1
|
Dörschmann P, Hunger F, Schroth H, Chen S, Kopplin G, Roider J, Klettner A. Effects of Fucoidans on Activated Retinal Microglia. Int J Mol Sci 2024; 25:6018. [PMID: 38892206 PMCID: PMC11173224 DOI: 10.3390/ijms25116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Sulfated marine polysaccharides, so-called fucoidans, have been shown to exhibit anti-inflammatory and immunomodulatory activities in retinal pigment epithelium (RPE). In this study, we tested the effects of different fucoidans (and of fucoidan-treated RPE cells) on retinal microglia to investigate whether its anti-inflammatory effect can be extrapolated to the innate immune cells of the retina. In addition, we tested whether fucoidan treatment influenced the anti-inflammatory effect of RPE cells on retinal microglia. Three fucoidans were tested (FVs from Fucus vesiculosus, Fuc1 and FucBB04 from Laminaria hyperborea) as well as the supernatant of primary porcine RPE treated with fucoidans for their effects on inflammatory activated (using lipopolysaccharide, LPS) microglia cell line SIM-A9 and primary porcine retinal microglia. Cell viability was detected with a tetrazolium assay (MTT), and morphology by Coomassie staining. Secretion of tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL1β) and interleukin 8 (IL8) was detected with ELISA, gene expression (NOS2 (Nitric oxide synthase 2), and CXCL8 (IL8)) with qPCR. Phagocytosis was detected with a fluorescence assay. FucBB04 and FVs slightly reduced the viability of SIM-A9 and primary microglia, respectively. Treatment with RPE supernatants increased the viability of LPS-treated primary microglia. FVs and FucBB04 reduced the size of LPS-activated primary microglia, indicating an anti-inflammatory phenotype. RPE supernatant reduced the size of LPS-activated SIM-A9 cells. Proinflammatory cytokine secretion and gene expression in SIM-A9, as well as primary microglia, were not significantly affected by fucoidans, but RPE supernatants reduced the secretion of LPS-induced proinflammatory cytokine secretion in SIM-A9 and primary microglia. The phagocytosis ability of primary microglia was reduced by FucBB04. In conclusion, fucoidans exhibited only modest effects on inflammatorily activated microglia by maintaining their cell size under stimulation, while the anti-inflammatory effect of RPE cells on microglia irrespective of fucoidan treatment could be confirmed, stressing the role of RPE in regulating innate immunity in the retina.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Florentine Hunger
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Hannah Schroth
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Sibei Chen
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Georg Kopplin
- Alginor ASA, Haraldsgata 162, 5525 Haugesund, Norway;
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| |
Collapse
|
2
|
Yu H, Zhang Q, Farooqi AA, Wang J, Yue Y, Geng L, Wu N. Opportunities and challenges of fucoidan for tumors therapy. Carbohydr Polym 2024; 324:121555. [PMID: 37985117 DOI: 10.1016/j.carbpol.2023.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
The large-scale collections, screening and discovery of biologically active and pharmacologically significant marine-derived natural products have garnered tremendous attraction. Edible brown algae are rich in fucoidan. Importantly, fucoidan has been reported to inhibit carcinogenesis and metastasis mainly through the regulation of deregulated cell signaling pathways. This review summarizes the structural features of fucoidan, including monosaccharide type, sulfate content, and main chain structure. We have set spotlight on fucoidan-mediated tumor suppressive effects in cell cultures studies and tumor-bearing rodent models. Fucoidan exerts anti-tumor effects primarily through the inhibition of tumor cell viability, proliferation and metastatic dissemination of cancer cells from primary tumor sites to distant secondary sites. Fucoidan not only promotes immunological responses in tumor microenvironment but also induces apoptotic death in cancer cells. In addition, fucoidan can be used as a dietary supplement for preventive purposes, in combination with other drugs as complementary and alternative medicine or with nanoparticle modifications will be the future of fucoidan use. Cutting-edge research related to fucoidan has catalyzed the transition of fucoidan from preclinical studies to different phases of clinical trials. Rationally designed clinical trials for the critical evaluation of fucoidan against different cancers will be valuable to reap full benefits.
Collapse
Affiliation(s)
- Haoyu Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Ionita I, Malita D, Dehelean C, Olteanu E, Marcovici I, Geamantan A, Chiriac S, Roman A, Radu D. Experimental Models for Rare Melanoma Research-The Niche That Needs to Be Addressed. Bioengineering (Basel) 2023; 10:673. [PMID: 37370604 DOI: 10.3390/bioengineering10060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma, the tumor arising from the malignant transformation of pigment-producing cells-the melanocytes-represents one of the most severe cancer types. Despite their rarity compared to cutaneous melanoma, the extracutaneous subtypes such as uveal melanoma (UM), acral lentiginous melanoma (ALM), and mucosal melanoma (MM) stand out due to their increased aggressiveness and mortality rate, demanding continuous research to elucidate their specific pathological features and develop efficient therapies. Driven by the emerging progresses made in the preclinical modeling of melanoma, the current paper covers the most relevant in vitro, in vivo, and in ovo systems, providing a deeper understanding of these rare melanoma subtypes. However, the preclinical models for UM, ALM, and MM that were developed so far remain scarce, and none of them is able to completely simulate the complexity that is characteristic to these melanomas; thus, a continuous expansion of the existing library of experimental models is pivotal for driving advancements in this research field. An overview of the applicability of precision medicine in the management of rare melanoma subtypes is also provided.
Collapse
Affiliation(s)
- Ioana Ionita
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Daniel Malita
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Emilian Olteanu
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andreea Geamantan
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Sorin Chiriac
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andrea Roman
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Daniela Radu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Dörschmann P, Thalenhorst T, Seeba C, Tischhöfer MT, Neupane S, Roider J, Alban S, Klettner A. Comparison of Fucoidans from Saccharina latissima Regarding Age-Related Macular Degeneration Relevant Pathomechanisms in Retinal Pigment Epithelium. Int J Mol Sci 2023; 24:7939. [PMID: 37175646 PMCID: PMC10178501 DOI: 10.3390/ijms24097939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Fucoidans from brown algae are described as anti-inflammatory, antioxidative, and antiangiogenic. We tested two Saccharina latissima fucoidans (SL-FRO and SL-NOR) regarding their potential biological effects against age-related macular degeneration (AMD). Primary porcine retinal pigment epithelium (RPE), human RPE cell line ARPE-19, and human uveal melanoma cell line OMM-1 were used. Cell survival was assessed in tetrazolium assay (MTT). Oxidative stress assays were induced with erastin or H2O2. Supernatants were harvested to assess secreted vascular endothelial growth factor A (VEGF-A) in ELISA. Barrier function was assessed by measurement of trans-epithelial electrical resistance (TEER). Protectin (CD59) and retinal pigment epithelium-specific 65 kDa protein (RPE65) were evaluated in western blot. Polymorphonuclear elastase and complement inhibition assays were performed. Phagocytosis of photoreceptor outer segments was tested in a fluorescence assay. Secretion and expression of proinflammatory cytokines were assessed with ELISA and real-time PCR. Fucoidans were chemically analyzed. Neither toxic nor antioxidative effects were detected in ARPE-19 or OMM-1. Interleukin 8 gene expression was slightly reduced by SL-NOR but induced by SL-FRO in RPE. VEGF secretion was reduced in ARPE-19 by SL-FRO and in RPE by both fucoidans. Polyinosinic:polycytidylic acid induced interleukin 6 and interleukin 8 secretion was reduced by both fucoidans in RPE. CD59 expression was positively influenced by fucoidans, and they exhibited a complement and elastase inhibitory effect in cell-free assay. RPE65 expression was reduced by SL-NOR in RPE. Barrier function of RPE was transiently reduced. Phagocytosis ability was slightly reduced by both fucoidans in primary RPE but not in ARPE-19. Fucoidans from Saccharina latissima, especially SL-FRO, are promising agents against AMD, as they reduce angiogenic cytokines and show anti-inflammatory and complement inhibiting properties; however, potential effects on gene expression and RPE functions need to be considered for further research.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Tabea Thalenhorst
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Charlotte Seeba
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | | | - Sandesh Neupane
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Susanne Alban
- Pharmaceutical Institute, University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| |
Collapse
|
5
|
Dörschmann P, Akkurt H, Kopplin G, Mikkelsen MD, Meyer AS, Roider J, Klettner A. Establishment of specific age-related macular degeneration relevant gene expression panels using porcine retinal pigment epithelium for assessing fucoidan bioactivity. Exp Eye Res 2023; 231:109469. [PMID: 37037364 DOI: 10.1016/j.exer.2023.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE Age-related macular degeneration (AMD) is the leading cause of severe vision loss in industrialized nations. Important factors in pathogenesis are oxidative stress, inflammation, and, in the wet form of AMD, angiogenesis. Fucoidans, sulfated polysaccharides from brown algae, may have antioxidant, anti-inflammatory, and antiangiogenic effects. In this study, we established specific gene expression panels for inflammation, oxidative stress and angiogenesis in porcine retinal pigment epithelium (RPE), and investigated the effect of fucoidans on gene expression under different noxious agents. METHODS Primary porcine RPE cells cultured for at least 14 days were used. Using viability assays with tetrazolium bromide and real-time polymerase chain reaction of marker genes, positive controls were established for appropriate concentrations and exposure times of selected noxious agents (lipopolysaccharide (LPS), H2O2, CoCl2). Three different AMD relevant gene panels specific for porcine RPE for inflammation, oxidative stress, and angiogenesis were established, and the influence of fucoidans (mainly Fucus vesiculosus; FV) on gene expression was investigated. RESULTS The following was shown by gene expression analyses: (1) Inflammation panel: Expression of 18 genes was affected under LPS (three days). Among them, LPS increased genes for interleukin 1 receptor 2, interleukin 8, cyclooxygenase-2 and vascular cell adhesion protein 1 expression which were diminished when FV was present. (2) Oxidative stress panel: Under stimulation of H2O2 (one day) and LPS (one day), expression of a total of 15 genes was affected. LPS induced increase in genes for superoxide dismutase-1, C-X-C motif chemokine 10, and CC chemokine ligand-5 expression was not detected when FV was present. (3) Angiogenesis panel: Under stimulation with CoCl2 (three days) expression of six genes was affected, with the increase of genes for angiopoietin 2, vascular endothelial growth factor receptor-1, and follistatin being diminished when FV was present. CONCLUSION Three specific gene expression panels for porcine RPE that map genes for three of the major pathological factors of AMD, inflammation, oxidative stress, and angiogenesis, were established. Further, we demonstrated that fucoidans can reduce stress related gene activation in all of these three major pathogenic pathways. This study is another indication that fucoidans can act on different pathomechanisms of AMD simultaneously, which provides further evidence for fucoidans as a possible drug for treatment and prevention of AMD.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Kiel University, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany.
| | - Hubeydullah Akkurt
- Kiel University, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Georg Kopplin
- Alginor ASA, Haraldsgata 162, 5525, Haugesund, Norway
| | | | - Anne S Meyer
- Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Johann Roider
- Kiel University, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Alexa Klettner
- Kiel University, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| |
Collapse
|
6
|
Dörschmann P, Seeba C, Thalenhorst T, Roider J, Klettner A. Anti-inflammatory properties of antiangiogenic fucoidan in retinal pigment epithelium cells. Heliyon 2023; 9:e15202. [PMID: 37123974 PMCID: PMC10130777 DOI: 10.1016/j.heliyon.2023.e15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease in which angiogenesis, oxidative stress and inflammation are important contributing factors. In this study, we investigated the anti-inflammatory effects of a fucoidan from the brown algae Fucus vesiculosus (FV) in primary porcine RPE cells. Inflammation was induced by lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (Poly I:C), Pam2CSK4 (Pam), or tumor necrosis factor alpha (TNF-α). Cell viability was tested with thiazolyl blue tetrazolium bromide (MTT) test, barrier function by measuring transepithelial electric resistance (TEER), interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion in ELISA, retinal pigment epithelium-specific 65 kDa protein (RPE65) and protectin (CD59) expression in Western blot, gene expression with quantitative polymerase chain reaction (qPCR) (IL6, IL8, MERTK, PIK3CA), and phagocytotic activity in a microscopic assay. FV fucoidan did not influence RPE cell viability. FV fucoidan reduced the Poly I:C proinflammatory cytokine secretion of IL-6 and IL-8. In addition, it decreased the expression of IL-6 and IL-8 in RT-PCR. LPS and TNF-α reduced the expression of CD59 in Western blot, this reduction was lost under FV fucoidan treatment. Also, LPS and TNF-α reduced the expression of visual cycle protein RPE65, this reduction was again lost under FV fucoidan treatment. Furthermore, the significant reduction of barrier function after Poly I:C stimulation is ameliorated by FV fucoidan. Concerning phagocytosis, however, the inflammation-induced reduction was not improved by FV fucoidan. FV and proinflammatory milieu did not relevantly influence phagocytosis relevant gene expression either. In conclusion, we show that fucoidan from FV can reduce proinflammatory stimulation in RPE induced by toll-like receptor 3 (TLR-3) activation and is of high interest as a potential compound for early AMD treatment.
Collapse
|
7
|
Dörschmann P, Kopplin G, Roider J, Klettner A. Interaction of High-Molecular Weight Fucoidan from Laminaria hyperborea with Natural Functions of the Retinal Pigment Epithelium. Int J Mol Sci 2023; 24:2232. [PMID: 36768552 PMCID: PMC9917243 DOI: 10.3390/ijms24032232] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Fucoidans are polysaccharides and constituents of cell walls of brown algae such as Laminaria hyperborea (LH). They exhibit promising effects regarding age-related macular degeneration (AMD). However, the safety of this compound needs to be assured. The focus of this study lies on influences of an LH fucoidan on the retinal pigment epithelium (RPE). The high-molecular weight LH fucoidan Fuc1 was applied to primary porcine RPE cells, and a tetrazolium (MTT) cell viability assay was conducted. Further tests included a scratch assay to measure wound healing, Western blotting to measure expression of retinal pigment epithelium-specific 65 kDa protein (RPE65), as well as immunofluorescence to measure uptake of opsonized fluorescence beads into RPE cells. Lipopolysaccharide was used to proinflammatorily activate the RPE, and interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion was measured. RPE/choroid cultures were used to assess vascular endothelial growth factor (VEGF) secretion. Real-time polymerase chain reaction (real-time PCR) was performed to detect the gene expression of 91 different genes in a specific porcine RPE gene array. Fuc1 slightly reduced wound healing, but did not influence cell viability, phagocytosis or RPE65 expression. Fuc1 lowered IL-6, IL-8 and VEGF secretion. Furthermore, Fuc1 did not change tested RPE genes. In conclusion, Fuc1 does not impair RPE cellular functions and shows antiangiogenic and anti-inflammatory activities, which indicates its safety and strengthens its suitability concerning ocular diseases.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Georg Kopplin
- Alginor ASA, Haraldsgata 162, 5525 Haugesund, Norway
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| |
Collapse
|
8
|
Influence of carrier materials and coatings on retinal pigment epithelium cultivation and functions. Exp Eye Res 2022; 219:109063. [DOI: 10.1016/j.exer.2022.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
|
9
|
Park AY, Nafia I, Stringer DN, Karpiniec SS, Fitton JH. Fucoidan Independently Enhances Activity in Human Immune Cells and Has a Cytostatic Effect on Prostate Cancer Cells in the Presence of Nivolumab. Mar Drugs 2021; 20:12. [PMID: 35049864 PMCID: PMC8779234 DOI: 10.3390/md20010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Fucoidan compounds may increase immune activity and are known to have cancer inhibitory effects in vitro and in vivo. In this study, we aimed to investigate the effect of fucoidan compounds on ex vivo human peripheral blood mononuclear cells (PBMCs), and to determine their cancer cell killing activity both solely, and in combination with an immune-checkpoint inhibitor drug, Nivolumab. Proliferation of PBMCs and interferon gamma (IFNγ) release were assessed in the presence of fucoidan compounds extracted from Fucus vesiculosus, Undaria pinnatifida and Macrocystis pyrifera. Total cell numbers and cell killing activity were assessed using a hormone resistant prostate cancer cell line, PC3. All fucoidan compounds activated PBMCs, and increased the effects of Nivolumab. All fucoidan compounds had significant direct cytostatic effects on PC3 cells, reducing cancer cell numbers, and PBMCs exhibited cell killing activity as measured by apoptosis. However, there was no fucoidan mediated increase in the cell killing activity. In conclusion, fucoidan compounds promoted proliferation and activity of PBMCs and added to the effects of Nivolumab. Fucoidan compounds all had a direct cytostatic effect on PC3 cells, as shown through their proliferation reduction, while their killing was not increased.
Collapse
Affiliation(s)
- Ah Young Park
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - Imane Nafia
- Explicyte Immuno-Oncology, 33000 Bordeaux, France;
| | - Damien N. Stringer
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - Samuel S. Karpiniec
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
| | - J. Helen Fitton
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (D.N.S.); (S.S.K.); (J.H.F.)
- RDadvisor, Hobart, TAS 7006, Australia
| |
Collapse
|
10
|
Dörschmann P, Apitz S, Hellige I, Neupane S, Alban S, Kopplin G, Ptak S, Fretté X, Roider J, Zille M, Klettner A. Evaluation of the Effects of Fucoidans from Fucus Species and Laminaria hyperborea against Oxidative Stress and Iron-Dependent Cell Death. Mar Drugs 2021; 19:557. [PMID: 34677456 PMCID: PMC8538076 DOI: 10.3390/md19100557] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Fucoidans are algal polysaccharides that exhibit protective properties against oxidative stress. The aim of this study was to investigate different fucoidans from brown seaweeds for their ability to protect against iron-dependent oxidative stress (ferroptosis), a main hallmark of retinal and brain diseases, including hemorrhage. We investigated five new high-molecular weight fucoidan extracts from Fucus vesiculosus, F. serratus, and F. distichus subsp. evanescens, a previously published Laminaria hyperborean extract, and commercially available extracts from F. vesiculosus and Undaria pinnatifida. We induced oxidative stress by glutathione depletion (erastin) and H2O2 in four retinal and neuronal cell lines as well as primary cortical neurons. Only extracts from F. serratus, F. distichus subsp. evanescens, and Laminaria hyperborea were partially protective against erastin-induced cell death in ARPE-19 and OMM-1 cells, while none of the extracts showed beneficial effects in neuronal cells. Protective fucoidans also attenuated the decrease in protein levels of the antioxidant enzyme GPX4, a key regulator of ferroptosis. This comprehensive analysis demonstrates that the antioxidant abilities of fucoidans may be cell type-specific, besides depending on the algal species and extraction method. Future studies are needed to further characterize the health-benefiting effects of fucoidans and to determine the exact mechanism underlying their antioxidative abilities.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (P.D.); (S.A.); (J.R.)
| | - Sarah Apitz
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (P.D.); (S.A.); (J.R.)
| | - Inga Hellige
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Mönkhofer Weg 239a, 23562 Lübeck, Germany; (I.H.); (M.Z.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, Mönkhofer Weg 239a, 23562 Lübeck, Germany
| | - Sandesh Neupane
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany; (S.N.); (S.A.)
| | - Susanne Alban
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany; (S.N.); (S.A.)
| | - Georg Kopplin
- Alginor ASA, Haraldsgata 162, 5525 Haugesund, Norway;
| | - Signe Ptak
- Department of Chemical Engineering, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (S.P.); (X.F.)
| | - Xavier Fretté
- Department of Chemical Engineering, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (S.P.); (X.F.)
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (P.D.); (S.A.); (J.R.)
| | - Marietta Zille
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Mönkhofer Weg 239a, 23562 Lübeck, Germany; (I.H.); (M.Z.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, Mönkhofer Weg 239a, 23562 Lübeck, Germany
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, UZA II, Althanstraße 14, 1090 Vienna, Austria
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (P.D.); (S.A.); (J.R.)
| |
Collapse
|
11
|
Dörschmann P, Schmitt C, Bittkau KS, Neupane S, Synowitz M, Roider J, Alban S, Held-Feindt J, Klettner A. Evaluation of a Brown Seaweed Extract from Dictyosiphon foeniculaceus as a Potential Therapeutic Agent for the Treatment of Glioblastoma and Uveal Melanoma. Mar Drugs 2020; 18:E625. [PMID: 33302412 PMCID: PMC7762554 DOI: 10.3390/md18120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Ingredients of brown seaweed like fucoidans are often described for their beneficial biological effects, that might be interesting for a medical application. In this study, we tested an extract from Dictyosiphon foeniculaceus (DF) to evaluate the effects in glioblastoma and uveal melanoma, looking for a possible anti-cancer treatment. We investigated toxicity, VEGF (vascular endothelial growth factor) secretion and gene expression of tumor and non-tumor cells. SVGA (human fetal astrocytes), the human RPE (retinal pigment epithelium) cell line ARPE-19, the tumor cell line OMM-1 (human uveal melanoma), and two different human primary glioblastoma cultures (116-14 and 118-14) were used. Tests for cell viability were conducted with MTS-Assay (3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), and the proliferation rate was determined with cell counting. VEGF secretion was assessed with ELISA (enzyme-linked immunosorbent assay). The gene expression of VEGF receptor 1 (VEGFR1), VEGF receptor 2 (VEGFR2) and VEGF-A was determined with real-time qPCR (quantitative polymerase chain reaction). DF lowered the cell viability of OMM-1. Proliferation rates of ARPE-19 and OMM-1 were decreased. The VEGF secretion was inhibited in ARPE-19 and OMM-1, whereas it was increased in SVGA and 116-14. The expression of VEGFR1 was absent and not influenced in OMM-1 and ARPE-19. VEGFR2 expression was lowered in 116-14 after 24 h, whereas VEGF-A was increased in 118-14 after 72 h. The extract lowered cell viability slightly and was anti-proliferative depending on the cell type investigated. VEGF was heterogeneously affected. The results in glioblastoma were not promising, but the anti-tumor properties in OMM-1 could make them interesting for further research concerning cancer diseases in the human eye.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (J.R.); (A.K.)
| | | | - Kaya Saskia Bittkau
- Pharmaceutical Institute, Kiel University, D-24118 Kiel, Germany; (K.S.B.); (S.N.); (S.A.)
| | - Sandesh Neupane
- Pharmaceutical Institute, Kiel University, D-24118 Kiel, Germany; (K.S.B.); (S.N.); (S.A.)
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (M.S.); (J.H.-F.)
| | - Johann Roider
- Department of Ophthalmology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (J.R.); (A.K.)
| | - Susanne Alban
- Pharmaceutical Institute, Kiel University, D-24118 Kiel, Germany; (K.S.B.); (S.N.); (S.A.)
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (M.S.); (J.H.-F.)
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (J.R.); (A.K.)
| |
Collapse
|
12
|
Dörschmann P, Klettner A. Fucoidans as Potential Therapeutics for Age-Related Macular Degeneration-Current Evidence from In Vitro Research. Int J Mol Sci 2020; 21:E9272. [PMID: 33291752 PMCID: PMC7729934 DOI: 10.3390/ijms21239272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is the major reason for blindness in the industrialized world with limited treatment options. Important pathogenic pathways in AMD include oxidative stress and vascular endothelial growth factor (VEGF) secretion. Due to their bioactivities, fucoidans have recently been suggested as potential therapeutics. This review gives an overview of the recent developments in this field. Recent studies have characterized several fucoidans from different species, with different molecular characteristics and different extraction methods, in regard to their ability to reduce oxidative stress and inhibit VEGF in AMD-relevant in vitro systems. As shown in these studies, fucoidans exhibit a species dependency in their bioactivity. Additionally, molecular properties such as molecular weight and fucose content are important issues. Fucoidans from Saccharina latissima and Laminaria hyperborea were identified as the most promising candidates for further development. Further research is warranted to establish fucoidans as potential therapeutics for AMD.
Collapse
Affiliation(s)
| | - Alexa Klettner
- Department of Ophthalmology, Campus Kiel, University Medical Center Schleswig-Holstein UKSH, 24105 Kiel, Germany;
| |
Collapse
|
13
|
Klettner A, Brinkmann A, Winkelmann K, Käckenmeister T, Hildebrandt J, Roider J. Effect of long-term inflammation on viability and function of RPE cells. Exp Eye Res 2020; 200:108214. [PMID: 32898511 DOI: 10.1016/j.exer.2020.108214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Degenerative ocular disorders like age-related macular degeneration (AMD) are associated with long-term pro-inflammatory signals on retinal pigment epithelial (RPE) cells. In this study, we investigated the effect of long term treatment of RPE cells with agonists of toll-like receptor (TLR) -3 (Polyinosinic:polycytidylic acid, Poly I:C), TLR-4 (lipopolysaccharide, LPS) and the pro-inflammatory cytokine TNFα. METHODS All tests were conducted with primary porcine RPE. Cells were stimulated with Poly I:C (1, 10, 100 μg/ml), LPS (0.1, 1, 10 μg/ml) or TNFα (12.5, 25 or 50 ng/ml) for 1 day, 7 days or 4 weeks. Cell viability tests (MTT) were additionally tested in ARPE-19 cells. Cytokine secretion (IL-6, IL-1β, IL-8, TNFα, TGF-β) was tested in ELISA, phagocytosis in a microscopic assay, and expression of RPE65 in Western blot. Barrier function was tested in transwell-cultured cells by measuring transepithelial resistance for up to 3 days. RESULTS LPS and TNFα significantly reduce cell viability after 1 day and 7 days, Poly I:C after 7 days and 4 weeks. LPS, Poly I:C and TNFα significantly induce the secretion of IL-6 and IL-8 at all tested time points. IL-1β is increased by LPS and Poly I:C after 1 day, but not by TNFα. TNFα secretion is increased by Poly I:C and LPS after 1 day but not at later time points. TGF-β secretion is not influenced by any stimulus. Concerning RPE function, LPS decreased phagocytosis after 7 days, while Poly I:C and TNFα showed no effect. RPE65 expression was strongly reduced by TNFα and LPS after 4 weeks. Wound healing capacity was reduced by Poly I:C but induced by LPS after 7 d and 4 w. Barrier function was not affected by Poly I:C or LPS, while TNFα reduced barrier function after 1 h, 4 h and 3 days. CONCLUSION Long term pro-inflammatory stimuli reduce RPE viability, barrier properties and cellular function and induce pro-inflammatory cytokines and therefore may contribute directly to atrophic changes in AMD.
Collapse
Affiliation(s)
- Alexa Klettner
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany.
| | - Anna Brinkmann
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Katrin Winkelmann
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Tom Käckenmeister
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Julia Hildebrandt
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Johann Roider
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| |
Collapse
|
14
|
Dörschmann P, Mikkelsen MD, Thi TN, Roider J, Meyer AS, Klettner A. Effects of a Newly Developed Enzyme-Assisted Extraction Method on the Biological Activities of Fucoidans in Ocular Cells. Mar Drugs 2020; 18:E282. [PMID: 32466624 PMCID: PMC7344579 DOI: 10.3390/md18060282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Fucoidans from brown seaweeds are promising substances as potential drugs against age-related macular degeneration (AMD). The heterogeneity of fucoidans requires intensive research in order to find suitable species and extraction methods. Ten different fucoidan samples extracted enzymatically from Laminaria digitata (LD), Saccharina latissima (SL) and Fucus distichus subsp. evanescens (FE) were tested for toxicity, oxidative stress protection and VEGF (vascular endothelial growth factor) inhibition. For this study crude fucoidans were extracted from seaweeds using different enzymes and SL fucoidans were further separated into three fractions (SL_F1-F3) by ion-exchange chromatography (IEX). Fucoidan composition was analyzed by high performance anion exchange chromatography (HPAEC) after acid hydrolysis. The crude extracts contained alginate, while two of the fractionated SL fucoidans SL_F2 and SL_F3 were highly pure. Cell viability was assessed with an 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay in OMM-1 and ARPE-19. Protective effects were investigated after 24 h of stress insult in OMM-1 and ARPE-19. Secreted VEGF was analyzed via ELISA (enzyme-linked immunosorbent assay) in ARPE-19 cells. Fucoidans showed no toxic effects. In OMM-1 SL_F2 and several FE fucoidans were protective. LD_SiAT2 (Cellic®CTec2 + Sigma-Aldrich alginate lyase), FE_SiAT3 (Cellic® CTec3 + Sigma-Aldrich alginate lyase), SL_F2 and SL_F3 inhibited VEGF with the latter two as the most effective. We could show that enzyme treated fucoidans in general and the fractionated SL fucoidans SL_F2 and SL_F3 are very promising for beneficial AMD relevant biological activities.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (J.R.); (A.K.)
| | - Maria Dalgaard Mikkelsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (M.D.M.); (T.N.T.); (A.S.M.)
| | - Thuan Nguyen Thi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (M.D.M.); (T.N.T.); (A.S.M.)
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (J.R.); (A.K.)
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (M.D.M.); (T.N.T.); (A.S.M.)
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (J.R.); (A.K.)
| |
Collapse
|
15
|
Oliveira C, Soares AI, Neves NM, Reis RL, Marques AP, Silva TH, Martins A. Fucoidan Immobilized at the Surface of a Fibrous Mesh Presents Toxic Effects over Melanoma Cells, But Not over Noncancer Skin Cells. Biomacromolecules 2020; 21:2745-2754. [DOI: 10.1021/acs.biomac.0c00482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Catarina Oliveira
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana I. Soares
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Alexandra P. Marques
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
16
|
Delma CR, Thirugnanasambandan S, Srinivasan GP, Raviprakash N, Manna SK, Natarajan M, Aravindan N. Fucoidan from marine brown algae attenuates pancreatic cancer progression by regulating p53 - NFκB crosstalk. PHYTOCHEMISTRY 2019; 167:112078. [PMID: 31450091 DOI: 10.1016/j.phytochem.2019.112078] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Poor pancreatic cancer (PC) prognosis has been attributed to its resistance to apoptosis and propensity for early systemic dissemination. Existing therapeutic strategies are often circumvented by the molecular crosstalk between cell-signalling pathways. p53 is mutated in more than 50% of PC and NFκB is constitutively activated in therapy-resistant residual disease; these mutations and activations account for the avoidance of cell death and metastasis. Recently, we demonstrated the anti-PC potential of fucoidan extract from marine brown alga, Turbinaria conoides (J. Agardh) Kützing (Sargassaceae). In this study, we aimed to characterize the active fractions of fucoidan extract to identify their select anti-PC efficacy, and to define the mechanism(s) involved. Five fractions of fucoidan isolated by ion exchange chromatography were tested for their potential in genetically diverse human PC cell lines. All fractions exerted significant dose-dependent and time-dependent regulation of cell survival. Fucoidans induced apoptosis, activated caspase -3, -8 and -9, and cleaved Poly ADP ribose polymerase (PARP). Pathway-specific transcriptional analysis recognized inhibition of 57 and 38 nuclear factor κB (NFκB) pathway molecules with fucoidan-F5 in MiaPaCa-2 and Panc-1 cells, respectively. In addition, fucoidan-F5 inhibited both the constitutive and Tumor necrosis factor-α (TNFα)-mediated NFκB DNA-binding activity in PC cells. Upregulation of cytoplasmic IκB levels and significant reduction of NFκB-dependent luciferase activity further substantiate the inhibitory potential of seaweed fucoidans on NFκB. Moreover, fucoidan(s) treatment increased cellular p53 in PC cells and reverted NFκB forced-expression-related p53 reduction. The results suggest that fucoidan regulates PC progression and that fucoidans may target p53-NFκB crosstalk and dictate apoptosis in PC cells.
Collapse
Affiliation(s)
- Caroline R Delma
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, TN, India; Department of Pathology, University of Texas Health Sciences Center at San Antonio, TX, USA.
| | | | - Guru Prasad Srinivasan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, TN, India
| | - Nune Raviprakash
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, AP, India
| | - Sunil K Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, AP, India
| | - Mohan Natarajan
- Department of Pathology, University of Texas Health Sciences Center at San Antonio, TX, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
Oliveira C, Granja S, Neves NM, Reis RL, Baltazar F, Silva TH, Martins A. Fucoidan from Fucus vesiculosus inhibits new blood vessel formation and breast tumor growth in vivo. Carbohydr Polym 2019; 223:115034. [PMID: 31426965 DOI: 10.1016/j.carbpol.2019.115034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
Fucoidan is a marine-origin sulfated polysaccharide that can show anticancer activity, to which both pro- and anti-angiogenic responses have been reported. Due to this unpredictability, the angiogenic potential of an effective anticancer crude fucoidan (CF), at a concentration of 0.5 mg mL-1, was evaluated. Tube formation assays demonstrated that CF, either administered while endothelial cells seeding or after their adhesion, migration and organization, inhibited or disrupted the formation of tubular-like structures, respectively. Although CF did not significantly reduced vascular endothelial growth factor (VEGF) secretion, it significantly reduced the expression of platelet-derived growth factor (PDGF), compromising the blood vessels maturation. Two chicken embryo chorioallantoic membrane (CAM) assays were performed: one without tumor (CAM I) and the other with an onplanted tumor mass (CAM II); the CF injection reduced the number of blood of vessels and significantly decreased the tumor size, respectively. In vitro and in vivo results support the effectiveness of fucoidan as a natural antitumor therapeutic agent.
Collapse
Affiliation(s)
- Catarina Oliveira
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sara Granja
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Nuno M Neves
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Fátima Baltazar
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Tiago H Silva
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Albino Martins
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
18
|
Fitton HJ, Stringer DS, Park AY, Karpiniec SN. Therapies from Fucoidan: New Developments. Mar Drugs 2019; 17:E571. [PMID: 31601041 PMCID: PMC6836154 DOI: 10.3390/md17100571] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Since our last review in 2015, the study and use of fucoidan has extended in several research areas. Clinical use of fucoidan for the treatment of renal disease has become available and human safety studies have been undertaken on radiolabeled fucoidan for the purpose of imaging thrombi. Fucoidan has been incorporated into an increasing number of commercially available supplements and topical treatments. In addition, new measuring techniques are now available to assess the biologically relevant uptake of fucoidans and to assist in production. Microbiome modulation and anti-pathogenic effects are increasingly promising applications for fucoidans, due to the need for alternative approaches to antibiotic use in the food chain. This review outlines promising new developments in fucoidan research, including potential future therapeutic use.
Collapse
Affiliation(s)
- Helen J Fitton
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Damien S Stringer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| | - Ah Young Park
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| | - Samuel N Karpiniec
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| |
Collapse
|
19
|
Dörschmann P, Kopplin G, Roider J, Klettner A. Effects of Sulfated Fucans from Laminaria hyperborea Regarding VEGF Secretion, Cell Viability, and Oxidative Stress and Correlation with Molecular Weight. Mar Drugs 2019; 17:E548. [PMID: 31557816 PMCID: PMC6835690 DOI: 10.3390/md17100548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sulfated fucans show interesting effects in the treatment of ocular diseases (e.g., age-related macular degeneration), depending on their chemical structure. Here, we compared three purified sulfated fucans from Laminaria hyperborea (LH) regarding cell viability, oxidative stress protection, and vascular endothelial growth factor (VEGF) secretion in ocular cells. METHODS High-molecular-weight sulfated fucan (Mw = 1548.6 kDa, Fuc1) was extracted with warm water and purified through ultrafiltration. Lower-molecular-weight samples (Mw = 499 kDa, Fuc2; 26.9 kDa, Fuc3) were obtained by mild acid hydrolysis of ultrapurified sulfated fucan and analyzed (SEC-MALS (Size-exclusion chromatography-Multi-Angle Light Scattering), ICP-MS, and GC). Concentrations between 1 and 100 µg/mL were tested. Cell viability was measured after 24 h (uveal melanoma cell line (OMM-1), retinal pigment epithelium (RPE) cell line ARPE-19, primary RPE cells) via MTT/MTS (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide/3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Oxidative stress protection was determined after 24 h (OMM-1, ARPE-19). VEGF secretion was analyzed via ELISA after three days (ARPE-19, RPE). RESULTS Fuc2 and Fuc3 were antiproliferative for OMM-1, but not for ARPE. Fuc1 protected OMM-1. VEGF secretion was lowered with all fucans except Fuc3 in ARPE-19 and RPE. The results suggest a correlation between molecular weight and biological activity, with efficiency increasing with size. CONCLUSION The LH sulfated fucan Fuc1 showed promising results regarding VEGF inhibition and protection, encouraging further medical research.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| | - Georg Kopplin
- Alginor ASA, Haraldsgata 162, 5525 Haugesund, Norway.
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU, 7491 Trondheim, Norway.
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| |
Collapse
|
20
|
Rohwer K, Neupane S, Bittkau KS, Pérez MG, Dörschmann P, Roider J, Alban S, Klettner A. Effects of Crude Fucus distichus Subspecies evanescens Fucoidan Extract on Retinal Pigment Epithelium Cells-Implications for Use in Age-Related Macular Degeneration. Mar Drugs 2019; 17:E538. [PMID: 31527536 PMCID: PMC6780902 DOI: 10.3390/md17090538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
Fucoidan extracts may have beneficial effects in age-related macular degeneration(AMD). Over-the-counter fucoidan preparations are generally undefined, crude extracts. In thisstudy, we investigated the effect of a crude fucoidan extract from Fucus distichus subspeciesevanescens (Fe) on the retinal pigment epithelium (RPE). Fe extract was investigated for chemicalcomposition and molar mass. It was tested in primary RPE and RPE cell line ARPE19. Oxidativestress was induced with tert-butyl hydroperoxide, cell viability evaluated with MTT assay, VEGFsecretion assessed in ELISA. Phagocytosis was evaluated in a fluorescence microscopic assay.Wound healing ability was tested in a scratch assay. Additionally, the inhibition of elastase andcomplement system by Fe extract was studied. The Fe extract contained about 61.9% fucose andhigh amounts of uronic acids (26.2%). The sulfate content was not as high as expected (6.9%). It wasnot toxic and not protective against oxidative stress. However, Fe extract was able to reduce VEGFsecretion in ARPE19. Phagocytosis was also reduced. Concerning wound healing, a delay could beobserved in higher concentrations. While some beneficial effects could be found, it seems tointerfere with RPE function, which may reduce its beneficial effects in AMD treatment.
Collapse
Affiliation(s)
- Kevin Rohwer
- Department of Ophthalmology, University Medical Center, University of Kiel, 24105 Kiel, Germany; (K.R.); (P.D.); (J.R.)
| | - Sandesh Neupane
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, 24105 Kiel, Germany; (S.N.); (K.S.B.); (M.G.P.); (S.A.)
| | - Kaya Saskia Bittkau
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, 24105 Kiel, Germany; (S.N.); (K.S.B.); (M.G.P.); (S.A.)
| | - Mayra Galarza Pérez
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, 24105 Kiel, Germany; (S.N.); (K.S.B.); (M.G.P.); (S.A.)
| | - Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, 24105 Kiel, Germany; (K.R.); (P.D.); (J.R.)
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, 24105 Kiel, Germany; (K.R.); (P.D.); (J.R.)
| | - Susanne Alban
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, 24105 Kiel, Germany; (S.N.); (K.S.B.); (M.G.P.); (S.A.)
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, 24105 Kiel, Germany; (K.R.); (P.D.); (J.R.)
| |
Collapse
|
21
|
Bittkau KS, Dörschmann P, Blümel M, Tasdemir D, Roider J, Klettner A, Alban S. Comparison of the Effects of Fucoidans on the Cell Viability of Tumor and Non-Tumor Cell Lines. Mar Drugs 2019; 17:E441. [PMID: 31357497 PMCID: PMC6722501 DOI: 10.3390/md17080441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Fucoidans extracted from brown algae exert manifold biological activities paving the way for the development of numerous applications including treatments outside tumor therapy such as age-related macular degeneration or tissue engineering. In this study, we investigated the antiproliferative effects of fucoidans extracted from six different algae (Fucus vesiculosus, F. serratus, F. distichus subsp. evanescens, Dictyosiphon foeniculaceus, Laminaria digitata, Saccharina latissima) as well as three reference compounds (Sigma fucoidan, heparin, enoxaparin) on tumor (HL-60, Raji, HeLa, OMM-1, A-375, HCT-116, Hep G2) and non-tumor (ARPE-19, HaCaT) cell lines. All fucoidans were extracted according to a standardized procedure and tested in a commercially available MTS assay. Cell viability was measured after 24 h incubation with test compounds (1-100 µg/mL). Apart from few exceptions, fucoidans and heparins did not impair cell viability. In contrast, fucoidans significantly increased cell viability of suspension cell lines, but not of adherent cells. Fucoidans slightly increased viability of tumor cells and had no impact on the viability of non-tumor cells. The cell viability of HeLa and ARPE-19 cells negatively correlated with protein content and total phenolic content (TPC) of fucoidans, respectively. In summary, none of the tested fucoidans turned out to be anti-proliferative, rendering them interesting for future studies and applications.
Collapse
Affiliation(s)
- Kaya Saskia Bittkau
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Philipp Dörschmann
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Johann Roider
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Alexa Klettner
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| | - Susanne Alban
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| |
Collapse
|
22
|
Dörschmann P, Bittkau KS, Neupane S, Roider J, Alban S, Klettner A. Effects of Fucoidans from Five Different Brown Algae on Oxidative Stress and VEGF Interference in Ocular Cells. Mar Drugs 2019; 17:E258. [PMID: 31052228 PMCID: PMC6562460 DOI: 10.3390/md17050258] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fucoidans are interesting for potential usage in ophthalmology, and especially age-related macular degeneration. However, fucoidans from different species may vary in their effects. Here, we compare fucoidans from five algal species in terms of oxidative stress protection and vascular endothelial growth factor (VEGF) interference in ocular cells. METHODS Brown algae (Fucus vesiculosus, Fucus distichus subsp. evanescens, Fucus serratus, Laminaria digitata, Saccharina latissima) were harvested and fucoidans isolated by hot-water extraction. Fucoidans were tested in several concentrations (1, 10, 50, and 100 µg/mL). Effects were measured on a uveal melanoma cell line (OMM-1) (oxidative stress), retinal pigment epithelium (RPE) cell line ARPE19 (oxidative stress and VEGF), and primary RPE cells (VEGF). Oxidative stress was induced by H2O2 or tert-Butyl hydroperoxide (TBHP). Cell viability was investigated with methyl thiazolyl tetrazolium (MTT or MTS) assay, and VEGF secretion with ELISA. Affinity to VEGF was determined by a competitive binding assay. RESULTS All fucoidans protected OMM-1 from oxidative stress. However, in ARPE19, only fucoidan from Saccharina latissima was protective. The affinity to VEGF of all fucoidans was stronger than that of heparin, and all reduced VEGF secretion in ARPE19. In primary RPE, only the fucoidan from Saccharina latissima was effective. CONCLUSION Among the fucoidans from five different species, Saccharina latissima displayed the most promising results concerning oxidative stress protection and reduction of VEGF secretion.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| | - Kaya Saskia Bittkau
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Sandesh Neupane
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| | - Susanne Alban
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| |
Collapse
|
23
|
van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A, Pijnenborg JMA. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar Drugs 2019; 17:E32. [PMID: 30621045 PMCID: PMC6356449 DOI: 10.3390/md17010032] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Fucoidan is a natural derived compound found in different species of brown algae and in some animals, that has gained attention for its anticancer properties. However, the exact mechanism of action is currently unknown. Therefore, this review will address fucoidans structure, the bioavailability, and all known different pathways affected by fucoidan, in order to formulate fucoidans structure and activity in relation to its anti-cancer mechanisms. The general bioactivity of fucoidan is difficult to establish due to factors like species-related structural diversity, growth conditions, and the extraction method. The main pathways influenced by fucoidan are the PI3K/AKT, the MAPK pathway, and the caspase pathway. PTEN seems to be important in the fucoidan-mediated effect on the AKT pathway. Furthermore, the interaction with VEGF, BMP, TGF-β, and estrogen receptors are discussed. Also, fucoidan as an adjunct seems to have beneficial effects, for both the enhanced effectiveness of chemotherapy and reduced toxicity in healthy cells. In conclusion, the multipotent character of fucoidan is promising in future anti-cancer treatment. However, there is a need for more specified studies of the structure⁻activity relationship of fucoidan from the most promising seaweed species.
Collapse
Affiliation(s)
- Geert van Weelden
- Faculty of Science, (Medical) Biology, Radboud University, 6525 XZ Nijmegen, The Netherlands.
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Marcin Bobiński
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Karolina Okła
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Willem Jan van Weelden
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands.
| | - Johanna M A Pijnenborg
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Fucoidan Exerts Anticancer Effects Against Head and Neck Squamous Cell Carcinoma In Vitro. Molecules 2018; 23:molecules23123302. [PMID: 30545161 PMCID: PMC6321539 DOI: 10.3390/molecules23123302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022] Open
Abstract
Fucoidans have been reported to exert anticancer effects with simultaneous low toxicity against healthy tissue. That correlation was observed in several cancer models, however, it has never been investigated in head and neck cancer before. To magnify the efficacy of conventional therapy, the administration of agents like fucoidan could be beneficial. The aim of this study was to evaluate the anticancer effect of Fucus vesiculosus (FV) extract alone and with co-administration of cisplatin in head and neck squamous cell carcinoma (HNSCC) in vitro. MTT assay results revealed an FV-induced inhibition of proliferation in all tested cell lines (H103, FaDu, KB). Flow cytometric cell cycle analysis showed an FV-induced, dose-dependent arrest in either S/G2 phase (H103, FaDu) or G1 arrest (KB). Furthermore, a dose-dependent gain in apoptotic fraction was observed. Western blot analysis confirmed the induction of apoptosis. A significant dose-dependent increase in reactive oxygen species (ROS) production was revealed in the H103 cell line, while FaDu cells remained unresponsive. On the contrary, an HPV-positive cell line, KB, demonstrated a dose-dependent decrease in ROS synthesis. Moreover, fucoidan enhanced the response to cisplatin (synergistic effect) in all cell lines with the HPV-positive one (KB) being the most sensitive. These results have been confirmed by flow-cytometric apoptosis analysis. In conclusion, we confirmed that fucoidan exhibits anticancer properties against HNSCC, which are manifested by the induction of apoptosis, regulation of ROS production, cell cycle arrest, and inhibition of proliferation.
Collapse
|
25
|
Marine Compounds and Cancer: 2017 Updates. Mar Drugs 2018; 16:md16020041. [PMID: 29364147 PMCID: PMC5852469 DOI: 10.3390/md16020041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023] Open
|