1
|
Dhanji-Rapkova M, Hatfield RG, Walker DI, Hooper C, Alewijnse S, Baker-Austin C, Turner AD, Ritchie JM. Investigating Non-Native Ribbon Worm Cephalothrix simula as a Potential Source of Tetrodotoxin in British Bivalve Shellfish. Mar Drugs 2024; 22:458. [PMID: 39452866 PMCID: PMC11509275 DOI: 10.3390/md22100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin found in several phylogenetically diverse organisms, some of which are sought as seafood. Since 2015, TTX has been reported in bivalve shellfish from several estuarine locations along the Mediterranean and European Atlantic coasts, posing an emerging food safety concern. Although reports on spatial and temporal distribution have increased in recent years, processes leading to TTX accumulation in European bivalves are yet to be described. Here, we explored the hypothesis that the ribbon worm species Cephalothrix simula, known to contain high levels of TTX, could play a role in the trophic transfer of the toxin into shellfish. During a field study at a single location in southern England, we confirmed C. simula DNA in seawater adjacent to trestle-farmed Pacific oysters Magallana gigas (formerly Crassostrea gigas) with a history of TTX occurrence. C. simula DNA in seawater was significantly higher in June and July during the active phase of toxin accumulation compared to periods of either no or continually decreasing TTX concentrations in M. gigas. In addition, C. simula DNA was detected in oyster digestive glands collected on 15 June 2021, the day with the highest recorded C. simula DNA abundance in seawater. These findings show evidence of a relationship between C. simula and TTX occurrence, providing support for the hypothesis that bivalves may acquire TTX through filter-feeding on microscopic life forms of C. simula present in the water column at particular periods each year. Although further evidence is needed to confirm such feeding activity, this study significantly contributes to discussions about the biological source of TTX in European bivalve shellfish.
Collapse
Affiliation(s)
- Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Robert G. Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - David I. Walker
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Sarah Alewijnse
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Andrew D. Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Jennifer M. Ritchie
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| |
Collapse
|
2
|
Yonezawa R, Hayashi K, Oyama H, Yoshitake K, Sato S, Senevirathna JDM, Smith AR, Okabe T, Suo R, Kinoshita S, Takatani T, Arakawa O, Asakawa S, Itoi S. Tissue Localization of Tetrodotoxin in the Flatworm Planocera multitentaculata (Platyhelminthes: Polycladida). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:649-657. [PMID: 38861110 DOI: 10.1007/s10126-024-10332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Tetrodotoxin (TTX), a pufferfish toxin, is a highly potent neurotoxin that has been found in a wide variety of animals. The TTX-bearing flatworm Planocera multitentaculata possesses a large amount of TTX and is considered responsible for the toxification of TTX-bearing animals such as pufferfish (Takifugu and Chelonodon) and the toxic goby Yongeichthys criniger. However, the mechanism underlying TTX accumulation in flatworms remains unclear. Previous studies have been limited to identifying the distribution of TTX in multiple organs, such as the digestive organs, genital parts, and the remaining tissues of flatworms. Here, we performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and immunohistochemical staining using a monoclonal anti-TTX antibody to elucidate the detailed localization of TTX in the tissues and organs of the flatworm P. multitentaculata. Immunohistochemical staining for P. multitentaculata showed that TTX-specific signals were detected not only in the ovaries and pharynx but also in many other tissues and organs, whereas no signal was detected in the brain, Lang's vesicle, and genitalia. In addition, combined with LC-MS/MS analysis, it was revealed for the first time that TTX accumulates in high concentrations in the basement membrane and epidermis. These findings robustly support the hypotheses of "TTX utilization protection from predators."
Collapse
Affiliation(s)
- Ryo Yonezawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Hayashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hikaru Oyama
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soshi Sato
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jayan Duminda M Senevirathna
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - Ashley R Smith
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taiki Okabe
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
- Niigata Prefectural Kaiyo High School, Itoigawa, Niigata, 949-1352, Japan
| | - Rei Suo
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Takatani
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Shiro Itoi
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan.
| |
Collapse
|
3
|
Ueda H, Ito M, Yonezawa R, Hayashi K, Tomonou T, Kashitani M, Oyama H, Shirai K, Suo R, Yoshitake K, Kinoshita S, Asakawa S, Itoi S. Japanese Planocerid Flatworms: Difference in Composition of Tetrodotoxin and Its Analogs and the Effects of Ingestion by Toxin-Bearing Fishes in the Ryukyu Islands, Japan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:500-510. [PMID: 38630353 PMCID: PMC11178581 DOI: 10.1007/s10126-024-10312-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 06/15/2024]
Abstract
Tetrodotoxin (TTX), known as pufferfish toxin, is a potent neurotoxin blocking sodium channels in muscle and nerve tissues. TTX has been detected in various taxa other than pufferfish, including marine polyclad flatworms, suggesting that pufferfish toxin accumulates in fish bodies via food webs. The composition of TTX and its analogs in the flatworm Planocera multitentaculata was identical to those in wild grass puffer Takifugu alboplumbeus. Previously, Planocera sp. from Okinawa Island, Japan, were reported to possess high level of TTX, but no information was available on TTX analogs in this species. Here we identified TTX and analogs in the planocerid flatworm using high-resolution liquid chromatography-mass spectrometry, and compared the composition of TTX and analogs with those of another toxic and non-toxic planocerid species. We show that the composition of TTX and several analogs, such as 5,6,11-trideoxyTTX, dideoxyTTXs, deoxyTTXs, and 11-norTTX-6(S)-ol, of Planocera sp. was identical to those of toxic species, but not to its non-toxic counterpart. The difference in the toxin composition was reflected in the phylogenetic relationship based on the mitochondrial genome sequence. A toxification experiment using predatory fish and egg plates of P. multitentaculata demonstrated that the composition of TTX and analogs in wild T. alboplumbeus juveniles was reproduced in artificially toxified pufferfish. Additionally, feeding on the flatworm egg plates enhanced the signal intensities of all TTX compounds in Chelonodon patoca and that of deoxyTTXs in Yongeichthys criniger.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Yonezawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Hayashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Taiga Tomonou
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kyoko Shirai
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
4
|
Yasukawa S, Shirai K, Namigata K, Ito M, Tsubaki M, Oyama H, Fujita Y, Okabe T, Suo R, Ogiso S, Watabe Y, Matsubara H, Suzuki N, Hirayama M, Sugita H, Itoi S. Tetrodotoxin Detection in Japanese Bivalves: Toxification Status of Scallops. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:666-676. [PMID: 36648572 DOI: 10.1007/s10126-023-10199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Tetrodotoxin (TTX), or pufferfish toxin, has been frequently detected in edible bivalves around the world during the last decade and is problematic in food hygiene and safety. It was reported recently that highly concentrated TTX was detected in the midgut gland of the akazara scallop Chlamys (Azumapecten) farreri subsp. akazara collected in coastal areas of the northern Japanese archipelago. The toxification of the bivalve was likely to involve the larvae of the flatworm, Planocera multitentaculata. However, the overall status of bivalve TTX toxification has not been elucidated. In this study, 14 species/subspecies of bivalves from various Japanese waters were subjected to LC-MS/MS analysis to reveal TTX toxification state, demonstrating that the Pectinidae, including C. farreri akazara, Chlamys farreri nipponensis, Chlamys (Mimachlamys) nobilis, and Mizuhopecten yessoensis, accumulated TTX in their midgut gland. Many individuals of C. farreri akazara and C. farreri nipponensis were found with high concentrations of TTX, while C. nobilis and M. yessoensis exhibited low concentrations. The extent of TTX accumulation in C. farreri akazara and C. farreri nipponensis varied widely by region and season. Curiously, no other bivalve species investigated in this study showed evidence of TTX. These results suggest that monitoring for TTX, like other shellfish toxins, is necessary to ensure that pectinid bivalves are a safe food resource.
Collapse
Affiliation(s)
- Shino Yasukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kyoko Shirai
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kaho Namigata
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mei Tsubaki
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yukino Fujita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Ogi, Noto-Cho, Ishikawa , 927-0553, Japan
| | - Yukina Watabe
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Ogi, Noto-Cho, Ishikawa , 927-0553, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Ossaka, Noto-Cho, Ishikawa , 927-0552, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Ogi, Noto-Cho, Ishikawa , 927-0553, Japan
| | - Makoto Hirayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
5
|
Oyama H, Ito M, Suo R, Goto-Inoue N, Morisasa M, Mori T, Sugita H, Mori T, Nakahigashi R, Adachi M, Nishikawa T, Itoi S. Changes in Tissue Distribution of Tetrodotoxin and Its Analogues in Association with Maturation in the Toxic Flatworm, Planocera multitentaculata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1158-1167. [PMID: 36322281 DOI: 10.1007/s10126-022-10179-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The toxic flatworm, Planocera multitentaculata, possesses highly concentrated tetrodotoxin (TTX), also known as pufferfish toxin, throughout its life cycle, including the egg and larval stages. Additionally, TTX analogues, 5,6,11-trideoxyTTX and 11-norTTX-6(S)-ol, have also been detected in the flatworm. The high concentration of TTX in the eggs and larvae appears to be for protection against predation, and 11-norTTX-6(S)-ol in the pharyngeal tissue in the adults is likely used to sedate or kill prey during predation. However, information on the role of 5,6,11-trideoxyTTX, a potential important biosynthetic intermediate of TTX, in the toxic flatworm is lacking. Here, we aimed to determine the region of localization of TTX and its analogues in the flatworm body, understand their pharmacokinetics during maturation, and speculate on their function. Flatworm specimens in four stages of maturity, namely juvenile, mating, spawning, and late spawning, were subjected to LC-MS/MS analysis, using the pharyngeal tissue, oocytes in seminal receptacle, sperm, and tissue from 12 other sites. Although TTX was consistently high in the pharyngeal tissue throughout maturation, it was extremely high in the oocytes during the spawning period. Meanwhile, 5,6,11-trideoxyTTX was almost undetectable in the pharyngeal part throughout the maturation but was very abundant in the oocytes during spawning. 11-norTTX-6(S)-ol consistently localized in the pharyngeal tissue. Although the localization of TTX and its analogues was approximately consistent with the MS imaging data, TTX and 11-norTTX-6(S)-ol were found to be highly localized in the parenchyma surrounding the pharynx, which suggests the parenchyma is involved in the accumulation and production of TTXs.
Collapse
Affiliation(s)
- Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mizuki Morisasa
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
6
|
Melnikova DI, Magarlamov TY. An Overview of the Anatomical Distribution of Tetrodotoxin in Animals. Toxins (Basel) 2022; 14:toxins14080576. [PMID: 36006238 PMCID: PMC9412668 DOI: 10.3390/toxins14080576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrodotoxin (TTX), a potent paralytic sodium channel blocker, is an intriguing marine toxin. Widely distributed in nature, TTX has attracted attention in various scientific fields, from biomedical studies to environmental safety concerns. Despite a long history of studies, many issues concerning the biosynthesis, origin, and spread of TTX in animals and ecosystems remain. This review aims to summarize the current knowledge on TTX circulation inside TTX-bearing animal bodies. We focus on the advances in TTX detection at the cellular and subcellular levels, providing an expanded picture of intra-organismal TTX migration mechanisms. We believe that this review will help address the gaps in the understanding of the biological function of TTX and facilitate the development of further studies involving TTX-bearing animals.
Collapse
|
7
|
Suo R, Tanaka M, Oyama H, Kojima Y, Yui K, Sakakibara R, Nakahigashi R, Adachi M, Nishikawa T, Sugita H, Itoi S. Tetrodotoxins in the flatworm Planocera multitentaculata. Toxicon 2022; 216:169-173. [PMID: 35843466 DOI: 10.1016/j.toxicon.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
The marine polyclad flatworm Planocera multitentaculata is known to possess high levels of tetrodotoxin (TTX), but the presence of TTX analogues in the species has been unexplored. In this study, TTX and several analogues such as 5,6,11-trideoxyTTX, monodeoxyTTXs, dideoxyTTXs, and 11-norTTX-6(S)-ol were identified in three adults and egg plates of P. multitentaculata using high resolution liquid chromatography-mass spectrometry (HR-LC/MS) for the first time.
Collapse
Affiliation(s)
- Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Makoto Tanaka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yuki Kojima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kentaro Yui
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Sakakibara
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
8
|
Okabe T, Saito R, Yamamoto K, Watanabe R, Kaneko Y, Yanaoka M, Furukoshi S, Yasukawa S, Ito M, Oyama H, Suo R, Suzuki M, Takatani T, Arakawa O, Sugita H, Itoi S. The role of toxic planocerid flatworm larvae on tetrodotoxin accumulation in marine bivalves. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105908. [PMID: 34273772 DOI: 10.1016/j.aquatox.2021.105908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Tetrodotoxin (TTX), also known as pufferfish toxin, has been detected in marine edible bivalves worldwide. In this study, several bivalve species, Azumapecten farreri subsp. akazara, Patinopecten yessoensis and Mytilus galloprovincialis, collected from the Pacific side of the northern Japanese Islands, were studied for the accumulation of TTX in the presence of toxic planocerid larvae. LC-MS/MS analysis demonstrated that TTX was detected only in the midgut gland of A. farreri subsp. akazara. Toxic flatworm-specific PCR and direct sequencing of the amplicons showed that the DNA fragments of the Planocera multitentaculata COI gene were detected in the gut contents of the toxified bivalves. The planocerid larvae were also detected in the environmental seawaters. Toxification experiments in the aquarium demonstrated that the mussel M. galloprovincialis was also toxified by feeding on the toxic flatworm larvae. These results suggest that the source of TTX accumulation in edible bivalves is toxic flatworm larvae.
Collapse
Affiliation(s)
- Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Rion Saito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Kohei Yamamoto
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Riku Watanabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Yoshiki Kaneko
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Mutsumi Yanaoka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Seika Furukoshi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Shino Yasukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Miwa Suzuki
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Tomohiro Takatani
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
9
|
Natural Products in Polyclad Flatworms. Mar Drugs 2021; 19:md19020047. [PMID: 33494164 PMCID: PMC7909797 DOI: 10.3390/md19020047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Marine invertebrates are promising sources of novel bioactive secondary metabolites, and organisms like sponges, ascidians and nudibranchs are characterised by possessing potent defensive chemicals. Animals that possess chemical defences often advertise this fact with aposematic colouration that potential predators learn to avoid. One seemingly defenceless group that can present bright colouration patterns are flatworms of the order Polycladida. Although members of this group have typically been overlooked due to their solitary and benthic nature, recent studies have isolated the neurotoxin tetrodotoxin from these mesopredators. This review considers the potential of polyclads as potential sources of natural products and reviews what is known of the activity of the molecules found in these animals. Considering the ecology and diversity of polyclads, only a small number of species from both suborders of Polycladida, Acotylea and Cotylea have been investigated for natural products. As such, confirming assumptions as to which species are in any sense toxic or if the compounds they use are biosynthesised, accumulated from food or the product of symbiotic bacteria is difficult. However, further research into the group is suggested as these animals often display aposematic colouration and are known to prey on invertebrates rich in bioactive secondary metabolites.
Collapse
|
10
|
First Detection of Tetrodotoxins in the Cotylean Flatworm Prosthiostomum trilineatum. Mar Drugs 2021; 19:md19010040. [PMID: 33477411 PMCID: PMC7830031 DOI: 10.3390/md19010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Several polyclad flatworm species are known to contain high levels of tetrodotoxin (TTX), but currently TTX-bearing flatworms seem to be restricted to specific Planocera lineages belonging to the suborder Acotylea. During our ongoing study of flatworm toxins, high concentrations of TTXs were detected for the first time in the flatworm Prosthiostomum trilineatum, suborder Cotylea, from the coastal area of Hayama, Kanagawa, Japan. Toxin levels were investigated by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), revealing that this species contains comparable concentrations of toxins as seen in planocerid flatworms such as Planocera multitentaculata. This finding indicated that there may be other species with significant levels of TTXs. The distribution of TTXs among other flatworm species is thus of great interest.
Collapse
|
11
|
Kashitani M, Okabe T, Oyama H, Noguchi K, Yamazaki H, Suo R, Mori T, Sugita H, Itoi S. Taxonomic Distribution of Tetrodotoxin in Acotylean Flatworms (Polycladida: Platyhelminthes). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:805-811. [PMID: 32415408 DOI: 10.1007/s10126-020-09968-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Tetrodotoxin (TTX), also known as pufferfish toxin, causes a respiratory disorder by blocking neurotransmission, with voltage-gated sodium channel inhibition on muscle and nerve tissues. The toxin is widely distributed across vertebrates, invertebrates and bacteria. Therefore, it is generally thought that TTX in pufferfish accumulates via the food webs, beginning with marine bacteria as a primary producer. Polyclad flatworms in the genus Planocera are also known to be highly toxic, TTX-bearing organisms. Unlike the case of pufferfish, the source of TTX in these flatworms is unknown. In this study, taxonomical distribution patterns of TTX were investigated for acotylean flatworms from coastal waters using molecular phylogenetic analysis and high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). A maximum likelihood tree based on the 28S rRNA gene sequence showed that the flatworms belonged to several different lineages among the genera Planocera, Stylochus, Paraplanocera, Discocelis, Notocomplana, Notoplana, Callioplana and Peudostylochus. After LC-MS/MS analysis, the distribution of TTX was mapped onto the molecular phylogenetic tree. TTX-bearing flatworm species were seen to be restricted to specific Planocera lineages, suggesting that the TTX-bearing flatworm species have common genes for TTX-accumulating mechanisms.
Collapse
Affiliation(s)
- Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Kaede Noguchi
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Haruka Yamazaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan.
| |
Collapse
|
12
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Yonezawa R, Itoi S, Igarashi Y, Yoshitake K, Oyama H, Kinoshita S, Suo R, Yokobori S, Sugita H, Asakawa S. Characterization and phylogenetic position of two sympatric sister species of toxic flatworms Planocera multitentaculata and Planocera reticulata (Platyhelminthes: Acotylea). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1730255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Ryo Yonezawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Kanagawa, Japan
| | - Yoji Igarashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Kanagawa, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Kanagawa, Japan
| | - Shinichi Yokobori
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Kanagawa, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Itoi S, Sato T, Takei M, Yamada R, Ogata R, Oyama H, Teranishi S, Kishiki A, Wada T, Noguchi K, Abe M, Okabe T, Akagi H, Kashitani M, Suo R, Koito T, Takatani T, Arakawa O, Sugita H. The planocerid flatworm is a main supplier of toxin to tetrodotoxin-bearing fish juveniles. CHEMOSPHERE 2020; 249:126217. [PMID: 32088461 DOI: 10.1016/j.chemosphere.2020.126217] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Tetrodotoxin (TTX), a potent neurotoxin, is found in various phylogenetically diverse taxa. In marine environments, the pufferfish is at the top of the food chain among TTX-bearing organisms. The accumulation of TTX in the body of pufferfish appears to be of the food web that begins with bacteria. It is known that toxic pufferfishes possess TTX from the larval/juvenile stage. However, the source of the TTX is unknown because the maternally sourced TTX is extremely small in quantity. Therefore, the TTX has to be obtained from other organisms or directly from the environment. Here, we report evidence that the source of TTX for toxic fish juveniles including the pufferfish (Chelonodon patoca) and the goby (Yongeichthys criniger) is in the food organisms, as seen in their gut contents. Next generation sequencing analysis for the mitochondrial COI gene showed that the majority of the sequence recovered from intestinal contents of these toxic fishes belonged to the flatworm Planocera multitentaculata, a polyclad flatworm containing highly concentrated TTX from the larval stage. PCR specific to P. multitentaculata also showed that DNA encoding the planocerid COI gene was strongly detected in the intestinal contents of the goby and pufferfish juveniles. Additionally, the planocerid specific COI sequence was detected in the environmental seawater collected from the water around the sampling locations for TTX-bearing fish. These results suggest that planocerid larvae are the major TTX supplier for juveniles of TTX-bearing fish species.
Collapse
Affiliation(s)
- Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Tatsunori Sato
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mitsuki Takei
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Riko Yamada
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryuya Ogata
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shun Teranishi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ayano Kishiki
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takenori Wada
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kaede Noguchi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Misato Abe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hiroyuki Akagi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tomoko Koito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tomohiro Takatani
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki, 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki, 852-8521, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
15
|
Itoi S, Tabuchi S, Abe M, Ueda H, Oyama H, Ogata R, Okabe T, Kishiki A, Sugita H. Difference in tetrodotoxin content between two sympatric planocerid flatworms, Planocera multitentaculata and Planocera reticulata. Toxicon 2019; 173:57-61. [PMID: 31778684 DOI: 10.1016/j.toxicon.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/24/2019] [Indexed: 11/20/2022]
Abstract
Planocerid flatworms and the related species (Platyhelminthes: polycladida) are known as tetrodotoxin (TTX)-bearing organisms, and they contribute to toxification of marine organisms at higher trophic levels, such as pufferfish and sea slugs. However, little is known of their biology or ecology. In this study, we therefore investigated the occurrence and toxicity of two sympatric planocerids, Planocera multitentaculata and Planocera reticulata, in intertidal zones of the central region of mainland Honshu, Japanese Islands. Planocera multitentaculata was much more abundant than P. reticulata. Body weight was greater in P. multitentaculata than in P. reticulata. Although a significant difference in TTX concentration was not observed between the two species, total TTX content per individual was greater in P. multitentaculata.
Collapse
Affiliation(s)
- Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Sora Tabuchi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Misato Abe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryuya Ogata
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ayano Kishiki
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
16
|
Okabe T, Oyama H, Kashitani M, Ishimaru Y, Suo R, Sugita H, Itoi S. Toxic Flatworm Egg Plates Serve as a Possible Source of Tetrodotoxin for Pufferfish. Toxins (Basel) 2019; 11:E402. [PMID: 31373322 PMCID: PMC6669758 DOI: 10.3390/toxins11070402] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/26/2022] Open
Abstract
The pufferfish Takifugu niphobles (at present Takifugu alboplumbeus) possesses highly concentrated tetrodotoxin (TTX), an extremely potent neurotoxin that provides effective protection from predators, at least at the larval stages. However, the source of the toxin has remained unclear. Recently, DNA from the toxic flatworm Planocera multitentaculata was detected in the intestinal contents of juveniles and young of the pufferfish, suggesting that the flatworm contributes to its toxification at various stages of its life. In this study, we describe the behavior of the pufferfish in the intertidal zone that appears to contribute to its toxification before and during its spawning period: pufferfish were found to aggregate and ingest flatworm egg plates by scraping them off the surface of rocks. DNA analysis based on 28S rRNA and cytochrome c oxidase subunit I (COI) genes identified the egg plates as those of P. multitentaculata. Liquid chromatography with tandem mass spectrometry analysis revealed that the egg plates contain highly concentrated TTX. The feeding behavior of the pufferfish on the flatworm egg plates was also observed in the aquarium. These results suggest that pufferfish feed on the flatworm egg plate, which enables them to acquire toxicity themselves while providing their offspring with the protective shield of TTX.
Collapse
Affiliation(s)
- Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuta Ishimaru
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
17
|
Itoi S, Ueda H, Yamada R, Takei M, Sato T, Oshikiri S, Wajima Y, Ogata R, Oyama H, Shitto T, Okuhara K, Tsunashima T, Sawayama E, Sugita H. Including planocerid flatworms in the diet effectively toxifies the pufferfish, Takifugu niphobles. Sci Rep 2018; 8:12302. [PMID: 30120305 PMCID: PMC6098040 DOI: 10.1038/s41598-018-30696-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/04/2018] [Indexed: 11/26/2022] Open
Abstract
Beginning with the larval stages, marine pufferfish such as Takifugu niphobles contain tetrodotoxin (TTX), an extremely potent neurotoxin. Although highly concentrated TTX has been detected in adults and juveniles of these fish, the source of the toxin has remained unclear. Here we show that TTX in the flatworm Planocera multitentaculata contributes to the toxification of the pufferfish throughout the life cycle of the flatworm. A species-specific PCR method was developed for the flatworm, and the specific DNA fragment was detected in the digesta of wild pufferfish adults. Predation experiments showed that flatworm larvae were eaten by the pufferfish juveniles, and that the two-day postprandial TTX content in these pufferfish was 20–50 μg/g. Predation experiments additionally showed flatworm adults were also eaten by pufferfish young, and after two days of feeding, TTX accumulated in the skin, liver and intestine of the pufferfish.
Collapse
Affiliation(s)
- Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Riko Yamada
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mitsuki Takei
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tatsunori Sato
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shotaro Oshikiri
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yoshiki Wajima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryuya Ogata
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takahiro Shitto
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazuya Okuhara
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tadasuke Tsunashima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Eitaro Sawayama
- R&D Division, Marua Suisan Co., Ltd. Kamijima, Ehime, 794-2410, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
18
|
Ueda H, Itoi S, Sugita H. TTX-Bearing Planocerid Flatworm (Platyhelminthes: Acotylea) in the Ryukyu Islands, Japan. Mar Drugs 2018; 16:E37. [PMID: 29351203 PMCID: PMC5793085 DOI: 10.3390/md16010037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
Polyclad flatworms comprise a highly diverse and cosmopolitan group of marine turbellarians. Although some species of the genera Planocera and Stylochoplana are known to be tetrodotoxin (TTX)-bearing, there are few new reports. In this study, planocerid-like flatworm specimens were found in the sea bottom off the waters around the Ryukyu Islands, Japan. The bodies were translucent with brown reticulate mottle, contained two conical tentacles with eye spots clustered at the base, and had a slightly frilled-body margin. Each specimen was subjected to TTX extraction followed by liquid chromatography with tandem mass spectrometry analysis. Mass chromatograms were found to be identical to those of the TTX standards. The TTX amounts in the two flatworm specimens were calculated to be 468 and 3634 μg. Their external morphology was found to be identical to that of Planocera heda. Phylogenetic analysis based on the sequences of the 28S rRNA gene and cytochrome-c oxidase subunit I gene also showed that both specimens clustered with the flatworms of the genus Planocera (Planocera multitentaculata and Planocera reticulata). This fact suggests that there might be other Planocera species that also possess highly concentrated TTX, contributing to the toxification of TTX-bearing organisms, including fish.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
19
|
Lin HN, Wang KL, Wu ZH, Tian RM, Liu GZ, Xu Y. Biological and Chemical Diversity of Bacteria Associated with a Marine Flatworm. Mar Drugs 2017; 15:md15090281. [PMID: 28862674 PMCID: PMC5618420 DOI: 10.3390/md15090281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Abstract
The aim of this research is to explore the biological and chemical diversity of bacteria associated with a marine flatworm Paraplanocera sp., and to discover the bioactive metabolites from culturable strains. A total of 141 strains of bacteria including 45 strains of actinomycetes and 96 strains of other bacteria were isolated, identified and fermented on a small scale. Bioactive screening (antibacterial and cytotoxic activities) and chemical screening (ultra-performance liquid chromatography–mass spectrometry (UPLC-MS)) yielded several target bacterial strains. Among these strains, the ethyl acetate (EA) crude extract of Streptomyces sp. XY-FW47 fermentation broth showed strong antibacterial activity against methicillin-resistant Staphylococcus aureus ATCC43300 (MRSA ATCC43300) and potent cytotoxic effects on HeLa cells. The UPLC-MS spectral analysis of the crude extract indicated that the strain XY-FW47 could produce a series of geldanamycins (GMs). One new geldanamycin (GM) analog, 4,5-dihydro-17-O-demethylgeldanamycin (1), and three known GMs (2–4) were obtained. All of these compounds were tested for antibacterial, cytotoxic, and antifungal activities, yet only GM (3) showed potent cytotoxic (HeLa cells, EC50 = 1.12 μg/mL) and antifungal (Setosphaeria turcica MIC = 2.40 μg/mL) activities. Their structure–activity relationship (SAR) was also preliminarily discussed in this study.
Collapse
Affiliation(s)
- Hui-Na Lin
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Kai-Ling Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Ze-Hong Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| | - Ren-Mao Tian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Guo-Zhu Liu
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, China.
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|