1
|
Shi SS, Hu T. Effects of Eurotium Cristatum on soybean ( Glycine max L.) polyphenols and the inhibitory ability of soybean polyphenols on acetylcholinesterase under different conditions. Food Chem X 2024; 23:101526. [PMID: 38933989 PMCID: PMC11200280 DOI: 10.1016/j.fochx.2024.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Most phenolic compounds in beans exist in complex, insoluble binding forms that bind to cell wall components via ether, ester, or glucoside bonds. In the process of solid-state fermentation, Eurotium Cristatum can produce many hydrolase enzymes, such as α-amylase, pectinase, cellulase and β-glucosidase, which can effectively hydrolyze ether, ester or glucoside bond, release bound polyphenols, and increase polyphenol content in soybeans. When the fermentation conditions of soybean were fermentation time 12 days, inoculation amount 15% and initial pH 2, the content of free polyphenols in fermented soybean was 2.79 mg GAE/g d.w, which was 4.98 times that of unfermented soybean. The contents of bound polyphenols and total phenols in fermented soybean were 0.62 mg GAE/g d.w and 3.41 mg GAE/g d.w, respectively, which were 2.38 times and 4.16 times of those in unfermented soybean. At the same time, the inhibitory effect of free polyphenols in fermented soybean on acetylcholinesterase reached 91.51%. Thus, our results demonstrated that solid state fermentation and Eurotium Cristatum can be used as an effective way to increase soybean polyphenol content and combat Alzheimer's disease.
Collapse
Affiliation(s)
- Shuo-shuo Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
2
|
Asomadu RO, Ezeorba TPC, Ezike TC, Uzoechina JO. Exploring the antioxidant potential of endophytic fungi: a review on methods for extraction and quantification of total antioxidant capacity (TAC). 3 Biotech 2024; 14:127. [PMID: 38585410 PMCID: PMC10997672 DOI: 10.1007/s13205-024-03970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Endophytic fungi have emerged as a significant source of natural products with remarkable bioactivities. Recent research has identified numerous antioxidant molecules among the secondary metabolites of endophytic fungi. These organisms, whether unicellular or micro-multicellular, offer the potential for genetic manipulation to enhance the production of these valuable antioxidant compounds, which hold promise for promoting health, vitality, and various biotechnological applications. In this study, we provide a critical review of methods for extracting, purifying, characterizing, and estimating the total antioxidant capacity (TAC) of endophytic fungi metabolites. While many endophytes produce metabolites similar to those found in plants with established symbiotic associations, we also highlight the existence of novel metabolites with potential scientific interest. Additionally, we discuss how advancements in nanotechnology have opened new avenues for exploring nanoformulations of endophytic metabolites in future studies, offering opportunities for diverse biological and industrial applications.
Collapse
Affiliation(s)
- Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
- Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B17 2TT UK
| | - Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu, 410001 Nigeria
| |
Collapse
|
3
|
Zhang Z, Sun Y, Li Y, Song X, Wang R, Zhang D. The potential of marine-derived piperazine alkaloids: Sources, structures and bioactivities. Eur J Med Chem 2024; 265:116081. [PMID: 38181652 DOI: 10.1016/j.ejmech.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Marine-derived piperazine alkaloids (MDPAs) constitute a significant group of natural compounds known for their diverse structures and biological activities. Over the past five decades, substantial efforts have been devoted to isolating these alkaloids from marine sources and characterizing their chemical and bioactive profiles. To date, a total of 922 marine-derived piperazine alkaloids have been reported from various marine organisms. These compounds demonstrate a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiviral, and various other activities. Notably, among these activities, cytotoxicity emerges as the most prominent characteristic of marine-derived piperazine alkaloids. This review also summarizes the structure-activity relationship (SAR) studies associated with the cytotoxicity of these compounds. In summary, our objective is to provide an overview of the research progress concerning marine-derived piperazine alkaloids, with the aim of fostering their continued development and utilization.
Collapse
Affiliation(s)
- Zilong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yu Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| |
Collapse
|
4
|
Zhu K, Wang X, Weng Y, Mao G, Bao Y, Lou J, Wu S, Jin W, Tang L. Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway. Cardiovasc Drugs Ther 2024; 38:69-78. [PMID: 36194354 DOI: 10.1007/s10557-022-07383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Sulfated galactofucan (SWZ-4), which was extracted from Sargassum thunbergii, has recently been reported to show anti-inflammatory and anticancer properties. The present study aimed to evaluate whether SWZ-4 attenuates atherosclerosis in apolipoprotein E-knockout (ApoE-KO) mice by suppressing the inflammatory response through the TLR4/MyD88/NF-κB signaling pathway. METHODS Male ApoE-KO mice were fed with a high-fat diet for 16 weeks and intraperitoneally injected with SWZ-4. RAW246.7 cells were treated with lipopolysaccharide (LPS) and SWZ-4. Atherosclerotic lesions were measured by Sudan IV and oil red O staining. Serum lipid profiles, inflammatory cytokines, and mRNA and protein expression levels were evaluated. RESULTS SWZ-4 decreased serum TNF-α, IL-6 and IL-1 levels, but did not reduce blood lipid profiles. SWZ-4 downregulated the mRNA and protein expression of TLR4 and MyD88, reduced the phosphorylation of p65, and attenuated atherosclerosis in the ApoE-KO mice (p < 0.01). In LPS-stimulated RAW 264.7 cells, SWZ-4 inhibited proinflammatory cytokine production and the mRNA expression of TLR4, MyD88, and p65 and reduced the protein expression of TLR4 and MyD88 and the phosphorylation of p65 (p < 0.01). CONCLUSION These results suggest that SWZ-4 may exert an anti-inflammatory effect on ApoE-KO atherosclerotic mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway in macrophages and therefore may be a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Kefu Zhu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Xihao Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Shaoze Wu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China.
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
5
|
Sang Z, Zhang Y, Qiu K, Zheng Y, Chen C, Xu L, Lai J, Zou Z, Tan H. Chemical Constituents and Bioactivities of the Plant-Derived Fungus Aspergillus fumigatus. Molecules 2024; 29:649. [PMID: 38338395 PMCID: PMC10856792 DOI: 10.3390/molecules29030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
A new bergamotane sesquiterpenoid, named xylariterpenoid H (1), along with fourteen known compounds (2-15), were isolated from the crude extract of Aspergillus fumigatus, an endophytic fungus isolated from Delphinium grandiflorum L. Their structures were elucidated mainly by extensive analyses of NMR and MS spectroscopic data. In addition, the screening results of antibacterial and cytotoxic activities of compounds 1-15 showed that compound 4 displayed antibacterial activities against Staphylococcus aureus and MRSA (methicillin-resistant S. aureus) with an MIC value of 3.12 µg/mL.
Collapse
Affiliation(s)
- Zihuan Sang
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Yanjiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Kaidi Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Yuting Zheng
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Chen Chen
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Li Xu
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Jiaying Lai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| | - Zhenxing Zou
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
| | - Haibo Tan
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Rsearch for Chronic Diseases, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (Z.S.); (Y.Z.); (C.C.); (L.X.)
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.Z.); (K.Q.); (J.L.)
| |
Collapse
|
6
|
Deng J, Li Y, Yuan Y, Yin F, Chao J, Huang J, Liu Z, Wang K, Zhu M. Secondary Metabolites from the Genus Eurotium and Their Biological Activities. Foods 2023; 12:4452. [PMID: 38137256 PMCID: PMC10742824 DOI: 10.3390/foods12244452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Eurotium is the teleomorph genus associated with the section Aspergillus. Eurotium comprises approximately 20 species, which are widely distributed in nature and human environments. Eurotium is usually the key microorganism for the fermentation of traditional food, such as Fuzhuan brick tea, Liupao tea, Meju, and Karebushi; thus, Eurotium is an important fungus in the food industry. Eurotium has been extensively studied because it contains a series of interesting, structurally diverse, and biologically important secondary metabolites, including anthraquinones, benzaldehyde derivatives, and indol diketopiperazine alkaloids. These secondary metabolites have shown multiple biological activities, including antioxidative, antimicrobial, cytotoxic, antitumor, insecticidal, antimalarial, and anti-inflammatory activities. This study presents an up-to-date review of the phytochemistry and biological activities of all Eurotium species. This review will provide recent advances on the secondary metabolites and their bioactivities in the genus Eurotium for the first time and serve as a database for future research and drug development from the genus Eurotium.
Collapse
Affiliation(s)
- Jiantianye Deng
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yilong Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yong Yuan
- Hunan Tea Group Co., Ltd., Changsha 410128, China; (Y.Y.); (F.Y.); (J.C.)
| | - Feiyan Yin
- Hunan Tea Group Co., Ltd., Changsha 410128, China; (Y.Y.); (F.Y.); (J.C.)
| | - Jin Chao
- Hunan Tea Group Co., Ltd., Changsha 410128, China; (Y.Y.); (F.Y.); (J.C.)
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (J.D.); (Y.L.); (J.H.); (Z.L.); (K.W.)
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Chi LP, Liu D, Li XM, Wan Y, Wang BG, Li X. Aspertides A-E: Antimicrobial Pentadepsipeptides with a Unique p-Methoxycinnamoyl Amide Group from the Marine Isolates Aspergillus tamarii MA-21 and Aspergillus insuetus SD-512. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13316-13324. [PMID: 37650146 DOI: 10.1021/acs.jafc.3c02610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Marine fungus-derived natural products are an important source of antimicrobial compounds against marine aquatic pathogens. Here, we describe the isolation and characterization of five new pentadepsipeptides, aspertides A-E (1-5), containing a unique p-methoxycinnamoyl amide group, from the marine fungi Aspergillus tamarii MA-21 and Aspergillus insuetus SD-512. Among them, aspertides B-E (2-5) also possessed uncommon amino acid residues, such as 3-hydroxyproline, 2,3-dihydroxyproline, or pipecolinic acid. The structures of these compounds were elucidated on the basis of NMR and mass spectroscopic analyses. The absolute configurations of them were established by chiral HPLC analyses of the acidic hydrolysates and NMR calculations with DP4+ probability analysis. In bio-activity assays, compounds 4 and 5 exhibited antibacterial activities against aquatic-pathogenic bacteria, including Edwardsiella tarda, Vibrio alginolyticus, Vibrio anguillarum, Vibrio vulnificus, and Staphylococcus aureus, with MIC values of 8-32 μg/mL.
Collapse
Affiliation(s)
- Lu-Ping Chi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao 266237, People's Republic of China
| | - Dong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Yupeng Wan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, People's Republic of China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, People's Republic of China
| |
Collapse
|
8
|
Qi L, Du HF, Sun TT, Li L, Zhang YH, Liu YF, Cao F. Natural products from marine fungi as a source against agricultural pathogenic fungi. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12657-3. [PMID: 37401997 DOI: 10.1007/s00253-023-12657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
There are many kinds of agricultural pathogenic fungi, which may belong to pathogenic fungi in different species, such as Fusarium, Alternaria, Colletotrichum, Phytophthora, and other agricultural pathogens. Pathogenic fungi from different sources are widely distributed in agriculture, which threaten the lives of crops around the world and caused great damage to agricultural production and economic benefits. Due to the particularity of the marine environment, marine-derived fungi could produce natural compounds with unique structures, rich diversities, and significant bioactivities. Since marine natural products with different structural characteristics could inhibit different kinds of agricultural pathogenic fungi, secondary metabolites with antifungal activity could be used as lead compounds against agricultural pathogenic fungi. In order to summarize the structural characteristics of marine natural products against agricultural pathogenic fungi, this review systematically overview the activities against agricultural pathogenic fungi of 198 secondary metabolites from different marine fungal sources. A total of 92 references published from 1998 to 2022 were cited. KEY POINTS: • Pathogenic fungi, which could cause damage to agriculture, were classified. • Structurally diverse antifungal compounds from marine-derived fungi were summarized. • The sources and distributions of these bioactive metabolites were analyzed.
Collapse
Affiliation(s)
- Lu Qi
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Hui-Fang Du
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Tian-Tian Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Lei Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Ya-Hui Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China
| | - Yun-Feng Liu
- College of Life Sciences, Baoding, 071002, China.
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Baoding, 071002, China.
| |
Collapse
|
9
|
Yan LH, Du FY, Li XM, Yang SQ, Wang BG, Li X. Antibacterial Indole Diketopiperazine Alkaloids from the Deep-Sea Cold Seep-Derived Fungus Aspergillus chevalieri. Mar Drugs 2023; 21:md21030195. [PMID: 36976244 PMCID: PMC10059655 DOI: 10.3390/md21030195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
A large body of fungal secondary metabolites has been discovered to exhibit potent antibacterial activities with distinctive mechanisms and has the potential to be an untapped resource for drug discovery. Here, we describe the isolation and characterization of five new antibacterial indole diketopiperazine alkaloids, namely 24,25-dihydroxyvariecolorin G (1), 25-hydroxyrubrumazine B (2), 22-chloro-25-hydroxyrubrumazine B (3), 25-hydroxyvariecolorin F (4), and 27-epi-aspechinulin D (5), along with the known analogue neoechinulin B (6) from a fungal strain of deep-sea cold seep-derived Aspergillus chevalieri. Among these compounds, 3 and 4 represented a class of infrequently occurring fungal chlorinated natural products. Compounds 1-6 showed inhibitory activities against several pathogenic bacteria with MIC values ranging from 4 to 32 μg/mL. It was revealed that compound 6 could induce structural damage to the Aeromonas hydrophila cells based on the observation by scanning electron microscopy (SEM), which led to the bacteriolysis and death of A. hydrophila, suggesting that neoechinulin B (6) might be a potential alternative to novel antibiotics development.
Collapse
Affiliation(s)
- Li-Hong Yan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Feng-Yu Du
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Changcheng Road 700, Qingdao 266109, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
| |
Collapse
|
10
|
Li GH, Zhang KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat Prod Rep 2023; 40:646-675. [PMID: 36597965 DOI: 10.1039/d2np00074a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: 2010 to 2021Natural nematicidal metabolites are important sources of nematode control. This review covers the isolation and structural determination of nematicidal metabolites from 2010 to 2021. We summarise chemical structures, bioactivity, metabolic regulation and biosynthesis of potential nematocides, and structure-activity relationship and application potentiality of natural metabolites in plant parasitic nematodes' biocontrol. In doing so, we aim to provide a comprehensive overview of the potential roles that natural metabolites can play in anti-nematode strategies.
Collapse
Affiliation(s)
- Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
11
|
Pushparaj K, Meyyazhagan A, Bhotla HK, Arumugam VA, Pappuswamy M, Vadivalagan C, Hakeem KR, Balasubramanian B, Liu W, Mousavi Khaneghah A. The crux of bioactive metabolites in endophytic and thermophilic fungi and their proximal prospects in biotechnological and industrial domains. Toxicon 2023; 223:107007. [PMID: 36563862 DOI: 10.1016/j.toxicon.2022.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Fungi are ubiquitous in distribution and are found in grasses to hot springs. Their mode of nutrition provides sustenance for living and propagation. Ironically, varied fungal species have developed customized strategies for protection and survival by producing diverse secondary metabolites. The review aimed to project the contrasting potential features of the endophytic and thermophilic fungi groups. The metabolites and the enzymes of endophytic and thermophilic fungi served as the backbone to thrive and adapt within-host and in extreme conditions like higher pH, heat, and salinity, respectively. Identification, knowledge of their biochemistry and pathway, exploration, production, and utilization of these bioactive molecules in various commercial, industrial, and pharmaceutical domains were briefly discussed. The uniqueness of endophytes includes stress management and improved biomass production of the host, green fuel production, omnipresence, selected triple-symbiosis with the virus, synthesis of polyketides, and other active metabolites are widely used in biomedical applications and agriculture management. This review attempted to limelight the specific applications of thermophilic fungal metabolites and the roles of thermo-stable enzymes in bioprospecting. Moreover, probing the metabolites of thermophiles rendered novel antibiotic compounds, which were proven effective against multi-drug resistant bacteria and harboured the potential to curtail infectious diseases.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | - Haripriya Kuchi Bhotla
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | | | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | | | - Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
12
|
Diprenylated cyclodipeptide production by changing the prenylation sequence of the nature’s synthetic machinery. Appl Microbiol Biotechnol 2022; 107:261-271. [DOI: 10.1007/s00253-022-12303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Abstract
Ascomycetous fungi are often found in agricultural products and foods as contaminants. They produce hazardous mycotoxins for human and animals. On the other hand, the fungal metabolites including mycotoxins are important drug candidates and the enzymes involved in the biosynthesis of these compounds are valuable biocatalysts for production of designed compounds. One of the enzyme groups are members of the dimethylallyl tryptophan synthase superfamily, which mainly catalyze prenylations of tryptophan and tryptophan-containing cyclodipeptides (CDPs). Decoration of CDPs in the biosynthesis of multiple prenylated metabolites in nature is usually initiated by regiospecific C2-prenylation at the indole ring, followed by second and third ones as well as by other modifications. However, the strict substrate specificity can prohibit the further prenylation of unnatural C2-prenylated compounds. To overcome this, we firstly obtained C4-, C5-, C6-, and C7-prenylated cyclo-l-Trp-l-Pro. These products were then used as substrates for the promiscuous C2-prenyltransferase EchPT1, which normally uses the unprenylated CDPs as substrates. Four unnatural diprenylated cyclo-l-Trp-l-Pro including the unique unexpected N1,C6-diprenylated derivative with significant yields were obtained in this way. Our study provides an excellent example for increasing structural diversity by reprogramming the reaction orders of natural biosynthetic pathways. Furthermore, this is the first report that EchPT1 can also catalyze N1-prenylation at the indole ring.
Key points
• Prenyltransferases as biocatalysts for unnatural substrates.
• Chemoenzymatic synthesis of designed molecules.
• A cyclodipeptide prenyltransferase as prenylating enzyme of already prenylated products.
Graphical Abstract
Collapse
|
13
|
Qi J, Han H, Sui D, Tan S, Liu C, Wang P, Xie C, Xia X, Gao JM, Liu C. Efficient production of a cyclic dipeptide (cyclo-TA) using heterologous expression system of filamentous fungus Aspergillus oryzae. Microb Cell Fact 2022; 21:146. [PMID: 35843946 PMCID: PMC9290255 DOI: 10.1186/s12934-022-01872-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Cyclic dipeptides are an important class of natural products owing to their structural diversity and biological activities. In fungi, the cyclo-ring system is formed through the condensation of two α-amino acids via non-ribosomal peptide synthetase (NRPS). However, there are few investigations on the functional identification of this enzyme. Additionally, information on how to increase the production of cyclic dipeptide molecules is relatively scarce. Results We isolated the Eurotium cristatum NWAFU-1 fungus from Jing-Wei Fu brick tea, whose fermentation metabolites contain echinulin-related cyclic dipeptide molecules. We cloned the cirC gene, encoding an NRPS, from E. Cristatum NWAFU-1 and transferred it into the heterologous host Aspergillus oryzae. This transformant produced a novel metabolite possessing an l-tryptophan-l-alanine cyclic dipeptide backbone (Cyclo-TA). Based on the results of heterologous expression and microsomal catalysis, CriC is the first NRPS characterized in fungi that catalyzes the formation of a cyclic dipeptide from l-tryptophan and l-alanine. After substrate feeding, the final yield reached 34 mg/L. In this study, we have characterized a novel NRPS and developed a new method for cyclic dipeptide production. Conclusions In this study we successfully expressed the E. Cristatum NWAFU-1 criC gene in A. oryzae to efficiently produce cyclic dipeptide compounds. Our findings indicate that the A. oryzae heterologous expression system constitutes an efficient method for the biosynthesis of fungal Cyclic dipeptides. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01872-8.
Collapse
Affiliation(s)
- Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China.,Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haiyan Han
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Dan Sui
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Shengnan Tan
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Changli Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China.
| |
Collapse
|
14
|
Yan LH, Li PH, Li XM, Yang SQ, Liu KC, Wang BG, Li X. Chevalinulins A and B, Proangiogenic Alkaloids with a Spiro[bicyclo[2.2.2]octane-diketopiperazine] Skeleton from Deep-Sea Cold-Seep-Derived Fungus Aspergillus chevalieri CS-122. Org Lett 2022; 24:2684-2688. [PMID: 35389665 DOI: 10.1021/acs.orglett.2c00781] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chevalinulins A (1) and B (2), two indole diketopiperazine alkaloids containing an unprecedented spiro[bicyclo[2.2.2]octane-diketopiperazine] skeleton, together with a known analogue neoechinulin B (3), were isolated from the deep-sea cold-seep-derived fungus Aspergillus chevalieri CS-122. Their structures were determined by spectroscopic analysis, single-crystal X-ray diffraction, specific rotation (SR), and NMR calculations. Compounds 1 and 2 exhibited significant in vivo proangiogenic activity in transgenic zebrafish.
Collapse
Affiliation(s)
- Li-Hong Yan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China.,College of Marine Science, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Pei-Hai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jingshi East Road 28789, Jinan 250103, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Ke-Chun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jingshi East Road 28789, Jinan 250103, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China.,College of Marine Science, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
| |
Collapse
|
15
|
Synthesis, Biological Evaluation and Molecular Docking Studies of 5-indolylmethylen-4-oxo-2-thioxothiazolidine Derivatives. Molecules 2022; 27:molecules27031068. [PMID: 35164333 PMCID: PMC8839324 DOI: 10.3390/molecules27031068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Infectious diseases represent a significant global strain on public health security and impact on socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in the crucial need for the discovery and development of novel entities for the infectious treatment with different modes of action that could target both sensitive and resistant strains. Methods: Compounds were synthesized using the classical organic chemistry methods. Prediction of biological activity spectra was carried out using PASS and PASS-based web applications. Pharmacophore modeling in LigandScout software was used for quantitative modeling of the antibacterial activity. Antimicrobial activity was evaluated using the microdilution method. AutoDock 4.2® software was used to elucidate probable bacterial and fungal molecular targets of the studied compounds. Results: All compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Three compounds were tested against resistant strains MRSA, P.aeruginosa and E.coli and were found to be more potent than MRSA than reference drugs. All compounds demonstrated a higher degree of antifungal activity than the reference drugs bifonazole (6–17-fold) and ketoconazole (13–52-fold). Three of the most active compounds could be considered for further development of the new, more potent antimicrobial agents. Conclusion: Compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one and 5g (Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid as well as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)benzoic acid can be considered as lead compounds for further development of more potent and safe antibacterial and antifungal agents.
Collapse
|
16
|
Du Y, Yang W, Yang C, Yang X. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Li J, Zhuang CL. Natural Indole Alkaloids from Marine Fungi: Chemical Diversity and Biological Activities. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1740050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The indole scaffold is one of the most important heterocyclic ring systems for pharmaceutical development, and serves as an active moiety in several clinical drugs. Fungi derived from marine origin are more liable to produce novel indole-containing natural products due to their extreme living environments. The indole alkaloids from marine fungi have drawn considerable attention for their unique chemical structures and significant biological activities. This review attempts to provide a summary of the structural diversity of marine fungal indole alkaloids including prenylated indoles, diketopiperazine indoles, bisindoles or trisindoles, quinazoline-containing indoles, indole-diterpenoids, and other indoles, as well as their known biological activities, mainly focusing on cytotoxic, kinase inhibitory, antiinflammatory, antimicrobial, anti-insecticidal, and brine shrimp lethal effects. A total of 306 indole alkaloids from marine fungi have been summarized, covering the references published from 1995 to early 2021, expecting to be beneficial for drug discovery in the future.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chun-Lin Zhuang
- Department of Natural Product Chemistry, School of Pharmacy, The Second Military Medical University, Shanghai, People's Republic of China
- Department of Medicinal Chemistry, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
18
|
Hu Y, Chen S, Yang F, Dong S. Marine Indole Alkaloids-Isolation, Structure and Bioactivities. Mar Drugs 2021; 19:658. [PMID: 34940657 PMCID: PMC8708922 DOI: 10.3390/md19120658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Indole alkaloids are heterocyclic natural products with extensive pharmacological activities. As an important source of lead compounds, many clinical drugs have been derived from natural indole compounds. Marine indole alkaloids, from unique marine environments with high pressure, high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts the attention of drug researchers. This article is a continuation of the previous two comprehensive reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with 472 new or structure-revised compounds categorized by sources into marine microorganisms, invertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way to clinical drugs.
Collapse
Affiliation(s)
| | | | | | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Y.H.); (S.C.); (F.Y.)
| |
Collapse
|
19
|
Efimenko TA, Shanenko EF, Mukhamedzhanova TG, Efremenkova OV, Nikolayev YA, Bilanenko EN, Gernet MV, Grishin AG, Serykh IN, Shevelev SV, Vasilyeva BF, Filippova SN, El-Registan GI. Eurotium Cristatum Postfermentation of Fireweed and Apple Tree Leaf Herbal Teas. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6691428. [PMID: 34631875 PMCID: PMC8500772 DOI: 10.1155/2021/6691428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/11/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022]
Abstract
Fungi Eurotium spp. are the main biological agents that ferment the leaves of the Camellia sinensis tea bush to form a popular food product, postfermented tea. The fungus E. cristatum, stored in the collection of the Gause Institute of New Antibiotics under the number INA 01267, was isolated and identified from a briquette of Fujian Chinese tea. The species identification was carried out based on morphocultural characteristics and DNA sequencing. This study is aimed at determining the feasibility of making postfermented herbal teas using E. cristatum and to evaluate their quality. Autofermented herbal teas from Chamaenerion angustifolium (fireweed) and Malus domestica (apple tree) served as the starting material for this study. The change in the concentration of phenolic compounds, organic acids, sugars, and free amino acids was observed for herbal teas subjected to postfermentation with E. cristatum INA 01267. It was found that the E. cristatum INA 01267 strain does not have antimicrobial activity and does not form mycotoxins, which is an indicator of food safety.
Collapse
Affiliation(s)
| | | | | | | | - Yuriy A. Nikolayev
- Research Center of Biotechnology RAS, Winogradsky Institute of Microbiology, Moscow 117312, Russia
| | - Elena N. Bilanenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Marina V. Gernet
- V.M. Gorbatov Federal Research Center of Food Systems RAS, All-Russian Research Institute of Brewing, Nonalcoholic and Wine Industry, Moscow 109316, Russia
| | - Artem G. Grishin
- Moscow State University of Food Production, Moscow 125080, Russia
| | - Ivan N. Serykh
- Moscow State University of Food Production, Moscow 125080, Russia
- LLC “Sistema”, Moscow 115230, Russia
| | | | | | - Svetlana N. Filippova
- Research Center of Biotechnology RAS, Winogradsky Institute of Microbiology, Moscow 117312, Russia
| | - Galina I. El-Registan
- Research Center of Biotechnology RAS, Winogradsky Institute of Microbiology, Moscow 117312, Russia
| |
Collapse
|
20
|
Yan K, Abbas M, Meng L, Cai H, Peng Z, Li Q, El-Sappah AH, Yan L, Zhao X. Analysis of the Fungal Diversity and Community Structure in Sichuan Dark Tea During Pile-Fermentation. Front Microbiol 2021; 12:706714. [PMID: 34421866 PMCID: PMC8375752 DOI: 10.3389/fmicb.2021.706714] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
The fungi present during pile-fermentation of Sichuan dark tea play a pivotal role in the development of its aroma and physical characteristics. Samples of tea leaves were collected on days 0 (YC-raw material), 8 (W1-first turn), 16 (W2-second turn), 24 (W3-third turn), and 32 (W4-out of pile) during pile-fermentation. High-throughput sequencing revealed seven phyla, 22 classes, 41 orders, 85 families, 128 genera, and 184 species of fungi. During fermentation, the fungal diversity index declined from the W1 to W3 stages and then increased exponentially at the W4 stage. A bar plot and heatmap revealed that Aspergillus, Thermomyces, Candida, Debaryomyces, Rasamsonia, Rhizomucor, and Thermoascus were abundant during piling, of which Aspergillus was the most abundant. Cluster analysis revealed that the W4 stage of fermentation is critical for fungal growth, diversity, and the community structure in Sichuan dark tea. This study revealed the role of fungi during pile-fermentation in the development of the essence and physical characteristics of Sichuan dark tea. This study comes under one of the Sustainable Development Goals of United Nations Organization (UNO) to "Establish Good Health and Well-Being."
Collapse
Affiliation(s)
- Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Lina Meng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Hongbing Cai
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Zhang Peng
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Linfeng Yan
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Xianming Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
21
|
Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review. Mar Drugs 2021; 19:md19080403. [PMID: 34436242 PMCID: PMC8398661 DOI: 10.3390/md19080403] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Diketopiperazines are potential structures with extensive biological functions, which have attracted much attention of natural product researchers for a long time. These compounds possess a stable six-membered ring, which is an important pharmacophore. The marine organisms have especially been proven to be a wide source for discovering diketopiperazine derivatives. In recent years, more and more interesting bioactive diketopiperazines had been found from various marine habitats. This review article is focused on the new 2,5-diketopiperazines derived from marine organisms (sponges and microorganisms) reported from the secondary half-year of 2014 to the first half of the year of 2021. We will comment their chemical structures, biological activities and sources. The objective is to assess the merit of these compounds for further study in the field of drug discovery.
Collapse
|
22
|
Lin LB, Gao YQ, Han R, Xiao J, Wang YM, Zhang Q, Zhai YJ, Han WB, Li WL, Gao JM. Alkylated Salicylaldehydes and Prenylated Indole Alkaloids from the Endolichenic Fungus Aspergillus chevalieri and Their Bioactivities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6524-6534. [PMID: 34096711 DOI: 10.1021/acs.jafc.1c01148] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sixteen metabolites, including seven C7-alkylated salicylaldehyde derivatives (1-7) and nine prenylated indole alkaloids (8-16), three of which are new, namely, asperglaucins A and B (1 and 2) and neoechinulin F (8), were separated from the endolichenic fungus Aspergillus chevalieri SQ-8. Asperglaucin A (1) represents an unusual phthalide-like derivative with a benzo[c]thiophen-1(3H)-one scaffold. All compounds were assessed in vitro for antibacterial, antineuroinflammatory, and antioxidant activities. Notably, asperglaucins A and B exhibited potent antibacterial activities against two plant pathogens Pseudomonas syringae pv actinidae (Psa) and Bacillus cereus, with an MIC value of 6.25 μM; further SEM analyses illustrated that the possible bacteriostatic mechanisms for compounds 1 and 2 were to alter the external structure of B. cereus and Psa, and to cause the rupture or deformation of the cell membranes, respectively, and the results suggest that compounds 1 and 2 may serve as potential promising candidates for lead compounds of agrochemical bactericides. Furthermore, compounds 6 and 10 significantly inhibited nitric oxide production with an IC50 value of ca. 12 μM, and the possible anti-inflammatory mechanisms involved were also studied by molecular docking. Finally, the tested phenolics 3-5 showed significant antioxidative effects. Thus, strain SQ-8 represents a novel resource of these bioactive metabolites to be utilized.
Collapse
Affiliation(s)
- Li-Bin Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Rui Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Jian Xiao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Yi-Meng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Wen-Li Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
23
|
Meng ZH, Sun TT, Zhao GZ, Yue YF, Chang QH, Zhu HJ, Cao F. Marine-derived fungi as a source of bioactive indole alkaloids with diversified structures. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:44-61. [PMID: 37073395 PMCID: PMC10077242 DOI: 10.1007/s42995-020-00072-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Marine-derived fungi are well known as rich sources of bioactive natural products. Growing evidences indicated that indole alkaloids, isolated from a variety of marine-derived fungi, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities, and therefore, indole alkaloids have potential to be pharmaceutical lead compounds. Systemic compilation of the relevant literature. In this review, we demonstrated a comprehensive overview of 431 new indole alkaloids from 21 genera of marine-derived fungi with an emphasis on their structures and bioactivities, covering literatures published during 1982-2019.
Collapse
Affiliation(s)
- Zhi-Hui Meng
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Tian-Tian Sun
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Guo-Zheng Zhao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Yu-Fei Yue
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Qing-Hua Chang
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Hua-Jie Zhu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Fei Cao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| |
Collapse
|
24
|
Li X, Zhao H, Chen X. Screening of Marine Bioactive Antimicrobial Compounds for Plant Pathogens. Mar Drugs 2021; 19:69. [PMID: 33525648 PMCID: PMC7912171 DOI: 10.3390/md19020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Plant diseases have been threatening food production. Controlling plant pathogens has become an important strategy to ensure food security. Although chemical control is an effective disease control strategy, its application is limited by many problems, such as environmental impact and pathogen resistance. In order to overcome these problems, it is necessary to develop more chemical reagents with new functional mechanisms. Due to their special living environment, marine organisms have produced a variety of bioactive compounds with novel structures, which have the potential to develop new fungicides. In the past two decades, screening marine bioactive compounds to inhibit plant pathogens has been a hot topic. In this review, we summarize the screening methods of marine active substances from plant pathogens, the identification of marine active substances from different sources, and the structure and antibacterial mechanism of marine active natural products. Finally, the application prospect of marine bioactive substances in plant disease control was prospected.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
25
|
Zhong W, Chen Y, Mai Z, Wei X, Wang J, Zeng Q, Chen X, Tian X, Zhang W, Wang F, Zhang S. Euroticins A and B, Two Pairs of Highly Constructed Salicylaldehyde Derivative Enantiomers from a Marine-Derived Fungus Eurotium sp. SCSIO F452. J Org Chem 2020; 85:12754-12759. [PMID: 32909756 DOI: 10.1021/acs.joc.0c01407] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two pairs of salicylaldehyde derivative enantiomers, euroticins A and B (1 and 2), were isolated from a marine-derived fungus Eurotium sp. SCSIO F452. Compound 1 possesses a highly constructed 6/6/6/5/7 pentacyclic structure featuring an unprecedented 2,11-dioxatricyclo[5.3.1.04,8]undecane core. Compound 2 represents the first example of 6/6/6/6 tetracyclic salicylaldehyde derivative. Their structures were established by spectroscopic analyses, X-ray diffraction, and electronic circular dichroism (ECD) and 13C NMR calculations. Compounds (+)-2 and (-)-2 exhibited remarkable antioxidative activities.
Collapse
Affiliation(s)
- Weimao Zhong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qi Zeng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiayu Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Fazuo Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
26
|
Xiang X, Xiang Y, Jin S, Wang Z, Xu Y, Su C, Shi Q, Chen C, Yu Q, Song C. The hypoglycemic effect of extract/fractions from Fuzhuan Brick-Tea in streptozotocin-induced diabetic mice and their active components characterized by LC-QTOF-MS/MS. J Food Sci 2020; 85:2933-2942. [PMID: 32794200 DOI: 10.1111/1750-3841.15373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 01/07/2023]
Abstract
Fuzhuan Brick-Tea is a postfermented product with the hypoglycemic effect, which is prepared from the leaves of Camellia sinensis var. sinensis. However, the material basis associated with the hypoglycemic effect was not clear. The present research was designed to explore the hypoglycemic effect of extract/fractions from Fuzhuan Brick-Tea in streptozotocin-induced type II diabetic mice. Then an ultra-high pressure liquid chromatography along with quadrupole time of flight mass spectrometry was used to analyze the phytochemicals in Fuzhuan Brick-Tea fractions. As a result, the hypoglycemic and hypolipidemic effects were evidently observed from the serum biochemical indexes and liver pathological examination in type II diabetic mice. In addition, there were total of 20 major components including eight lysophosphatidylcholines (Lyso-PCs), five fatty acids, and seven novel theophylline derivatives tentatively identified in the active fraction from water extract. Therefore, these components were assumed to contribute partly to the hypoglycemic effect of Fuzhuan Brick-Tea. These findings also give the evidence that the Lyso-PCs, fatty acids, and novel theophylline derivatives in Fuzhuan Brick-Tea may provide benefits in ameliorating disorders of glucose and lipid metabolism. PRACTICAL APPLICATION: This study suggests that the Lyso-PCs, fatty acids, and novel theophylline derivatives in Fuzhuan Brick-Tea may provide benefits in ameliorating disorders of glucose and lipid metabolism. It can be taken as a beneficial diet additive or nutraceutical.
Collapse
Affiliation(s)
- Xingliang Xiang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yi Xiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuna Jin
- State Key Laboratory of Environmental Health School of Public Health Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Wang
- Mogon Golden Fiower Tea Technology Co. Ltd., Changsha, Hunan, China
| | - Yiqiang Xu
- Mogon Golden Fiower Tea Technology Co. Ltd., Changsha, Hunan, China
| | - Chao Su
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Qingxin Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Cheng Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Qingsong Yu
- Department of Otolaryngology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
27
|
Liu G, Duan Z, Wang P, Fan D, Zhu C. Purification, characterization, and hypoglycemic properties of eurocristatine from Eurotium cristatum spores in Fuzhuan brick tea. RSC Adv 2020; 10:22234-22241. [PMID: 35516628 PMCID: PMC9054505 DOI: 10.1039/d0ra03423a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/02/2020] [Indexed: 01/24/2023] Open
Abstract
Fuzhuan brick tea (FBT) is a Chinese dark tea that is famous for its significant health benefits, in which Eurotium cristatum (E. cristatum) strains play a vital role in its postfermentation process. In this study, eurocristatine with hypoglycemic activity was discovered for the first time and purified from the spores of E. cristatum growing in FBT. Eurocristatine (98%) was obtained by D-101 macroporous resin-based column chromatography and preparative high performance liquid chromatography (HPLC) with a C18 column as the stationary phase and 35% acetonitrile in ultrapure water as the mobile phase. Hypoglycemic activity in a Hep-G2 cell hypoglycemic model was used as a screening indicator during purification. The chemical structure of eurocristatine was characterized by ESI/MS, 1H NMR and 13C NMR analyses. The antidiabetic effects of eurocristatine were verified in high-fat diet/streptozocin-induced type 2 diabetes mellitus (T2DM) rats. The results showed that eurocristatine significantly reduced fasting blood glucose. Our study demonstrated that eurocristatine, as a newly discovered hypoglycemic active substance, could be considered a potential candidate for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Gang Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China +86-29-88305118 +86-29-88305118
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
- Biotech & Biomed Research Institute, Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| |
Collapse
|
28
|
Zhao Q, Qiu Y, Wang X, Gu Y, Zhao Y, Wang Y, Yue T, Yuan Y. Inhibitory Effects of Eurotium cristatum on Growth and Aflatoxin B 1 Biosynthesis in Aspergillus flavus. Front Microbiol 2020; 11:921. [PMID: 32477315 PMCID: PMC7242626 DOI: 10.3389/fmicb.2020.00921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Probiotic strain Eurotium cristatum was isolated from Chinese Fuzhuan brick-tea and tested for its in vitro activity against aflatoxigenic Aspergillus flavus. Results indicated that E. cristatum can inhibit the radial growth of A. flavus. Furthermore, this inhibition might be caused by E. cristatum secondary metabolites. The ability of culture filtrate of strain E. cristatum against growth and aflatoxin B1 production by toxigenic A. flavus was evaluated in vitro. Meanwhile, the influence of filtrate on spore morphology of A. flavus was analyzed by scanning electron microscopy (SEM). Results demonstrated that both radial growth of A. flavus and aflatoxin B1 production were significantly weakened following increases in the E. cristatum culture filtrate concentration. In addition, SEM showed that the culture filtrate seriously damaged hyphae morphology. Gas chromatography mass spectrometry (GC/MS) analysis of the E. cristatum culture supernatant revealed the presence of multiple antifungal compounds. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that the expression of aflatoxin biosynthesis-related genes (aflD, aflQ, and aflS) were down-regulated. Importantly, this latter occurrence resulted in a reduction of the AflS/AflR ratio. Interestingly, cell-free supernatants of E. cristatum facilitated the effective degradation of aflatoxin B1. In addition, two degradation products of aflatoxin B1 lacking the toxic and carcinogenic lactone ring were identified. A toxicity study on the HepG2 cells showed that the degradation compounds were less toxic when compared with AFB1.
Collapse
Affiliation(s)
- Qiannan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China
| | - Yue Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China
| | - Yuanyuan Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuzhu Zhao
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yidi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,College of Food Science and Technology, Northwest University, Xi'an, China.,College of Enology, Northwest A&F University, Yangling, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China
| |
Collapse
|
29
|
Bao Y, He X, Wu W, Wang S, Dai J, Zhang Z, Jin W, Yan J, Mao G. Sulfated galactofucan from Sargassum thunbergii induces senescence in human lung cancer A549 cells. Food Funct 2020; 11:4785-4792. [PMID: 32421130 DOI: 10.1039/d0fo00699h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isolated compounds from Sargassum thunbergii (S. thunbergii) have shown to exhibit diverse biological activities, including anti-cancer activity. In this study, we examined the effect of sulfated galactofucan (SWZ-4-H), which was successfully isolated from S. thunbergii, and its underlying mechanism on human lung cancer (LC) A549 cell growth in vitro and in vivo. In vitro experiment indicated that SWZ-4-H decreased cell growth and number in a dose-dependent manner (P < 0.05 vs. control). Besides, cells treated with SWZ-4-H had irregular morphology, including increased cell volumes, and large nuclei, which suggested senescence-like changes. Moreover, SWZ-4-H increased senescence-related β-galactosidase (SA-β-Gal) staining in a dose-dependent manner; however, while lower (1 mg mL-1) concentration induced mainly senescence without causing cell death, higher dosage (3 mg mL-1) induced both senescence and cell death. The effect of SWZ-4-H was further confirmed by analyzing the expression of p53, p21, p16, and Rb (p-RB); SWZ-4-H significantly increased the expression of p53, p21, and p16 and decreased phosphorylated Rb (p-RB) in a dose-dependent manner. Moreover, in vivo experiment showed that SWZ-4-H significantly reduced the tumor volume without affecting the body weight. To sum up, our data indicated that SWZ-4-H could induce lung cancer senescence by regulating p53, p21, p16, and p-Rb, thus providing a novel perspective on anti-cancer mechanisms of SWZ-4-H in human lung cancer A549 cells.
Collapse
Affiliation(s)
- Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wei X, Feng C, Wang SY, Zhang DM, Li XH, Zhang CX. New Indole Diketopiperazine Alkaloids from Soft Coral-Associated Epiphytic Fungus Aspergillus sp. EGF 15-0-3. Chem Biodivers 2020; 17:e2000106. [PMID: 32212241 DOI: 10.1002/cbdv.202000106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 11/09/2022]
Abstract
Three new indole diketopiperazine alkaloids, 11-methylneoechinulin E and variecolorin M, and (+)-variecolorin G, along with 12 known analogs, were isolated from a soft coral-associated epiphytic fungus Aspergillus sp. EGF 15-0-3. The structures of the new compounds were unambiguously established by extensive spectroscopic analyses including HR-ESI-MS, 1D and 2D NMR spectroscopy and optical rotation measurements. The absolute configurations of (+)- and (-)-variecolorin G were determined by experimental and quantum-chemical ECD investigations and single-crystal X-ray diffraction analysis. Variecolorin G is a pair of enantiomeric mixtures with a ratio of 1 : 2. Moreover, (+)-neoechinulin A is firstly reported as a natural product. The cytotoxic activities of all the isolated compounds against NCI-H1975 gefitinib resistance (NCI-H1975/GR) cell lines were preliminarily evaluated by MTT method.
Collapse
Affiliation(s)
- Xia Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Chan Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Si-Yu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Hui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| |
Collapse
|
31
|
Du FY, Ju GL, Xiao L, Zhou YM, Wu X. Sesquiterpenes and Cyclodepsipeptides from Marine-Derived Fungus Trichoderma longibrachiatum and Their Antagonistic Activities against Soil-borne Pathogens. Mar Drugs 2020; 18:md18030165. [PMID: 32188169 PMCID: PMC7142749 DOI: 10.3390/md18030165] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023] Open
Abstract
Soil-borne pathogens, including phytopathogenic fungi and root-knot nematodes, could synergistically invade vegetable roots and result in serious economic losses. The genus of Trichoderma has been proven to be a promising reservoir of biocontrol agents in agriculture. In this study, the search for antagonistic metabolites from a marine-derived fungus, Trichoderma longibrachiatum, obtained two structural series of sesquiterpenes 1-6 and cyclodepsipeptides 7-9. Notably, the novel 1 was a rare norsesquiterpene characterized by an unprecedented tricyclic-6/5/5-[4.3.1.01,6]-decane skeleton. Their structures were elucidated by extensive spectroscopic analyses, while the absolute configuration of novel 1 was determined by the comparison of experimental and calculated ECD spectra. The novel 1 and known 2 and 3 showed significant antifungal activities against Colletotrichum lagrnarium with MIC values of 8, 16, and 16 μg/mL respectively, even better than those of the commonly used synthetic fungicide carbendazim with 32 μg/mL. They also exhibited antifungal potential against carbendazim-resistant Botrytis cinerea. Cyclodepsipeptides 7-9 showed moderate nematicidal activities against the southern root-knot nematode (Meloidogyne incognita). This study constitutes the first report on the antagonistic effects of metabolites from T. Longibrachiatum against soil-borne pathogens, also highlighting the integrated antagonistic potential of marine-derived T. Longibrachiatum as a biocontrol agent.
Collapse
Affiliation(s)
- Feng-Yu Du
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China; (F.-Y.D.); (G.-L.J.); (L.X.)
- Shandong Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Guang-Lin Ju
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China; (F.-Y.D.); (G.-L.J.); (L.X.)
| | - Lin Xiao
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China; (F.-Y.D.); (G.-L.J.); (L.X.)
| | - Yuan-Ming Zhou
- Analytical and Testing Center, Qingdao Agricultural University, Qingdao 266109, China;
| | - Xia Wu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
32
|
Zhu L, Liu N, Jiang X, Yu L, Li X. Four novel 3D RE-MOFs based on maleic hydrazide: Syntheses, structural diversity, efficient electromagnetic wave absorption and antibacterial activity properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Liu Z, Frank M, Yu X, Yu H, Tran-Cong NM, Gao Y, Proksch P. Secondary Metabolites from Marine-Derived Fungi from China. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2020; 111:81-153. [PMID: 32114663 DOI: 10.1007/978-3-030-37865-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Marine-derived fungi play an important role in the search for structurally unique secondary metabolites, some of which show promising pharmacological activities that make them useful leads for drug discovery. Marine natural product research in China in general has made enormous progress in the last two decades as described in this chapter on fungal metabolites. This contribution covers 613 new natural products reported from 2001 to 2017 from marine-derived fungi obtained from algae, sponges, corals, and other marine organisms from Chinese waters. The genera Aspergillus (170 new natural products, 28%) and Penicillium (70 new natural products, 11%) were the main fungal producers of new natural products during the time period covered, whereas sponges (184 new natural products, 30%) were the most abundant source of new natural products, followed by corals (154 new natural products, 25%) and algae (130 new natural products, 21%). Close to 40% of all natural products covered in this contribution displayed various bioactivities. The major bioactivities reported were cytotoxicity against different cancer cell lines, antimicrobial (mainly antibacterial) activity, and antiviral activity, which accounted for 13%, 9%, and 3% of all natural products reported. In terms of structural classes, polyketides (188 new natural products, 31%) play a dominant role, and if prenylated polyketides and nitrogen-containing polyketides (included in meroterpenes and alkaloids in this contribution) are taken into account, their total number even exceeds 50%. Nitrogen-containing compounds including peptides (65 new natural products, 10%) and alkaloids (103 new natural products, 17%) are the second largest group.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Xiaoqin Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Haiqian Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nam M Tran-Cong
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
34
|
Wang ZF, Sun ZC, Xiao L, Zhou YM, Du FY. Herbicidal Polyketides and Diketopiperazine Derivatives from Penicillium viridicatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14102-14109. [PMID: 31790231 DOI: 10.1021/acs.jafc.9b06116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herbicidal activity-guided isolation from the fermentation extract of Penicillium viridicatum had obtained two herbicidal series of polyketides (1-7) and diketopiperazine derivatives (8-11), especially including three novel polyketides (1-3). The structures and absolute configurations of new polyketides 1-3 were elucidated by extensive spectroscopic analyses, as well as comparisons between measured and calculated ECD spectra. Novel polyketides 1-3 and known 4, all bearing the heptaketide skeleton with a trans-fused decalin ring of 8-CH3 substitution, could significantly inhibit the radicle growth of Echinochloa crusgalli seedlings with a dose-dependent relationship. Especially at the concentration of 10 μg/mL, 1-4 exhibited the inhibition rates with 81.5% ± 2.0, 76.4% ± 0.8, 79.6% ± 1.1, and 80.0 ± 1.8%, respectively, even better than the commonly used synthetic herbicide of acetochlor with 76.1 ± 1.4%. Further greenhouse bioassay revealed that 4 showed pre-emergence herbicidal activity against E. crusgalli with the fresh-weight inhibition rate of 74.1% at a dosage of 400 g ai/ha, also better than acetochlor, while the other isolated metabolites (5-11) exhibited moderate herbicidal activities. The structure-activity differences of isolated polyketides indicated that the heptaketide skeleton, characterized by a trans-fused decalin ring with 8-CH3 substitution, should be the key factor of their herbicidal activities, which could give new insights for the bioherbicide developments.
Collapse
|
35
|
Biologically Active Echinulin-Related Indolediketopiperazines from the Marine Sediment-Derived Fungus Aspergillus niveoglaucus. Molecules 2019; 25:molecules25010061. [PMID: 31878044 PMCID: PMC6983058 DOI: 10.3390/molecules25010061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/23/2023] Open
Abstract
Seven known echinulin-related indolediketopiperazine alkaloids (1–7) were isolated from the Vietnamese sediment-derived fungus Aspergillus niveoglaucus. Using chiral HPLC, the enantiomers of cryptoechinuline B (1) were isolated as individual compounds for the first time. (+)-Cryptoechinuline B (1a) exhibited neuroprotective activity in 6-OHDA-, paraquat-, and rotenone-induced in vitro models of Parkinson’s disease. (−)-Cryptoechinuline B (1b) and neoechinulin C (5) protected the neuronal cells against paraquat-induced damage in a Parkinson’s disease model. Neoechinulin B (4) exhibited cytoprotective activity in a rotenone-induced model, and neoechinulin (7) showed activity in the 6-OHDA-induced model.
Collapse
|
36
|
Kouipou Toghueo RM, Boyom FF. Endophytes from ethno-pharmacological plants: Sources of novel antioxidants- A systematic review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Improvement of the Quality of Ginkgo biloba Leaves Fermented by Eurotium cristatum as High Value-Added Feed. Processes (Basel) 2019. [DOI: 10.3390/pr7090627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ginkgo biloba leaves are well known for their high content of nutrients and bioactive substances. However, unpleasant smell and a small number of ginkgolic acids greatly reduce the utilization of the leaves. In this work, solid-state fermentation of G. biloba leaves using Eurotium cristatum was studied by investigation of the nutrient changes and its feasibility as a functional feed. E. cristatum could grow on pure G. biloba leaves and the addition of excipients could significantly improve the growth of E. cristatum. The optimal medium was with 10% (w/w) of whole G. biloba seeds and the optimized water content, pH, inoculum size and fermentation time were 45% (w/w), 4.5, 4.76 × 107 CFU/100 g wet medium, and eight days, respectively. Under the optimal conditions, the spore number increased by about 40 times. The content of flavonoids was greatly increased by 118.6%, and the protein and polyprenyl acetates (PPAs) were increased by 64.9% and 10.6%, respectively. The ginkgolic acids, lignin, and cellulose were decreased by 52.4%, 38.5%, and 20.1% than before, respectively. Furthermore, the fermented G. biloba leaves showed higher antioxidant activity and held more aroma substances. Thus, G. biloba leaves fermented by E. cristatum have potential as s high value-added feed. This is the first investigation of E. cristatum fermentation on ginkgo leaves, which will facilitate the use of ginkgo leaves in the feed industry.
Collapse
|
38
|
Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR. Bioactive Compounds Isolated from Marine-Derived Microbes in China: 2009-2018. Mar Drugs 2019; 17:E339. [PMID: 31174259 PMCID: PMC6628246 DOI: 10.3390/md17060339] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
This review outlines the research that was carried out regarding the isolation of bioactive compounds from marine-derived bacteria and fungi by China-based research groups from 2009-2018, with 897 publications being surveyed. Endophytic organisms featured heavily, with endophytes from mangroves, marine invertebrates, and marine algae making up more than 60% of the microbial strains investigated. There was also a strong focus on fungi as a source of active compounds, with 80% of publications focusing on this area. The rapid increase in the number of publications in the field is perhaps most notable, which have increased more than sevenfold over the past decade, and suggests that China-based researchers will play a major role in marine microbial natural products drug discovery in years to come.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Wenhui Wu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Diana A Zaleta-Pinet
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
39
|
Zhong W, Wang J, Wei X, Fu T, Chen Y, Zeng Q, Huang Z, Huang X, Zhang W, Zhang S, Long L, Wang F. Three Pairs of New Spirocyclic Alkaloid Enantiomers From the Marine-Derived Fungus Eurotium sp. SCSIO F452. Front Chem 2019; 7:350. [PMID: 31165062 PMCID: PMC6536037 DOI: 10.3389/fchem.2019.00350] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Three pairs of new spirocyclic alkaloid enantiomers eurotinoids A-C (1-3), as well as a known biogenetically related racemate dihydrocryptoechinulin D (4) were isolated from a marine-derived fungus Eurotium sp. SCSIO F452. Their structures were determined by spectroscopic analyses and electronic circular dichroism (ECD) calculations. Compounds 1 and 2 represent the first two "meta" products from a non-stereoselective [4 + 2] Diels-Alder cycloaddition presumably between an enone group of a diketopiperazine alkaloid and a diene group of a benzaldehyde derivative via a new head-to-tail coupling mode biosynthetically, while 3 and 4 were "ortho" products. Their enantiomers exhibited different antioxidative and cytotoxic activities. The modes of action were investigated by a preliminary molecular docking study.
Collapse
Affiliation(s)
- Weimao Zhong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Tingdan Fu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qi Zeng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinan Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Fazuo Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
40
|
Zhang P, Jia C, Deng Y, Chen S, Chen B, Yan S, Li J, Liu L. Anti-inflammatory prenylbenzaldehyde derivatives isolated from Eurotium cristatum. PHYTOCHEMISTRY 2019; 158:120-125. [PMID: 30529862 DOI: 10.1016/j.phytochem.2018.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Two undescribed prenylbenzaldehyde derivatives, cristaldehydes A and B, and an undescribed quinone derivative, cristaquinone A, along with seven known compounds were isolated from the fungus Eurotium cristatum. The structures of undescribed compounds were determined by spectroscopic analysis including NMR, HR-ESIMS, and single-crystal X-ray diffraction. This is the first report of identification of a dibenzannulated 6,6-spiroketal derivative, cristaldehyde B, in a natural product. Cytotoxic and anti-inflammatory activities of all compounds were evaluated. Cristaldehyde A and cristaquinone A along with five known compounds showed significant anti-inflammatory activities with IC50 values in the range from 0.37 to 14.50 μM.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chunxiu Jia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanlian Deng
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Bin Chen
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Sujun Yan
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jing Li
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, China; Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-Sen University), Department of Education of Guangdong Province, Guangzhou, 510006, China
| |
Collapse
|
41
|
Exploring the Benefits of Endophytic Fungi via Omics. ADVANCES IN ENDOPHYTIC FUNGAL RESEARCH 2019. [DOI: 10.1007/978-3-030-03589-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
43
|
Chang CY, Lin YH, Wu YK. Palladium-catalyzed N1-selective allylation of indoles with allylic alcohols promoted by titanium tetraisopropoxide. Chem Commun (Camb) 2019; 55:1116-1119. [DOI: 10.1039/c8cc09817d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The N1-selective allylation of indoles with allylic alcohols has been accomplished by synergistic functions of palladium catalysts and titanium tetraisopropoxide.
Collapse
Affiliation(s)
- Chieh-Yu Chang
- Department of Applied Chemistry
- National Chiao Tung University
- 1001 University Road
- Hsinchu 30010
- Taiwan
| | - Yu-Huan Lin
- Department of Applied Chemistry
- National Chiao Tung University
- 1001 University Road
- Hsinchu 30010
- Taiwan
| | - Yen-Ku Wu
- Department of Applied Chemistry
- National Chiao Tung University
- 1001 University Road
- Hsinchu 30010
- Taiwan
| |
Collapse
|
44
|
Zhou YM, Ju GL, Xiao L, Zhang XF, Du FY. Cyclodepsipeptides and Sesquiterpenes from Marine-Derived Fungus Trichothecium roseum and Their Biological Functions. Mar Drugs 2018; 16:E519. [PMID: 30572686 PMCID: PMC6316070 DOI: 10.3390/md16120519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 01/14/2023] Open
Abstract
On the basis of the 'one strain, many compounds' (OSMAC) strategy, chemical investigation of the marine-derived fungus Trichothecium roseum resulted in the isolation of trichomide cyclodepsipeptides (compounds 1⁻4) from PDB medium, and destruxin cyclodepsipeptides (compounds 5⁻7) and cyclonerodiol sesquiterpenes (compounds 8⁻10) from rice medium. The structures and absolute configurations of novel (compounds 1, 8, and 9) and known compounds were elucidated by extensive spectroscopic analyses, X-ray crystallographic analysis, and ECD calculations. All isolated compounds were evaluated for cytotoxic, nematicidal, and antifungal activities, as well as brine shrimp lethality. The novel compound 1 exhibited significant cytotoxic activities against the human cancer cell lines MCF-7, SW480, and HL-60, with IC50 values of 0.079, 0.107, and 0.149 μM, respectively. In addition, it also showed significant brine shrimp lethality, with an LD50 value of 0.48 μM, and moderate nematicidal activity against Heterodera avenae, with an LC50 value of 94.9 μg/mL. This study constitutes the first report on the cytotoxic and nematicidal potential of trichomide cyclodepsipeptides.
Collapse
Affiliation(s)
- Yuan-Ming Zhou
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China.
- Analytical and Testing Center, Qingdao Agricultural University, Qingdao 266109, China.
| | - Guang-Lin Ju
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China.
| | - Lin Xiao
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiang-Fei Zhang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China.
| | - Feng-Yu Du
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China.
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
45
|
Xiao L, Zhou YM, Zhang XF, Du FY. Notopterygium incisum extract and associated secondary metabolites inhibit apple fruit fungal pathogens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 150:59-65. [PMID: 30195388 DOI: 10.1016/j.pestbp.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/17/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
In the search for antifungal lead compounds from natural resources, Notopterygium incisum, a medicine plant only distributed in China, showed antifungal potential against apple fruit pathogens. Based on the bioassay-guided isolation, chromatography fraction 6 of the ethyl acetate partition exhibited significant in vitro and in vivo antifungal activities against apple fruit pathogens. Furthermore, nine antifungal secondary metabolites, including five linear furocoumarins (1-5), two phenylethyl esters (6-7), one falcarindiol (8), and one sesquiterpenoid (9), were isolated and elucidated from fraction 6. Compound 5 is a new metabolite, and 9 isolated from the genus Notopterygium for the first time. The purified compounds (1-9) were firstly reported to exhibit antifungal activities against apple fruit pathogens of Colletotrichum gloeosporioides and Botryosphaeria dothidea with the MIC values ranging from 8 to 250 mg L-1, especially 8 of 16 and 8 mg L-1, respectively. Moreover, 8 could inhibit the spore germination and new sporulation of B. dothidea, as well as enhance the membrane permeabilization of B. dothidea spores. This was the first investigation for the antifungal components against apple fruit pathogens from Notopterygium incisum, which has great potential to be developed into bio-fungicides.
Collapse
Affiliation(s)
- Lin Xiao
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Changcheng Road 700, Qingdao, Shandong 266109, PR China
| | - Yuan-Ming Zhou
- Analytical and Testing Center, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Xiang-Fei Zhang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Changcheng Road 700, Qingdao, Shandong 266109, PR China
| | - Feng-Yu Du
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Changcheng Road 700, Qingdao, Shandong 266109, PR China.
| |
Collapse
|
46
|
Li Q, Chai S, Li Y, Huang J, Luo Y, Xiao L, Liu Z. Biochemical Components Associated With Microbial Community Shift During the Pile-Fermentation of Primary Dark Tea. Front Microbiol 2018; 9:1509. [PMID: 30042750 PMCID: PMC6048958 DOI: 10.3389/fmicb.2018.01509] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/18/2018] [Indexed: 12/27/2022] Open
Abstract
Primary dark tea is used as raw material for compressed dark tea, such as Fu brick tea, Hei brick tea, Hua brick tea, and Qianliang tea. Pile-fermentation is the key process for the formation of the characteristic properties of primary dark tea, during which the microorganism plays an important role. In this study, the changes of major chemical compounds, enzyme activities, microbial diversity, and their correlations were explored during the pile-fermentation process. Our chemical and enzymatic analysis showed that the contents of the major compounds were decreased, while the activities of polyphenol oxidase, cellulase, and pectinase were increased during this process, except peroxidase activity that could not be generated from microbial communities in primary dark tea. The genera Cyberlindnera, Aspergillus, Uwebraunia, and Unclassified Pleosporales of fungus and Klebsiella, Lactobacillus of bacteria were predominant in the early stage of the process, but only Cyberlindnera and Klebsiella were still dominated in the late stage and maintained a relatively constant until the end of the process. The amino acid was identified as the important abiotic factor in shaping the microbial community structure of primary dark tea ecosystem. Network analysis revealed that the microbial taxa were grouped into five modules and seven keystone taxa were identified. Most of the dominant genera were mainly distributed into module III, which indicated that this module was important for the pile-fermentation process of primary dark tea. In addition, bidirectional orthogonal partial least squares (O2PLS) analysis revealed that the fungi made more contributions to the formation of the characteristic properties of primary dark tea than bacteria during the pile-fermentation process. Furthermore, 10 microbial genera including Cyberlindnera, Aspergillus, Eurotium, Uwebraunia, Debaryomyces, Lophiostoma, Peltaster, Klebsiella, Aurantimonas, and Methylobacterium were identified as core functional genera for the pile-fermentation of primary dark tea. This study provides useful information for improving our understanding on the formation mechanism of the characteristic properties of primary dark tea during the pile-fermentation process.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Shuo Chai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Yongdi Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Lizheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| |
Collapse
|
47
|
Eurotiumins A⁻E, Five New Alkaloids from the Marine-Derived Fungus Eurotium sp. SCSIO F452. Mar Drugs 2018; 16:md16040136. [PMID: 29690501 PMCID: PMC5923423 DOI: 10.3390/md16040136] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
Three new prenylated indole 2,5-diketopiperazine alkaloids (1–3) with nine known ones (5–13), one new indole alkaloid (4), and one new bis-benzyl pyrimidine derivative (14) were isolated and characterized from the marine-derived fungus Eurotium sp. SCSIO F452. 1 and 2, occurring as a pair of diastereomers, both presented a hexahydropyrrolo[2,3-b]indole skeleton. Their chemical structures, including absolute configurations, were elucidated by 1D and 2D NMR, HRESIMS, quantum chemical calculations of electronic circular dichroism, and single crystal X-ray diffraction experiments. Most isolated compounds were screened for antioxidative potency. Compounds 3, 5, 6, 7, 9, 10, and 12 showed significant radical scavenging activities against DPPH with IC50 values of 13, 19, 4, 3, 24, 13, and 18 µM, respectively. Five new compounds were evaluated for cytotoxic activities.
Collapse
|
48
|
Two New Diketomorpholine Derivatives and a New Highly Conjugated Ergostane-Type Steroid from the Marine Algal-Derived Endophytic Fungus Aspergillus alabamensis EN-547. Mar Drugs 2018; 16:md16040114. [PMID: 29614724 PMCID: PMC5923401 DOI: 10.3390/md16040114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022] Open
Abstract
Chemical investigation of the marine algal-derived endophytic fungus Aspergillus alabamensis EN-547 resulted in the isolation of 4-epi-seco-shornephine A methyl ester (1) and 4-epi-seco-shornephine A carboxylic acid (2), two new secondary metabolites having a rare diketomorpholine motif, and 28-acetoxy-12β,15α,25-trihydroxyergosta-4,6,8(14),22-tetraen-3-one (3), a new highly conjugated ergostane-type steroid, together with four known metabolites (4-7). Their chemical structures were elucidated by detailed analysis of their NMR spectra, ECDs, HRESIMS, optical rotation, and X-ray crystallographic data, and by comparison with literature data as well. The antimicrobial activities of compounds 1-7 were evaluated.
Collapse
|
49
|
Jin W, Liu B, Li S, Chen J, Tang H, Jiang D, Zhang Q, Zhong W. The structural features of the sulfated heteropolysaccharide (ST-1) from Sargassum thunbergii and its neuroprotective activities. Int J Biol Macromol 2018; 108:307-313. [PMID: 29217183 DOI: 10.1016/j.ijbiomac.2017.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/22/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Polysaccharide (ST) was prepared from Sargassum thunbergii using hot water. Two fractions (ST-1 and ST-2) were prepared using anion exchange chromatography. One desulfated polysaccharide (ST-1-DS) was also prepared. Electrospray ionization mass spectrometry (ESI-MS) performed on ST-1-DS showed that the desulfated polysaccharides contained methyl glycosides of mono-sulfated and di-sulfated galacto-fucooligosaccharides. This result suggested that ST-1 might contain sulfated galactofucan, which consists of a backbone of alternating (Gal)n and (Fuc)n and sulfated randomly on Gal and mainly on C-2 in Fuc. In addition, ST-1 was degraded in 1M sulfuric acid. The solution was centrifuged, and the supernatant was concentrated and precipitated in ethanol to obtain the precipitate (ST-1-P). ST-1-P was then separated using gel chromatography and anion exchange chromatography to obtain the oligomers. ESI-MS spectra of oligomers indicated that ST-1 mostly contained sulfated glucuronomannan and fucoglucuronan. ESI-MS with collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) suggested that glucuronomannan contained alternating 2-linked Man and 4-linked GlcA, while fucoglucuronan contained 4-linked glucuronan with branched Fuc at C-3. Finally, the neuroprotective activities of ST, ST-1, ST-2 and MIX (a mixture of ST-1 and ST-2) were determined. ST showed the most neuroprotective activity, which indicated that ST might be a good candidate for curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Bing Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shuai Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jing Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hong Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Di Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Quanbin Zhang
- Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
50
|
|