expanded knowledge of biologically relevant chemical space aimed at maximising the potential of MIAs for drug discovery.
Collapse
Affiliation(s)
- Darren C Holland
- School of Environment and Science, Griffith University, Gold Coast, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| |
Collapse
|
11
|
Xue F, Yang CJ, Tang T, He Z. Sequential annulation and isomerisation reaction of 3-acylmethylidene oxindoles with Huisgen zwitterions and synthesis of 5-(3-oxindolyl)oxazoles. Org Biomol Chem 2023; 21:8176-8181. [PMID: 37786314 DOI: 10.1039/d3ob01199b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Herein, we report a facile synthesis of 5-(3-oxindolyl)oxazole derivatives via a sequential annulation and isomerisation reaction of 3-acylmethylidene oxindoles with in situ generated Huisgen zwitterions (HZs) from PPh3 and azodicarboxylates. This reaction exhibits good functional group tolerance with 30 examples of structurally diverse products prepared with moderate to good efficiencies (up to 88% yield), thus providing a generally applicable route to the biologically important 5-(3-indolyl)oxazole structural motifs. Key to the success of this sequential one-pot strategy is the utilization of DBU as a base to promote the isomerisation process of the corresponding intermediate annulation products.
Collapse
Affiliation(s)
- Feixue Xue
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| | - Chang-Jiang Yang
- Department of Chemistry, School of Sciences, Great Bay University, Dongguan 523000, China
- The Dongguan Key Laboratory for Data Science and Intelligent Medicine, Dongguan 523000, China.
| | - Tong Tang
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| | - Zhengjie He
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| |
Collapse
|
12
|
Jia J, Wang X, Sang J, Li Z, Lin S, Deng Z, Huang T. An N-N linked dimeric indole alkaloid from the marine sponge-associated rare actinomycetes Kocuria sp. S42. Nat Prod Res 2023; 37:3647-3653. [PMID: 35834673 DOI: 10.1080/14786419.2022.2098496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Marine derived rare actinomycetes is emerging as one of the new sources for various natural products for further drug discovery. Dimeric indole alkaloids represent a group of structurally diverse natural products and N-N linkage is a special dimerization mode. Here, we report the isolation of 1,1'-([1,1'-biindole]-3,3'-diyl) bis (ethane-1,2-diol), a new tryptophan-derived indole alkaloid from the marine sponge-derived Kocuria sp. S42. The structure was established based on extensive spectroscopic analyses, including nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass (HR-ESI-MS) spectrometry. The new dimeric indole alkaloid via N-N linkage exhibits moderate antimicrobial activity.
Collapse
Affiliation(s)
- Jingwei Jia
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Sang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory on Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Islam F, Dehbia Z, Zehravi M, Das R, Sivakumar M, Krishnan K, Billah AAM, Bose B, Ghosh A, Paul S, Nainu F, Ahmad I, Emran TB. Indole alkaloids from marine resources: Understandings from therapeutic point of view to treat cancers. Chem Biol Interact 2023; 383:110682. [PMID: 37648047 DOI: 10.1016/j.cbi.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the leading cause of mortality all over the world. Scientific investigation has demonstrated that disruptions in the process of autophagy are frequently interrelated with the emergence of cancer. Hence, scientists are seeking permanent solutions to counter the deadly disease. Indole alkaloids have been extensively studied and are acknowledged to exhibit several bioactivities. The current state of disease necessitates novel pharmacophores development. In recent decades, indole alkaloids have become increasingly significant in cancer treatment and are also used as adjuvants. A substantial amount of pharmacologically active molecules come from indole alkaloids, which are widely distributed in nature. Indole alkaloids derived from marine organisms show immense potential for therapeutic applications and seem highly effective in cancer treatment. A couple of experiments have been conducted preclinically to investigate the possibility of indole alkaloids in cancer treatment. Marine-derived indole alkaloids possess the ability to exhibit anticancer properties through diverse antiproliferative mechanisms. Certain indole alkaloids, including vincristine and vinblastine, were verified in clinical trials or are presently undergoing clinical assessments for preventing and treating cancer. Indole alkaloids from marine resources hold a significant functionality in identifying new antitumor agents. The current literature highlights recent advancements in indole alkaloids that appear to be anticancer agents and the underlying mechanisms.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of Agro - Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - M Sivakumar
- Department of Pharmacognosy, Faculty of Pharmacy, Sree Balaji Medical College and Hospital BIHER (DU), Chromepet, Chennai, 600044, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, India
| | - Abdul Ajeed Mohathasim Billah
- Department of Pharmacy Practice, Sri Ramachandra Faculty of Pharmacy, SRIHER (DU), Porur, Chennai, Tamil Nadu, India
| | - Bharadhan Bose
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Avoy Ghosh
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
14
|
Bondarev VL, Festa AA, Storozhenko OA, Golantsov NE, Pappula V, Tskhovrebov AG, Varlamov AV, Voskressensky LG. Azo Coupling of Indoles Revisited: Synthesis of Biindolyl Photoswitches via the Azo-Coupling/C-H Functionalization Domino Approach. J Org Chem 2023; 88:12949-12957. [PMID: 37624664 DOI: 10.1021/acs.joc.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
When azo coupling of aryldiazonium salts with indoles was carried out in aprotic nonpolar solvent on air, a pseudo-three-component reaction has been discovered. Azo coupling is followed by a nucleophilic addition of a second indole unit to the indolium intermediate; aromatization and oxidation are achieved under air.
Collapse
Affiliation(s)
- Vladimir L Bondarev
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Olga A Storozhenko
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Nikita E Golantsov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Venkatanarayana Pappula
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexander G Tskhovrebov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| |
Collapse
|
15
|
Sharma S, Monga Y, Gupta A, Singh S. 2-Oxindole and related heterocycles: synthetic methodologies for their natural products and related derivatives. RSC Adv 2023; 13:14249-14267. [PMID: 37179999 PMCID: PMC10173257 DOI: 10.1039/d3ra02217j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Natural goods, medications, and pharmaceutically active substances all contain substituted oxindoles. Generally, the C-3 stereocenter of the substituents of oxindoles and their absolute arrangement have a substantial impact on the bioactivity of these substances. In this case, the desire for contemporary probe and drug-discovery programs for the synthesis of chiral compounds using desirable scaffolds with high structural diversity further drives research in this field. Also, the new synthetic techniques are generally simple to apply for the synthesis of other similar scaffolds. Herein, we review the distinct approaches for the synthesis of diverse useful oxindole scaffolds. Specifically, the research findings on the naturally existing 2-oxindole core and a variety of synthetic compounds having a 2-oxindole core are discussed. We present an overview of the construction of oxindole-based synthetic and natural products. In addition, the chemical reactivity of 2-oxindole and its related derivatives in the presence of chiral and achiral catalysts are thoroughly discussed. The data compiled herein provides broad information related to the bioactive product design, development, and applications of 2-oxindoles and the reported techniques will be helpful for the investigation of novel reactions in the future.
Collapse
Affiliation(s)
- Shivangi Sharma
- Department of Applied Chemistry, Amity School of Engineering and Technology, Amity University Madhya Pradesh Gwalior Madhya Pradesh-474 005 India
| | - Yukti Monga
- Shyamlal College, Department of Chemistry, University of Delhi Delhi-110032 India
| | - Ashu Gupta
- Shyamlal College, Department of Chemistry, University of Delhi Delhi-110032 India
| | - Shivendra Singh
- Department of Applied Chemistry, Amity School of Engineering and Technology, Amity University Madhya Pradesh Gwalior Madhya Pradesh-474 005 India
| |
Collapse
|
16
|
Wang C, Wang S, Li H, Hou Y, Cao H, Hua H, Li D. Marine-Derived Lead Fascaplysin: Pharmacological Activity, Total Synthesis, and Structural Modification. Mar Drugs 2023; 21:md21040226. [PMID: 37103365 PMCID: PMC10142289 DOI: 10.3390/md21040226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Fascaplysin is a planar structure pentacyclic alkaloid isolated from sponges, which can effectively induce the apoptosis of cancer cells. In addition, fascaplysin has diverse biological activities, such as antibacterial, anti-tumor, anti-plasmodium, etc. Unfortunately, the planar structure of fascaplysin can be inserted into DNA and such interaction also limits the further application of fascaplysin, necessitating its structural modification. In this review, the biological activity, total synthesis and structural modification of fascaplysin will be summarized, which will provide useful information for pharmaceutical researchers interested in the exploration of marine alkaloids and for the betterment of fascaplysin in particular.
Collapse
|
17
|
Ang D, Kendall R, Atamian HS. Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (M pro). BIOLOGY 2023; 12:biology12040519. [PMID: 37106720 PMCID: PMC10135783 DOI: 10.3390/biology12040519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
The rapid spread of the coronavirus disease 2019 (COVID-19) resulted in serious health, social, and economic consequences. While the development of effective vaccines substantially reduced the severity of symptoms and the associated deaths, we still urgently need effective drugs to further reduce the number of casualties associated with SARS-CoV-2 infections. Machine learning methods both improved and sped up all the different stages of the drug discovery processes by performing complex analyses with enormous datasets. Natural products (NPs) have been used for treating diseases and infections for thousands of years and represent a valuable resource for drug discovery when combined with the current computation advancements. Here, a dataset of 406,747 unique NPs was screened against the SARS-CoV-2 main protease (Mpro) crystal structure (6lu7) using a combination of ligand- and structural-based virtual screening. Based on 1) the predicted binding affinities of the NPs to the Mpro, 2) the types and number of interactions with the Mpro amino acids that are critical for its function, and 3) the desirable pharmacokinetic properties of the NPs, we identified the top 20 candidates that could potentially inhibit the Mpro protease function. A total of 7 of the 20 top candidates were subjected to in vitro protease inhibition assay and 4 of them (4/7; 57%), including two beta carbolines, one N-alkyl indole, and one Benzoic acid ester, had significant inhibitory activity against Mpro protease. These four NPs could be developed further for the treatment of COVID-19 symptoms.
Collapse
Affiliation(s)
- Dony Ang
- Computational and Data Sciences Program, Chapman University, Orange, CA 92866, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Riley Kendall
- Computational and Data Sciences Program, Chapman University, Orange, CA 92866, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Hagop S Atamian
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Biological Sciences Program, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
18
|
Di X, Hardardottir I, Freysdottir J, Wang D, Gustafson KR, Omarsdottir S, Molinski TF. Geobarrettin D, a Rare Herbipoline-Containing 6-Bromoindole Alkaloid from Geodia barretti. Molecules 2023; 28:molecules28072937. [PMID: 37049700 PMCID: PMC10095911 DOI: 10.3390/molecules28072937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
Geobarrettin D (1), a new bromoindole alkaloid, was isolated from the marine sponge Geodia barretti collected from Icelandic waters. Its structure was elucidated by 1D, and 2D NMR (including 1H-15N HSQC, 1H-15N HMBC spectra), as well as HRESIMS data. Geobarrettin D (1) is a new 6-bromoindole featuring an unusual purinium herbipoline moiety. Geobarrettin D (1) decreased secretion of the pro-inflammatory cytokine IL-12p40 by human monocyte derived dendritic cells, without affecting secretion of the anti-inflammatory cytokine IL-10. Thus, compound 1 shows anti-inflammatory activity.
Collapse
|
19
|
Murai Y, Hashimoto M. Heteroaromatic Diazirines Are Essential Building Blocks for Material and Medicinal Chemistry. Molecules 2023; 28:molecules28031408. [PMID: 36771073 PMCID: PMC9921084 DOI: 10.3390/molecules28031408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In materials (polymer) science and medicinal chemistry, heteroaromatic derivatives play the role of the central skeleton in development of novel devices and discovery of new drugs. On the other hand, (3-trifluoromethyl)phenyldiazirine (TPD) is a crucial chemical method for understanding biological processes such as ligand-receptor, nucleic acid-protein, lipid-protein, and protein-protein interactions. In particular, use of TPD has increased in recent materials science to create novel electric and polymer devices with comparative ease and reduced costs. Therefore, a combination of heteroaromatics and (3-trifluoromethyl)diazirine is a promising option for creating better materials and elucidating the unknown mechanisms of action of bioactive heteroaromatic compounds. In this review, a comprehensive synthesis of (3-trifluoromethyl)diazirine-substituted heteroaromatics is described.
Collapse
Affiliation(s)
- Yuta Murai
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
- Correspondence: (Y.M.); (M.H.); Tel.: +81-11-706-9030 (Y.M.); +81-11-706-3849 (M.H.)
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Correspondence: (Y.M.); (M.H.); Tel.: +81-11-706-9030 (Y.M.); +81-11-706-3849 (M.H.)
| |
Collapse
|
20
|
Tang T, Wang Q, Cao S, Yang CJ, He Z. Cascade Ring-Opening/Cyclization Reaction of Spiro(nitrocyclopropane)oxindoles with Huisgen Zwitterions and Synthesis of Pyrazolo[3,4- b]indoles. J Org Chem 2022; 87:16707-16721. [PMID: 36473167 DOI: 10.1021/acs.joc.2c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report a ring-opening/cyclization cascade reaction of spiro(nitrocyclopropane)oxindoles with in situ generated Huisgen zwitterions (HZs) from PPh3 and azodicarboxylates. This reaction provides an array of polyfunctionalized pyrazolo[3,4-b]indole derivatives in moderate-to-excellent yields and generally high stereoselectivities with a broad substrate scope. The annulation products obtained from di-tert-butyl azodicarboxylates can be readily transformed into aromatic-substituted pyrazolo[3,4-b]indoles in moderate yields upon treatment with trifluoroacetic acid, thus providing a new entry to this fused heterocycle skeleton. In terms of nitro-substituted donor-acceptor cyclopropane, this work significantly broadens the substrate scope for the annulation reaction of nitrocyclopropanes and HZs. The dual roles of the oxindole moiety in the ring opening of cyclopropane and a plausible mechanism for the cascade reaction are also discussed.
Collapse
Affiliation(s)
- Tong Tang
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qianqian Wang
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shixuan Cao
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | | | - Zhengjie He
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
21
|
Gatsios A, Kim CS, York AG, Flavell RA, Crawford JM. Cellular Stress-Induced Metabolites in Escherichia coli. JOURNAL OF NATURAL PRODUCTS 2022; 85:2626-2640. [PMID: 36346625 PMCID: PMC9949963 DOI: 10.1021/acs.jnatprod.2c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Escherichia coli isolates commonly inhabit the human microbiota, yet the majority of E. coli's small-molecule repertoire remains uncharacterized. We previously employed erythromycin-induced translational stress to facilitate the characterization of autoinducer-3 (AI-3) and structurally related pyrazinones derived from "abortive" tRNA synthetase reactions in pathogenic, commensal, and probiotic E. coli isolates. In this study, we explored the "missing" tryptophan-derived pyrazinone reaction and characterized two other families of metabolites that were similarly upregulated under erythromycin stress. Strikingly, the abortive tryptophanyl-tRNA synthetase reaction leads to a tetracyclic indole alkaloid metabolite (1) rather than a pyrazinone. Furthermore, erythromycin induced two naphthoquinone-functionalized metabolites (MK-hCys, 2; and MK-Cys, 3) and four lumazines (7-10). Using genetic and metabolite analyses coupled with biomimetic synthesis, we provide support that the naphthoquinones are derived from 4-dihydroxy-2-naphthoic acid (DHNA), an intermediate in the menaquinone biosynthetic pathway, and the amino acids homocysteine and cysteine. In contrast, the lumazines are dependent on a flavin intermediate and α-ketoacids from the aminotransferases AspC and TyrB. We show that one of the lumazine members (9), an indole-functionalized analogue, possesses antioxidant properties, modulates the anti-inflammatory fate of isolated TH17 cells, and serves as an aryl-hydrocarbon receptor (AhR) agonist. These three systems described here serve to illustrate that new metabolic branches could be more commonly derived from well-established primary metabolic pathways.
Collapse
Affiliation(s)
- Alexandra Gatsios
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut 06516, United States
| | - Chung Sub Kim
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut 06516, United States
- School of Pharmacy and Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Autumn G. York
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Weber L, Soule MK, Longnecker K, Becker CC, Huntley N, Kujawinski EB, Apprill A. Benthic exometabolites and their ecological significance on threatened Caribbean coral reefs. ISME COMMUNICATIONS 2022; 2:101. [PMID: 37938276 PMCID: PMC9723752 DOI: 10.1038/s43705-022-00184-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 09/02/2023]
Abstract
Benthic organisms are the architectural framework supporting coral reef ecosystems, but their community composition has recently shifted on many reefs. Little is known about the metabolites released from these benthic organisms and how compositional shifts may influence other reef life, including prolific microorganisms. To investigate the metabolite composition of benthic exudates and their ecological significance for reef microbial communities, we harvested exudates from six species of Caribbean benthic organisms including stony corals, octocorals, and an invasive encrusting alga, and subjected these exudates to untargeted and targeted metabolomics approaches using liquid chromatography-mass spectrometry. Incubations with reef seawater microorganisms were conducted to monitor changes in microbial abundances and community composition using 16 S rRNA gene sequencing in relation to exudate source and three specific metabolites. Exudates were enriched in amino acids, nucleosides, vitamins, and indole-based metabolites, showing that benthic organisms contribute labile organic matter to reefs. Furthermore, exudate compositions were species-specific, and riboflavin and pantothenic acid emerged as significant coral-produced metabolites, while caffeine emerged as a significant invasive algal-produced metabolite. Microbial abundances and individual microbial taxa responded differently to exudates from stony corals and octocorals, demonstrating that exudate mixtures released from different coral species select for specific bacteria. In contrast, microbial communities did not respond to individual additions of riboflavin, pantothenic acid, or caffeine. This work indicates that recent shifts in benthic organisms alter exudate composition and likely impact microbial communities on coral reefs.
Collapse
Affiliation(s)
- Laura Weber
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| | - Melissa Kido Soule
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Krista Longnecker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Cynthia C Becker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA
| | - Naomi Huntley
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Marine and Environmental Science Department, University of the Virgin Islands, Charlotte Amalie West, St Thomas, Charlotte Amalie, VI, 00802, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Elizabeth B Kujawinski
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| |
Collapse
|
23
|
Jiang H, Li K, Zeng M, Tan C, Chen Z, Yin G. Pd(II)/Lewis Acid Catalyzed Intramolecular Annulation of Indolecarboxamides with Dioxygen through Dual C-H Activation. J Org Chem 2022; 87:13919-13934. [PMID: 36205496 DOI: 10.1021/acs.joc.2c01613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal ion catalyzed intramolecular dual C-H activation to construct polycyclic heteroarene skeletons is merited for its step and atom-economic advantages in organic synthesis. However, in most cases, stoichiometric oxidants, elevated temperature, and other harsh conditions were commonly faced for this reaction, which apparently block the synthetic applications. Herein, we report a Pd(II)/LA (LA: Lewis acid) catalyzed intramolecular dual C-H activation to construct indoloquinolinone derivatives under mild conditions with dioxygen as the sole oxidant. It was found that adding LA such as Sc3+ to Pd(OAc)2 sharply improved its catalytic efficiency, whereas Pd(OAc)2 alone was very sluggish. The activity improvement was attributed to the linkage of the Sc3+ cation to the Pd(II) species through a diacetate bridge that significantly enhanced the electrophilic properties of Pd(II) for dual C-H activation.
Collapse
Affiliation(s)
- Hongwu Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kaiwen Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Miao Zeng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chen Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
24
|
Xu Q, Zhao N, Liu J, Song JQ, Huang LH, Wang H, Li XW, Pang T, Guo YW. Design, synthesis and in vitro biological evaluation of marine phidianidine derivatives as potential anti-inflammatory agents. Bioorg Med Chem 2022; 71:116936. [DOI: 10.1016/j.bmc.2022.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
|
25
|
Yi L, He YT, Tan S, White LV, Lan P, Gardiner MG, Pei Z, Coote ML, Banwell MG. Total Syntheses of the Structures Assigned to the Marine Natural Products Orthoscuticellines A-E. J Org Chem 2022; 87:12287-12296. [PMID: 36036791 DOI: 10.1021/acs.joc.2c01477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The readily prepared and vinylated β-carboline 11 has been converted over one or two steps into compounds 1-5, the structures assigned to the recently reported marine natural products orthoscuticellines A-E. The spectral data recorded on the synthetically derived compounds are fully consistent with the assigned structures and, on making allowances for variations in the pH of the medium in which the spectra of the natural products were recorded, it is concluded that the structures assigned to orthoscuticellines A-E are most likely correct. Certainly, the calculated 13C NMR spectra of the α-, γ-, and δ-carboline isomers of compounds 1-5 suggest that orthoscuticellines A-E do incorporate the assigned β-carboline core.
Collapse
Affiliation(s)
- Liangguang Yi
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yu-Tao He
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shen Tan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Michael G Gardiner
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Zhipeng Pei
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Michelle L Coote
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Martin G Banwell
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.,Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
26
|
Tang C, Wang W, Luo G, Song C, Bao Z, Li P, Hao G, Chi YR, Jin Z. Carbene‐Catalyzed Activation of C−Si Bonds for Chemo‐ and Enantioselective Cross Brook–Benzoin Reaction. Angew Chem Int Ed Engl 2022; 61:e202206961. [DOI: 10.1002/anie.202206961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Chenghao Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
- School of Life and Health Science Kaili University Kaili 556011 China
| | - Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Guoyong Luo
- School of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Chaoyang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Zhaowei Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Pei Li
- School of Life and Health Science Kaili University Kaili 556011 China
| | - Gefei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| |
Collapse
|
27
|
Aspergillines K and L, Two New Anti-TMV Indole Alkaloids from Fungus Aspergillus versicolor Derived from Tobacco. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03774-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Wang YH, Zhang YQ, Zhou CF, Jiang YQ, Xu Y, Zeng X, Liu GQ. Iodine pentoxide-mediated oxidative selenation and seleno/thiocyanation of electron-rich arenes. Org Biomol Chem 2022; 20:5463-5469. [PMID: 35772180 DOI: 10.1039/d2ob00892k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple and efficient method for the regioselective selenation of electron-rich arenes by employing non-metal inorganic iodine pentoxide (I2O5) as a reaction promoter under ambient conditions has been developed. The present protocol showed broad functional group tolerance and easy-to-operate and time-economical features. Additionally, this protocol also allows access to 3-seleno and 3-thiocyanoindoles by the use of readily available selenocyanate and thiocyanate salts. A mechanistic study indicated that the transformation operated through selenenyl iodide-induced electrophilic substitution processes.
Collapse
Affiliation(s)
- Yong-Hao Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Yun-Qian Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Chen-Fan Zhou
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - You-Qin Jiang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Yue Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Xiaobao Zeng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Gong-Qing Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| |
Collapse
|
29
|
Tang C, Wang W, Luo G, Song C, Bao Z, Li P, Hao G, Chi YR, Jin Z. Carbene‐Catalyzed Activation of C‐Si Bonds for Chemo‐ and Enantioselective Cross Brook‐Benzoin Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Wei Wang
- Guizhou University Chemistry CHINA
| | - Guoyong Luo
- Guizhou University Of Traditional Chinese Medicine Chemistry CHINA
| | | | | | - Pei Li
- Kaili University Chemistry CHINA
| | | | - Yonggui Robin Chi
- Nanyang Technological University Division of Chemistry and Biological Chemistry SINGAPORE
| | - Zhichao Jin
- Guizhou University Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Huaxi District 550025 Guiyang CHINA
| |
Collapse
|
30
|
Moriyama K, Oka Y. Enantioselective Cascade Michael/Hemiaminal Formation of α,β-Unsaturated Iminoindoles with Aldehydes Using a Chiral Aminomethylpyrrolidine Catalyst Bearing a SO 2C 6F 5 Group as a Strongly Electron Withdrawing Arylsulfonyl Group. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yukari Oka
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
31
|
Nurhayati APD, Rihandoko A, Fadlan A, Ghaissani SS, Jadid N, Setiawan E. Anti-cancer potency by induced apoptosis by molecular docking P53, caspase, cyclin D1, cytotoxicity analysis and phagocytosis activity of trisindoline 1,3 and 4. Saudi Pharm J 2022; 30:1345-1359. [PMID: 36249936 PMCID: PMC9563049 DOI: 10.1016/j.jsps.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/17/2022] [Indexed: 11/27/2022] Open
|
32
|
Yang GY, Dai JM, Mi QL, Li ZJ, Li XM, Zhang JD, Wang J, Li YK, Wang WG, Zhou M, Hu QF. Cyclopiazonic acid type indole alkaloids from Nicotiana tabacum-derived fungus Aspergillus versicolor and their anti-tobacco mosaic virus activities. PHYTOCHEMISTRY 2022; 198:113137. [PMID: 35240133 DOI: 10.1016/j.phytochem.2022.113137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Indole alkaloids have attracted widespread attention of chemists and biologists. Therefore, the aim of this study is to screen more bioactivities indole alkaloids from the microorganisms. In this study, five undescribed CPA-type indole alkaloids, aspergillines F-J, and three known CPA-type indole alkaloids, aspergilline A, aspergilline C, and cyclopiamide E, were obtained from the Nicotiana tabacum-derived fungus Aspergillus versicolor. Notably, aspergillines F and G represent the first examples of indole alkaloids with a benzo[cd]indol-2(1H)-one skeleton, and aspergilline J is also the firstly obtained indole alkaloids bearing a N-1-(2-(1H-imidazole-5-yl)ethyl) moiety. Aspergillines F-J and cyclopiamide E were tested for their anti-TMV activities, and the results revealed that aspergillines G and J exhibited obvious anti-TMV activities with inhibition rates of 41.2 and 56.8% at the concentration of 20 μM, respectively. These rates are high than that of positive control (with inhibition rate of 32.5%). In addition, the molecular docking studies for the isolated CPA-type indole alkaloids may also reveal that the benzo[cd]indol-2(1H)-one substructure is the fundamental for anti-TMV activity and the oxygen-containing substituent groups at C-19 also increases the inhibitory activity. This study of structure-activity relationship is helpful to find new anti-TMV activity inhibitors.
Collapse
Affiliation(s)
- Guang-Yu Yang
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China
| | - Jia-Meng Dai
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Qi-Li Mi
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Zhen-Jie Li
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Xue-Mei Li
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Jian-Duo Zhang
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Jin Wang
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Yin-Ke Li
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China
| | - Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China
| | - Min Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China.
| | - Qiu-Fen Hu
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China.
| |
Collapse
|
33
|
Tian Y, Li Y. A Review on Bioactive Compounds from Marine-Derived Chaetomium Species. J Microbiol Biotechnol 2022; 32:541-550. [PMID: 35586928 PMCID: PMC9628867 DOI: 10.4014/jmb.2201.01007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Filamentous marine fungi have proven to be a plentiful source of new natural products. Chaetomium, a widely distributed fungal genus in the marine environment, has gained much interest within the scientific community. In the last 20 years, many potential secondary metabolites have been detected from marine-derived Chaetomium. In this review, we attempt to provide a comprehensive summary of the natural products produced by marine-derived Chaetomium species. A total of 122 secondary metabolites that were described from 2001 to 2021 are covered. The structural diversity of the compounds, along with details of the sources and relevant biological properties are also provided, while the relationships between structures and their bioactivities are discussed. It is our expectation that this review will be of benefit to drug development and innovation.
Collapse
Affiliation(s)
- Yuan Tian
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P.R. China,Corresponding authors Yuan Tian E-mail:
| | - Yanling Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P.R. China,
Yanling Li E-mail:
| |
Collapse
|
34
|
Sahu S, Banerjee A, Kundu S, Bhattacharyya A, Maji MS. Synthesis of functionalized indoles via cascade benzannulation strategies: a decade's overview. Org Biomol Chem 2022; 20:3029-3042. [PMID: 35332905 DOI: 10.1039/d2ob00187j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indoles are one of the most prominent aromatic heterocycles in the organic chemistry field. Due to their widespread presence in various natural products, alkaloids, drugs, approved medicines, etc. the synthesis and functionalization of indoles are of great interest. This review emphasizes recent developments and techniques in the domino cascade cyclization process in the last decade starting from the various building blocks. In particular, this review depicts several intriguing benzannulation methods of creating a benzene ring on a pre-existing pyrrole nucleus in an inter/intramolecular fashion under metal-catalyzed/metal-free approaches. Different subsections focus on gradual timely developments in this complementary area and a detailed analysis of the mechanisms and reactivity patterns. As a complementary method, this review gives a significant incentive to various annulation strategies and also gives an overview of the remaining challenges and upcoming possibilities.
Collapse
Affiliation(s)
- Samrat Sahu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Arya Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| |
Collapse
|
35
|
Newaz AW, Yong K, Lian XY, Zhang Z. Streptoindoles A–D, novel antimicrobial indole alkaloids from the marine-associated actinomycete Streptomyces sp. ZZ1118. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
De Rop AS, Rombaut J, Willems T, De Graeve M, Vanhaecke L, Hulpiau P, De Maeseneire SL, De Mol ML, Soetaert WK. Novel Alkaloids from Marine Actinobacteria: Discovery and Characterization. Mar Drugs 2021; 20:md20010006. [PMID: 35049861 PMCID: PMC8777666 DOI: 10.3390/md20010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023] Open
Abstract
The marine environment is an excellent resource for natural products with therapeutic potential. Its microbial inhabitants, often associated with other marine organisms, are specialized in the synthesis of bioactive secondary metabolites. Similar to their terrestrial counterparts, marine Actinobacteria are a prevalent source of these natural products. Here, we discuss 77 newly discovered alkaloids produced by such marine Actinobacteria between 2017 and mid-2021, as well as the strategies employed in their elucidation. While 12 different classes of alkaloids were unraveled, indoles, diketopiperazines, glutarimides, indolizidines, and pyrroles were most dominant. Discoveries were mainly based on experimental approaches where microbial extracts were analyzed in relation to novel compounds. Although such experimental procedures have proven useful in the past, the methodologies need adaptations to limit the chance of compound rediscovery. On the other hand, genome mining provides a different angle for natural product discovery. While the technology is still relatively young compared to experimental screening, significant improvement has been made in recent years. Together with synthetic biology tools, both genome mining and extract screening provide excellent opportunities for continued drug discovery from marine Actinobacteria.
Collapse
Affiliation(s)
- Anne-Sofie De Rop
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Jeltien Rombaut
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Thomas Willems
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Marilyn De Graeve
- Laboratory of Chemical Analysis (LCA), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.G.); (L.V.)
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis (LCA), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.G.); (L.V.)
| | - Paco Hulpiau
- BioInformatics Knowledge Center (BiKC), Campus Station Brugge, Howest University of Applied Sciences, Rijselstraat 5, 8200 Bruges, Belgium;
| | - Sofie L. De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
- Correspondence:
| | - Maarten L. De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Wim K. Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| |
Collapse
|
37
|
Marine-Derived Indole Alkaloids and Their Biological and Pharmacological Activities. Mar Drugs 2021; 20:md20010003. [PMID: 35049859 PMCID: PMC8781670 DOI: 10.3390/md20010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
Novel secondary metabolites from marine macroorganisms and marine-derived microorganisms have been intensively investigated in the last few decades. Several classes of compounds, especially indole alkaloids, have been a target for evaluating biological and pharmacological activities. As one of the most promising classes of compounds, indole alkaloids possess not only intriguing structural features but also a wide range of biological/pharmacological activities including antimicrobial, anti-inflammatory, anticancer, antidiabetic, and antiparasitic activities. This review reports the indole alkaloids isolated during the period of 2016–2021 and their relevant biological/pharmacological activities. The marine-derived indole alkaloids reported from 2016 to 2021 were collected from various scientific databases. A total of 186 indole alkaloids from various marine organisms including fungi, bacteria, sponges, bryozoans, mangroves, and algae, are described. Despite the described bioactivities, further evaluation including their mechanisms of action and biological targets is needed to determine which of these indole alkaloids are worth studying to obtain lead compounds for the development of new drugs.
Collapse
|
38
|
Lu Q, Xu L, Liu L, Zhou Y, Liu T, Song Y, Ju J, Yang Q. Lynamicin B is a Potential Pesticide by Acting as a Lepidoptera-Exclusive Chitinase Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14086-14091. [PMID: 34797675 DOI: 10.1021/acs.jafc.1c05385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect group h chitinase is a promising target for designing non-target safe pesticides in that it is exclusively distributed in lepidopteran insects, over 80% of which are agricultural pests. In this work, lynamicin B was discovered to be an inhibitor of OfChi-h, the group h chitinase from the lepidopteran pest Ostrinia furnacalis. Lynamicin B was revealed to competitively inhibit OfChi-h with a Ki value of 8.76 μM and does not significantly inhibit other chitinases. The co-crystal structure of lynamicin B and OfChi-h revealed that the dichloroindolyl group of lynamicin B occupies an unexplored pocket below subsites +1 and +2 of the substrate-binding cleft, which is vital for its selectivity. Feeding experiments demonstrated that lynamicin B exhibited high insecticidal activities against other lepidopteran pests Mythimna separata and Spodoptera frugiperda besides O. furnacalis. Moreover, lynamicin B did not affect Trichogramma ostriniae, a natural enemy of O. furnacalis. This study provides a natural-derived potent pesticide for the control of lepidopteran pests, leaving its natural enemy unaffected.
Collapse
Affiliation(s)
- Qiong Lu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Liping Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Academy of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhou
- School of Software, Dalian University of Technology, Dalian 116024, China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
39
|
Hu Y, Chen S, Yang F, Dong S. Marine Indole Alkaloids-Isolation, Structure and Bioactivities. Mar Drugs 2021; 19:658. [PMID: 34940657 PMCID: PMC8708922 DOI: 10.3390/md19120658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Indole alkaloids are heterocyclic natural products with extensive pharmacological activities. As an important source of lead compounds, many clinical drugs have been derived from natural indole compounds. Marine indole alkaloids, from unique marine environments with high pressure, high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts the attention of drug researchers. This article is a continuation of the previous two comprehensive reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with 472 new or structure-revised compounds categorized by sources into marine microorganisms, invertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way to clinical drugs.
Collapse
Affiliation(s)
| | | | | | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Y.H.); (S.C.); (F.Y.)
| |
Collapse
|
40
|
Mohamed GA, Ibrahim SRM. Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Mar Drugs 2021; 19:645. [PMID: 34822516 PMCID: PMC8622643 DOI: 10.3390/md19110645] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
The marine environment is an underexplored treasure that hosts huge biodiversity of microorganisms. Marine-derived fungi are a rich source of novel metabolites with unique structural features, bioactivities, and biotechnological applications. Marine-associated Cladosporium species have attracted considerable interest because of their ability to produce a wide array of metabolites, including alkaloids, macrolides, diketopiperazines, pyrones, tetralones, sterols, phenolics, terpenes, lactones, and tetramic acid derivatives that possess versatile bioactivities. Moreover, they produce diverse enzymes with biotechnological and industrial relevance. This review gives an overview on the Cladosporium species derived from marine habitats, including their metabolites and bioactivities, as well as the industrial and biotechnological potential of these species. In the current review, 286 compounds have been listed based on the reported data from 1998 until July 2021. Moreover, more than 175 references have been cited.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
41
|
Mathada BS, Yernale NG, Basha JN, Badiger J. An insight into the advanced synthetic recipes to access ubiquitous indole heterocycles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Maeyama Y, Nakashima Y, Kato H, Hitora Y, Maki K, Inada N, Murakami S, Inazumi T, Ise Y, Sugimoto Y, Ishikawa H, Tsukamoto S. Amakusamine from a Psammocinia sp. Sponge: Isolation, Synthesis, and SAR Study on the Inhibition of RANKL-Induced Formation of Multinuclear Osteoclasts. JOURNAL OF NATURAL PRODUCTS 2021; 84:2738-2743. [PMID: 34612636 DOI: 10.1021/acs.jnatprod.1c00758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A simple methylenedioxy dibromoindole alkaloid, amakusamine (1), was isolated from a marine sponge of the genus Psammocinia, and its structure was determined from spectroscopic data, time-dependent density-functional theory calculations, and synthesis. Compound 1 inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced formation of multinuclear osteoclasts with an IC50 value of 10.5 μM in RAW264 cells. The structure-activity relationship of 1 was also investigated with synthetic derivatives.
Collapse
Affiliation(s)
- Yuka Maeyama
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuta Nakashima
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hikaru Kato
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuki Hitora
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Kazuhiko Maki
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Natsumi Inada
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shunya Murakami
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuji Ise
- Sesoko Station, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Sachiko Tsukamoto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
43
|
Sar S, Das R, Barman D, Latua P, Guha S, Gremaud L, Sen S. A sustainable C-H functionalization of indoles, pyrroles and furans under a blue LED with iodonium ylides. Org Biomol Chem 2021; 19:7627-7632. [PMID: 34524326 DOI: 10.1039/d1ob01219c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrrole and indole derivatives are functionalized via a green initiative with the dimethyl malonate derived phenyl iodonium ylide 4a in the presence of a blue LED via C-H functionalization of the respective heterocycles in methanol to generate the desired compounds 5-7 in moderate to good yields. Control experiments provide insight into the probable reaction mechanism. Finally, the strategy is successfully applied in the generation of azepino[4,5-b]indole 12a/b.
Collapse
Affiliation(s)
- Saibal Sar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | - Ranajit Das
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | - Dhiraj Barman
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | - Pikaso Latua
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | - Souvik Guha
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | - Ludovic Gremaud
- School of Engineering and Architecture, Institute of Chemical Technology at University of Applied Sciences and Arts of Western Switzerland, CH-1700 Fribourg, Switzerland
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India.
| |
Collapse
|
44
|
Seipp K, Geske L, Opatz T. Marine Pyrrole Alkaloids. Mar Drugs 2021; 19:514. [PMID: 34564176 PMCID: PMC8471394 DOI: 10.3390/md19090514] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be found as natural products in the marine environment. This review highlights the important class of marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses categorized, this review shall provide a clear and timely synopsis of this area.
Collapse
Affiliation(s)
| | | | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10–14, 55128 Mainz, Germany; (K.S.); (L.G.)
| |
Collapse
|
45
|
Argade NP, Shelar SV. Wittig Reactions of Maleimide-Derived Stabilized Ylides with Alkyl Pyruvates: Concise Approach to Methyl Ester of (±)-Chaetogline A. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1477-6043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA facile synthesis of methyl ester of chaetogline A is reported starting from the corresponding methyl 1-methyltryptophanate-derived maleimide. A stereoselective Wittig olefination with a carbonyl function in methyl pyruvate followed by phosphorous pentoxide-induced regioselective dehydrative cyclization are the essential reactions. An acid-induced thermodynamically driven stereoselective β- to α-position migration of the exocyclic C=C bond unit in ethyl tetrahydroindolizinoindolylidenepropanoate is described.
Collapse
Affiliation(s)
- Narshinha P. Argade
- Division of Organic Chemistry, National Chemical Laboratory (CSIR)
- Academy of Scientific and Innovative Research (AcSIR)
| | - Santosh V. Shelar
- Division of Organic Chemistry, National Chemical Laboratory (CSIR)
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
46
|
Radwan MA, Al Rugaie O, Al Abdulmonem W, Alfaifi MY, Elbehairi SEI. Synthesis and cytotoxic activity of new indolylpyrrole derivatives. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
47
|
Munekata PES, Pateiro M, Conte-Junior CA, Domínguez R, Nawaz A, Walayat N, Movilla Fierro E, Lorenzo JM. Marine Alkaloids: Compounds with In Vivo Activity and Chemical Synthesis. Mar Drugs 2021; 19:374. [PMID: 34203532 PMCID: PMC8306672 DOI: 10.3390/md19070374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Marine alkaloids comprise a class of compounds with several nitrogenated structures that can be explored as potential natural bioactive compounds. The scientific interest in these compounds has been increasing in the last decades, and many studies have been published elucidating their chemical structure and biological effects in vitro. Following this trend, the number of in vivo studies reporting the health-related properties of marine alkaloids has been increasing and providing more information about the effects in complex organisms. Experiments with animals, especially mice and zebrafish, are revealing the potential health benefits against cancer development, cardiovascular diseases, seizures, Alzheimer's disease, mental health disorders, inflammatory diseases, osteoporosis, cystic fibrosis, oxidative stress, human parasites, and microbial infections in vivo. Although major efforts are still necessary to increase the knowledge, especially about the translation value of the information obtained from in vivo experiments to clinical trials, marine alkaloids are promising candidates for further experiments in drug development.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Carlos A. Conte-Junior
- Centro de Tecnologia, Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Noman Walayat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, Hangzhou 310014, China;
| | | | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
48
|
Silva M, Seijas P, Otero P. Exploitation of Marine Molecules to Manage Alzheimer's Disease. Mar Drugs 2021; 19:md19070373. [PMID: 34203244 PMCID: PMC8307759 DOI: 10.3390/md19070373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are sociosanitary challenges of today, as a result of increased average life expectancy, with Alzheimer’s disease being one of the most prevalent. This pathology is characterized by brain impairment linked to a neurodegenerative process culminating in cognitive decline and behavioral disorders. Though the etiology of this pathology is still unknown, it is usually associated with the appearance of senile plaques and neurofibrillary tangles. The most used prophylaxis relies on anticholinesterase drugs and NMDA receptor antagonists, whose main action is to relieve symptoms and not to treat or prevent the disease. Currently, the scientific community is gathering efforts to disclose new natural compounds effective against Alzheimer’s disease and other neurodegenerative pathologies. Marine natural products have been shown to be promising candidates, and some have been proven to exert a high neuroprotection effect, constituting a large reservoir of potential drugs and nutraceutical agents. The present article attempts to describe the processes of extraction and isolation of bioactive compounds derived from sponges, algae, marine bacteria, invertebrates, crustaceans, and tunicates as drug candidates against AD, with a focus on the success of pharmacological activity in the process of finding new and effective drug compounds.
Collapse
Affiliation(s)
- Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal;
- Department of Plant Biology, Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paula Seijas
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Paz Otero
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence UAM+CSIC, 28049 Madrid, Spain
- Nutrition and Bromatology Group, CITACA, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
- Correspondence: or
| |
Collapse
|
49
|
Kwon OS, Ahn S, Jeon JE, Park IG, Won TH, Sim CJ, Park HG, Oh DC, Oh KB, Noh M, Shin J. Psammocindoles A-C: Isolation, Synthesis, and Bioactivity of Indole-γ-lactams from the Sponge Psammocinia vermis. Org Lett 2021; 23:4667-4671. [PMID: 34060857 DOI: 10.1021/acs.orglett.1c01410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Psammocindoles A-C (1-3), a new class of indole alkaloids, were isolated from a Psammocinia vermis sponge. By combined spectroscopic analyses, the structures of these compounds were determined to be the indole-γ-lactams derived from three amino acid residues. In addition, an enantiomer psammocindole D (4), and the N-lactam isomers isopsammocindoles A-D (5-8) were also synthesized. These natural products and synthetic analogues were found to significantly stimulate adiponectin secretion in human bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Oh-Seok Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Eun Jeon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - In Guk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hyung Won
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chung J Sim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34430, Republic of Korea
| | - Hyeung-Geun Park
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Bong Oh
- College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
50
|
Karan G, Sahu S, Maji MS. A one-pot "back-to-front" approach for the synthesis of benzene ring substituted indoles using allylboronic acids. Chem Commun (Camb) 2021; 57:5274-5277. [PMID: 33908966 DOI: 10.1039/d1cc01512e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis of only benzene ring functionalized indoles and poly-substituted carbazoles is reported via a one-pot triple cascade benzannulation protocol. Usage of differently substituted and readily accessible allylboronic acids as a 3-carbon annulating partner enables diverse aliphatic and aromatic substitution patterns, which is still a daunting task. This scalable synthetic protocol tolerates broad scope, thus enabling further downstream modifications. As an application, carbazole based natural products glycozoline and glycozolinol were synthesized.
Collapse
Affiliation(s)
- Ganesh Karan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Samrat Sahu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| |
Collapse
|