1
|
Jimenez-Champi D, Romero-Orejon FL, Muñoz AM, Ramos-Escudero F. The Revalorization of Fishery By-Products: Types, Bioactive Compounds, and Food Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6624083. [PMID: 39105167 PMCID: PMC11300074 DOI: 10.1155/2024/6624083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Recently, fish consumption has been increasing; subsequently, the number of by-products has also increased. However, generated residues are frequently discarded, and an appropriate management is necessary to properly use all fish by-products. Fishery by-products are well known for their content of bioactive compounds, such as unsaturated fatty acids, amino acids, minerals, peptides, enzymes, gelatin, collagen, and chitin. Several studies have reported that fishery by-products could provide significant properties, including antioxidant, antihypertensive, antimicrobial, anti-inflammatory, and antiobesity. Consequently, fish discards are of considerable interest to different industrial sectors, including food, nutraceuticals, medical, and pharmacology. In the food industry, the interest in using fishery by-products is focused on hydrolysates as food additives, collagen and gelatin as protein sources, chitin and chitosan to form edible films to protect food during storage, and oils as a source of Omega-3 and useful as antioxidants. Although different studies reported good results with the use of these by-products, identifying new applications in the food sector, as well as industrial applications, remains necessary.
Collapse
Affiliation(s)
- Diana Jimenez-Champi
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Frank L. Romero-Orejon
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Ana María Muñoz
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Food Science and Nutrition InstituteUniversidad San Ignacio de Loyola (ICAN-USIL), Lima, Peru
| | - Fernando Ramos-Escudero
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Health Sciences FacultyUniversidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
2
|
Rodríguez-Sanz A, Fuciños C, Soares C, Torrado AM, Lima N, Rúa ML. A comprehensive method for the sequential separation of extracellular xylanases and β-xylosidases/arabinofuranosidases from a new Fusarium species. Int J Biol Macromol 2024; 272:132722. [PMID: 38821304 DOI: 10.1016/j.ijbiomac.2024.132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Several fungal species produce diverse carbohydrate-active enzymes useful for the xylooligosaccharide biorefinery. These enzymes can be isolated by different purification methods, but fungi usually produce other several compounds which interfere in the purification process. So, the present work has three interconnected aims: (i) compare β-xylosidase production by Fusarium pernambucanum MUM 18.62 with other crop pathogens; (ii) optimise F. pernambucanum xylanolytic enzymes expression focusing on the pre-inoculum media composition; and (iii) design a downstream strategy to eliminate interfering substances and sequentially isolate β-xylosidases, arabinofuranosidases and endo-xylanases from the extracellular media. F. pernambucanum showed the highest β-xylosidase activity among all the evaluated species. It also produced endo-xylanase and arabinofuranosidase. The growth and β-xylosidase expression were not influenced by the pre-inoculum source, contrary to endo-xylanase activity, which was higher with xylan-enriched agar. Using a sequential strategy involving ammonium sulfate precipitation of the extracellular interferences, and several chromatographic steps of the supernatant (hydrophobic chromatography, size exclusion chromatography, and anion exchange chromatography), we were able to isolate different enzyme pools: four partially purified β-xylosidase/arabinofuranoside; FpXylEAB trifunctional GH10 endo-xylanase/β-xylosidase/arabinofuranoside enzyme (39.8 kDa) and FpXynE GH11 endo-xylanase with molecular mass (18.0 kDa). FpXylEAB and FpXynE enzymes were highly active at pH 5-6 and 60-50 °C.
Collapse
Affiliation(s)
- Andrea Rodríguez-Sanz
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Clara Fuciños
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Célia Soares
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana M Torrado
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Nelson Lima
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - María L Rúa
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain.
| |
Collapse
|
3
|
Nemati M, Shahosseini SR, Ariaii P. Review of fish protein hydrolysates: production methods, antioxidant and antimicrobial activity and nanoencapsulation. Food Sci Biotechnol 2024; 33:1789-1803. [PMID: 38752116 PMCID: PMC11091024 DOI: 10.1007/s10068-024-01554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 05/18/2024] Open
Abstract
Marine products have gained popularity due to their valuable components, especially protein, despite generating significant waste. Protein hydrolysates are widely recognized as the most effective method for transforming these low-value raw materials into high-value products. Fish protein hydrolysate (FPH), sourced from various aquatic wastes such as bones, scales, skin, and others, is rich in protein for value-added products. However, the hydrophobic peptides have limitations like an unpleasant taste and high solubility. Microencapsulation techniques provide a scientific approach to address these limitations and safeguard bioactive peptides. This review examines current research on FPH production methods and their antioxidant and antibacterial activities. Enzymatic hydrolysis using commercial enzymes is identified as the optimal method, and the antioxidant and antibacterial properties of FPH are substantiated. Microencapsulation using nanoliposomes effectively extends the inhibitory activity and enhances antioxidant and antibacterial capacities. Nevertheless, more research is needed to mitigate the bitter taste associated with FPH and enhance sensory attributes.
Collapse
Affiliation(s)
- Mahrokh Nemati
- Department of Fisheries Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
- Research Consultant of Parmida Gelatin Company, Amol, Iran
| | | | - Peiman Ariaii
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
- Managing Director of Parmida Gelatin Company, Amol, Iran
| |
Collapse
|
4
|
Tsegay ZT, Agriopoulou S, Chaari M, Smaoui S, Varzakas T. Statistical Tools to Optimize the Recovery of Bioactive Compounds from Marine Byproducts. Mar Drugs 2024; 22:182. [PMID: 38667799 PMCID: PMC11050780 DOI: 10.3390/md22040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Techniques for extracting important bioactive molecules from seafood byproducts, viz., bones, heads, skin, frames, fins, shells, guts, and viscera, are receiving emphasis due to the need for better valorization. Employing green extraction technologies for efficient and quality production of these bioactive molecules is also strictly required. Hence, understanding the extraction process parameters to effectively design an applicable optimization strategy could enable these improvements. In this review, statistical optimization strategies applied for the extraction process parameters of obtaining bioactive molecules from seafood byproducts are focused upon. The type of experimental designs and techniques applied to criticize and validate the effects of independent variables on the extraction output are addressed. Dominant parameters studied were the enzyme/substrate ratio, pH, time, temperature, and power of extraction instruments. The yield of bioactive compounds, including long-chain polyunsaturated fatty acids, amino acids, peptides, enzymes, gelatine, collagen, chitin, vitamins, polyphenolic constituents, carotenoids, etc., were the most studied responses. Efficiency and/or economic and quality considerations and their selected optimization strategies that favor the production of potential bioactive molecules were also reviewed.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle P.O. Box 231, Ethiopia;
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Moufida Chaari
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.C.); (S.S.)
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.C.); (S.S.)
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| |
Collapse
|
5
|
Bougatef H, Sila A, Bougatef A, Martínez-Alvarez O. Protein Hydrolysis as a Way to Valorise Squid-Processing Byproducts: Obtaining and Identification of ACE, DPP-IV and PEP Inhibitory Peptides. Mar Drugs 2024; 22:156. [PMID: 38667773 PMCID: PMC11050885 DOI: 10.3390/md22040156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The industrial processing of Argentine shortfin squid to obtain rings generates a significant amount of protein-rich waste, including the skin, which is rich in collagen and attached myofibrillar proteins. This waste is generally discarded. In this study, skin was used as a source of proteins that were hydrolysed using Trypsin, Esperase® or Alcalase®, which released peptides with antioxidant potential and, in particular, antihypertensive (ACE inhibition), hypoglycemic (DPP-IV inhibition) and/or nootropic (PEP inhibition) potential. Among the three enzymes tested, Esperase® and Alcalase produced hydrolysates with potent ACE-, DPP-IV- and PEP-inhibiting properties. These hydrolysates underwent chromatography fractionation, and the composition of the most bioactive fractions was analysed using HPLC-MS-MS. The fractions with the highest bioactivity exhibited very low IC50 values (16 and 66 µg/mL for ACE inhibition, 97 µg/mL for DPP-IV inhibition and 55 µg/mL for PEP inhibition) and were mainly derived from the hydrolysate obtained using Esperase®. The presence of Leu at the C-terminal appeared to be crucial for the ACE inhibitory activity of these fractions. The DPP-IV inhibitory activity of peptides seemed to be determined by the presence of Pro or Ala in the second position from the N-terminus, and Gly and/or Pro in the last C-terminal positions. Similarly, the presence of Pro in the peptides present in the best PEP inhibitory fraction seemed to be important in the inhibitory effect. These results demonstrate that the skin of the Argentine shortfin squid is a valuable source of bioactive peptides, suitable for incorporation into human nutrition as nutraceuticals and food supplements.
Collapse
Affiliation(s)
- Hajer Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (H.B.); (A.S.); (A.B.)
| | - Assaad Sila
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (H.B.); (A.S.); (A.B.)
- Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2100, Tunisia
| | - Ali Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; (H.B.); (A.S.); (A.B.)
- High Institute of Biotechnology of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Oscar Martínez-Alvarez
- Institute of Food Science, Technology and Nutrition (ICTAN, CSIC), 6 José Antonio Novais St, 28040 Madrid, Spain
| |
Collapse
|
6
|
Iñarra B, Bald C, Gutierrez M, San Martin D, Zufía J, Ibarruri J. Production of Bioactive Peptides from Hake By-Catches: Optimization and Scale-Up of Enzymatic Hydrolysis Process. Mar Drugs 2023; 21:552. [PMID: 37999376 PMCID: PMC10672589 DOI: 10.3390/md21110552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Fish by-catches, along with other fish side-streams, were previously used as raw material for the production of fishmeal and fish oil but appropriate handling allows their use in more valuable options. The aim of this research was to valorize undersized hake (Merluccius merluccius) as a model of using fish by-catch from the Bay of Biscay to produce protein hydrolysates with bioactivities. Six enzymes, with different proteolytic activities (endo- or exoproteases) and specificities, were tested to produce protein hydrolysates. Products obtained with an endoprotease of serine resulted in the most promising results in terms of protein extraction yield (68%), with an average molecular weight of 2.5 kDa, and bioactivity yield (antioxidant activity = 88.5 mg TE antioxidant capacity/g fish protein; antihypertensive activity = 47% inhibition at 1 mg/mL). Then, process conditions for the use of this enzyme to produce bioactive products were optimized using Box-Behnken design. The most favorable process conditions (time = 2 h, solids = 50% and enzyme/substrate = 2% with respect to protein) were scaled up (from 0.5 L to 150 L reactor) to confirm laboratory scale and model forecasts. The results obtained in the pilot-scale testing matched the outcomes predicted by the model, confirming the technical viability of the proposed process.
Collapse
Affiliation(s)
- Bruno Iñarra
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (C.B.); (M.G.); (D.S.M.); (J.Z.); (J.I.)
| | | | | | | | | | | |
Collapse
|
7
|
Roy VC, Islam MR, Sadia S, Yeasmin M, Park JS, Lee HJ, Chun BS. Trash to Treasure: An Up-to-Date Understanding of the Valorization of Seafood By-Products, Targeting the Major Bioactive Compounds. Mar Drugs 2023; 21:485. [PMID: 37755098 PMCID: PMC10532690 DOI: 10.3390/md21090485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Fishery production is exponentially growing, and its by-products negatively impact industries' economic and environmental status. The large amount of bioactive micro- and macromolecules in fishery by-products, including lipids, proteins, peptides, amino acids, vitamins, carotenoids, enzymes, collagen, gelatin, chitin, chitosan, and fucoidan, need to be utilized through effective strategies and proper management. Due to the bioactive and healthy compounds in fishery discards, these components can be used as functional food ingredients. Fishery discards have inorganic or organic value to add to or implement in various sectors (such as the agriculture, medical, and pharmaceutical industries). However, the best use of these postharvest raw materials for human welfare remains unelucidated in the scientific community. This review article describes the most useful techniques and methods, such as obtaining proteins and peptides, fatty acids, enzymes, minerals, and carotenoids, as well as collagen, gelatin, and polysaccharides such as chitin-chitosan and fucoidan, to ensure the best use of fishery discards. Marine-derived bioactive compounds have biological activities, such as antioxidant, anticancer, antidiabetic, anti-inflammatory, and antimicrobial activities. These high-value compounds are used in various industrial sectors, such as the food and cosmetic industries, owing to their unique functional and characteristic structures. This study aimed to determine the gap between misused fishery discards and their effects on the environment and create awareness for the complete valorization of fishery discards, targeting a sustainable world.
Collapse
Affiliation(s)
- Vikash Chandra Roy
- Institute of Food Science, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Rakibul Islam
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Sultana Sadia
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Momota Yeasmin
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea;
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Busan 48434, Republic of Korea;
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea;
| |
Collapse
|
8
|
Hayes M. Maximizing Use of Pelagic Capture Fisheries for Global Protein Supply: Potential and Caveats Associated with Fish and Co-Product Conversion into Value-Add Ingredients. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200098. [PMID: 37205930 PMCID: PMC10190613 DOI: 10.1002/gch2.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Indexed: 05/21/2023]
Abstract
Globally, capture fisheries contribute significantly to protein supply and the food security of a third of the world's population. Although capture fisheries production has not significantly increased in tonnes landed per annum during the last two decades (since 1990), it still produced a greater tonnage of protein than aquaculture in 2018. Policy in the European Union and other locations favors production of fish through aquaculture to preserve existing fish stocks and prevent extinction of species from overfishing. However, aquaculture production of fish in order to feed the growing global population would need to increase from 82 087 kT in 2018 to 129 000 kT by 2050. The Food and Agriculture Organization states that global production of aquatic animals was 178 million tonnes in 2020. Capture fisheries contributed 90 million tonnes (51%) of this. For capture fisheries to be a sustainable practice in alignment with UN sustainability goals, ocean conservation measures must be followed and processing of capture fisheries may need to adapt food-processing strategies already used extensively in the processing of dairy, meat, and soy. These are required to add value to reduced fish landings and sustain profitability.
Collapse
Affiliation(s)
- Maria Hayes
- Food BioSciences DepartmentTeagasc Food Research CentreDublin 15AshtownIreland
| |
Collapse
|
9
|
Vázquez JA, Valcarcel J, Sapatinha M, Bandarra NM, Mendes R, Pires C. Effect of the season on the production and chemical properties of fish protein hydrolysates and high-quality oils obtained from gurnard (Trigla spp.) by-products. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
10
|
Protein Characteristics and Bioactivity of Fish Protein Hydrolysates from Tra Catfish ( Pangasius hypophthalmus) Side Stream Isolates. Foods 2022; 11:foods11244102. [PMID: 36553843 PMCID: PMC9778320 DOI: 10.3390/foods11244102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Enzymatic hydrolysis is a novel method to recover highly potent bioactive fish protein hydrolysates (FPHs) from fish processing side-streams. The common way of producing FPHs directly from fish side-streams may be inappropriate due to the excess of lipids and pro-oxidants, especially in lipid-rich streams, as obtained from Tra catfish. This study aimed to optimise the hydrolysis conditions for a commercial enzyme (Alcalase® 2.4 L) (enzyme concentrate, temperature, and time) in FPH production from the fish protein isolate obtained from Tra catfish dark muscle (DM-FPI) using the pH-shift method. The degree of hydrolysis (DH), protein recovery (PR), and antioxidant properties, including DPPH radical scavenging activity (DPPH-RSA) and total reducing power capacity (TRPC), were measured to evaluate the effects of the hydrolysis conditions on the FPHs. Optimal hydrolysis was obtained at an enzyme/substrate protein ratio of 3% (v/w) and a hydrolysis temperature of 50 °C for 3 h. The FPHs obtained from different substrates, including DM-FPI, abdominal cut-off (ACO) FPI, and head and backbone blend (HBB) FPI, had similar DHs under these optimum conditions, ranging from 22.5% to 24.0%. However, the FPH obtained from abdominal cut-off isolate (ACO-FPH) showed the highest PR of 81.5 ± 4.3% and the highest antioxidant properties, with a DPPH-RSA of 86.1 ± 1.6% and a TRPC of 6.4 ± 0.4 equivalent mg vitamin C/g protein. The resulting FPHs present a natural source of antioxidants with great potential for food applications, especially the ACO-FPH. In addition, all FPHs had excellent amino acid profiles, indicating strong potential for their use as supplements. Tra catfish protein-rich side-streams can thus be processed into high-value bioactive FPHs using Alcalase for human consumption.
Collapse
|
11
|
Joyjamras K, Chaotham C, Chanvorachote P. Response surface optimization of enzymatic hydrolysis and ROS scavenging activity of silk sericin hydrolysates. PHARMACEUTICAL BIOLOGY 2022; 60:308-318. [PMID: 35148231 PMCID: PMC8843116 DOI: 10.1080/13880209.2022.2032208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/27/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Sericin, a protein found in wastewater from the silk industry, was shown to contain a variety of biological activities, including antioxidant. The enzymatic conditions have been continuously modified to improve antioxidant effect and scavenging capacity against various free radicals of silk sericin protein. OBJECTIVE Variables in enzymatic reactions, including pH, temperature and enzyme/substrate ratio were analysed to discover the optimum conditions for antioxidant activity of sericin hydrolysates. MATERIALS AND METHODS Hydrolysis reaction catalysed by Alcalase® was optimized through response surface methodology (RSM) in order to generate sericin hydrolysates possessing potency for % inhibition on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, ferric-reducing power and peroxyl scavenging capacity. Flow cytometry was performed to evaluate cellular ROS level in human HaCaT keratinocytes and melanin-generating MNT1 cells pre-treated either with 20 mg/mL RSM-optimized sericin hydrolysates or 5 mM N-acetyl cysteine (NAC) for 60 min prior exposure with 1 mM hydrogen peroxide (H2O2). RESULTS Among these three variables, response surface plots demonstrate the major role of temperature on scavenging capacity of sericin hydrolysates. Sericin hydrolysates prepared by using Alcalase® at RSM-optimized condition (enzyme/substrate ratio: 1.5, pH: 7.5, temperature: 70 °C) possessed % inhibition against H2O2 at 99.11 ± 0.54% and 73.25 ± 8.32% in HaCaT and MNT1 cells, respectively, while pre-treatment with NAC indicated the % inhibition only at 30.26 ± 7.62% in HaCaT and 51.05 ± 7.14% in MNT1 cells. DISCUSSION AND CONCLUSIONS The acquired RSM information would be of benefit for further developing antioxidant peptide from diverse resources, especially the recycling of waste products from silk industry.
Collapse
Affiliation(s)
- Keerati Joyjamras
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Singh S, Negi T, Sagar NA, Kumar Y, Tarafdar A, Sirohi R, Sindhu R, Pandey A. Sustainable processes for treatment and management of seafood solid waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152951. [PMID: 34999071 DOI: 10.1016/j.scitotenv.2022.152951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Seafood processing is an important economical activity worldwide and is an integral part of the food chain system. However, their processing results in solid waste generation whose disposal and management is a serious concern. Proteins, amino acids, lipids with high amounts of polyunsaturated fatty acids (PUFA), carotenoids, and minerals are abundant in the discards, effluents, and by-catch of seafood processing waste. As a result, it causes nutritional loss and poses major environmental risks. To solve the issues, it is critical that the waste be exposed to secondary processing and valorization for recovery of value added products. Although chemical waste treatment technologies are available, the majority of these procedures have inherent flaws. Biological solutions, on the other hand, are safe, efficacious, and ecologically friendly while maintaining the intrinsic bioactivities after waste conversion. Microbial fermentation or the actions of exogenously introduced enzymes on waste components are used in most bioconversion processes. Algal biotechnology has recently developed unique technologies for biotransformation of nutrients, which may be employed as a feedstock for the recovery of important chemicals as well as biofuel. Bioconversion methods combined with a bio-refinery strategy offer the potential to enable environmentally-friendly and cost-effective seafood waste management. The refinement of these wastes through sustainable bioprocessing interventions can give rise to various circular bioeconomies within the seafood processing sector. Moreover, a techno-economic perspective on the developed solid waste processing lines and its subsequent environmental impact could facilitate commercialization. This review aims to provide a comprehensive view and critical analysis of the recent updates in seafood waste processing in terms of bioconversion processes and byproduct development. Various case studies on circular bioeconomy formulated on seafood processing waste along with techno-economic feasibility for the possible development of sustainable seafood biorefineries have also been discussed.
Collapse
Affiliation(s)
- Shikhangi Singh
- Department of Post Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, -263 145, Uttarakhand, India
| | - Taru Negi
- Department of Food Science and Technology(,) G. B. Pant University of Agriculture and Technology, Pantnagar 263 125, Uttarakhand, India
| | - Narashans Alok Sagar
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Saint Longwal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Ayon Tarafdar
- Livestock Production and Management Section(,) ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136 713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow 226 001, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India.
| |
Collapse
|
13
|
Blanco M, Sanz N, Sánzhez AC, Correa B, Pérez-Martín RI, Sotelo CG. Molecular Weight Analysis of Blue Shark ( Prionace glauca) Collagen Hydrolysates by GPC-LS; Effect of High Molecular Weight Hydrolysates on Fibroblast Cultures: mRNA Collagen Type I Expression and Synthesis. Int J Mol Sci 2021; 23:32. [PMID: 35008452 PMCID: PMC8744872 DOI: 10.3390/ijms23010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
High molecular weight (Mw) collagen hydrolysates have been demonstrated to produce a higher synthesis of collagen type I mRNA. Mw determination is a key factor maximizing the effect of collagen hydrolysates on collagen type I synthesis by fibroblasts. This work aimed to achieve a high average Mw in Blue Shark Collagen Hydrolysate, studying different hydrolysis parameters by GPC-LS analysis and testing its effect on mRNA Type I collagen expression. Analysis revealed differences in blue shark collagen hydrolysates Mw depending on hydrolysis conditions. Papain leads to obtaining a significantly higher Mw hydrolysate than Alcalase at different times of hydrolysis and at different enzyme/substrate ratios. Besides, the time of the hydrolysis factor is more determinant than the enzyme/substrate ratio factor for obtaining a higher or lower hydrolysate Mw when using Papain as the enzyme. Contrary, Alcalase hydrolysates resulted in similar Mw with no significant differences between different conditions of hydrolysis assayed. Blue shark collagen hydrolysate showing the highest Mw showed neither cytotoxic nor proliferation effect on fibroblast cell culture. Besides, it exhibited an increasing effect on both mRNA expression and pro-collagen I production.
Collapse
Affiliation(s)
- María Blanco
- Food Biochemistry Group, Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, C/Eduardo Cabello, 6, CP 36208 Vigo, Spain; (N.S.); (A.C.S.); (B.C.); (R.I.P.-M.); (C.G.S.)
| | | | | | | | | | | |
Collapse
|
14
|
Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Rodrigues DP, Calado R, Ameixa OM, Valcarcel J, Vázquez JA. Valorisation of Atlantic codfish (Gadus morhua) frames from the cure-salting industry as fish protein hydrolysates with in vitro bioactive properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Valcarcel J, Fraguas J, Hermida-Merino C, Hermida-Merino D, Piñeiro MM, Vázquez JA. Production and Physicochemical Characterization of Gelatin and Collagen Hydrolysates from Turbot Skin Waste Generated by Aquaculture Activities. Mar Drugs 2021; 19:491. [PMID: 34564153 PMCID: PMC8465087 DOI: 10.3390/md19090491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Rising trends in fish filleting are increasing the amount of processing by-products, such as skins of turbot, a flatfish of high commercial value. In line with circular economy principles, we propose the valorization of turbot skins through a two-step process: initial gelatin extraction described for the first time in turbot, followed by hydrolysis of the remaining solids to produce collagen hydrolysates. We assayed several methods for gelatin extraction, finding differences in gelatin properties depending on chemical treatment and temperature. Of all methods, the application of NaOH, sulfuric, and citric acids at 22 °C results in the highest gel strength (177 g), storage and loss moduli, and gel stability. We found no relation between mechanical properties and content of pyrrolidine amino acids, but the best performing gelatin displays higher structural integrity, with less than 30% of the material below 100 kDa. Collagen hydrolysis was more efficient with papain than alcalase, leading to a greater reduction in Mw of the hydrolysates, which contain a higher proportion of essential amino acids than gelatin and show high in vitro anti-hypertensive activity. These results highlight the suitability of turbot skin by-products as a source of gelatin and the potential of collagen hydrolysates as a functional food and feed ingredient.
Collapse
Affiliation(s)
- Jesus Valcarcel
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.F.); (J.A.V.)
| | - Javier Fraguas
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.F.); (J.A.V.)
| | - Carolina Hermida-Merino
- Centro de Investigaciones Biomédicas (CINBIO), Departamento de Física Aplicada, Facultad de Ciencias, Universidade de Vigo, 36310 Vigo, Spain; (C.H.-M.); (M.M.P.)
| | - Daniel Hermida-Merino
- Netherlands Organization for Scientific Research (NWO), DUBBLE@ESRF, BP220, F38043 Grenoble, France;
| | - Manuel M. Piñeiro
- Centro de Investigaciones Biomédicas (CINBIO), Departamento de Física Aplicada, Facultad de Ciencias, Universidade de Vigo, 36310 Vigo, Spain; (C.H.-M.); (M.M.P.)
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.F.); (J.A.V.)
| |
Collapse
|
17
|
Vázquez JA, Hermida-Merino C, Hermida-Merino D, Piñeiro MM, Johansen J, Sotelo CG, Pérez-Martín RI, Valcarcel J. Characterization of Gelatin and Hydrolysates from Valorization of Farmed Salmon Skin By-Products. Polymers (Basel) 2021; 13:polym13162828. [PMID: 34451367 PMCID: PMC8398820 DOI: 10.3390/polym13162828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022] Open
Abstract
Salmon processing commonly involves the skinning of fish, generating by-products that need to be handled. Such skin residues may represent valuable raw materials from a valorization perspective, mainly due to their collagen content. With this approach, we propose in the present work the extraction of gelatin from farmed salmon and further valorization of the remaining residue through hydrolysis. Use of different chemical treatments prior to thermal extraction of gelatin results in a consistent yield of around 5%, but considerable differences in rheological properties. As expected from a cold-water species, salmon gelatin produces rather weak gels, ranging from 0 to 98 g Bloom. Nevertheless, the best performing gelatins show considerable structural integrity, assessed by gel permeation chromatography with light scattering detection for the first time on salmon gelatin. Finally, proteolysis of skin residues with Alcalase for 4 h maximizes digestibility and antihypertensive activity of the resulting hydrolysates, accompanied by the sharpest reduction in molecular weight and higher content of essential amino acids. These results indicate the possibility of tuning salmon gelatin properties through changes in chemical treatment conditions, and completing the valorization cycle through production of bioactive and nutritious hydrolysates.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Pontevedra, Spain;
- Correspondence:
| | - Carolina Hermida-Merino
- CINBIO, Departamento de Física Aplicada, Facultad de Ciencias, Universidade de Vigo, CP36310 Vigo, Pontevedra, Spain; (C.H.-M.); (M.M.P.)
| | - Daniel Hermida-Merino
- Netherlands Organization for Scientific Research (NWO), DUBBLE@ESRF, CS 40220, F38043 Grenoble, France;
| | - Manuel M. Piñeiro
- CINBIO, Departamento de Física Aplicada, Facultad de Ciencias, Universidade de Vigo, CP36310 Vigo, Pontevedra, Spain; (C.H.-M.); (M.M.P.)
| | - Johan Johansen
- Norwegian Institute of Bioeconomy (NIBIO), Torggården, Kudalsveien 6, NO-8027 Bodø, Norway;
| | - Carmen G. Sotelo
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Pontevedra, Spain; (C.G.S.); (R.I.P.-M.)
| | - Ricardo I. Pérez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Pontevedra, Spain; (C.G.S.); (R.I.P.-M.)
| | - Jesus Valcarcel
- Group of Recycling and Valorization of Waste Materials (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Pontevedra, Spain;
| |
Collapse
|
18
|
Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chem 2021; 359:129852. [PMID: 33940471 DOI: 10.1016/j.foodchem.2021.129852] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
The generation of biologically active fish protein hydrolysates (FPH) is a useful technique to produce value-added products with potential application in the functional food and nutraceutical industries. Fish muscle is an attractive substrate for the production of protein hydrolysates due to its rich protein content, containing 15-25% of total fish protein. This paper reviews the production of protein hydrolysates from fish muscle, most commonly via enzymatic hydrolysis, and their subsequent bioactivities including anti-obesity, immunomodulatory, antioxidant, angiotensin I-converting enzyme (ACE)-inhibitory, anti-microbial, and anti-cancer activities as measured by in vitro testing methods. Disease prevention with FPH potentially offers a safe and natural alternative to synthetic drugs. Small molecular weight (MW) FPHs generally exhibit favourable bioactivity than large MW fractions via enhanced absorption through the gastrointestinal tract. This review also discusses the relationship between amino acid (AA) composition and AA sequence of FPH and peptides and their exhibited in vitro bioactivity.
Collapse
|
19
|
Choi K. Nitrogen‐Neutral Amino Acids Refinery: Deamination of Amino Acids for Bio‐Alcohol and Ammonia Production. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kwon‐Young Choi
- Ajou University Department of Environmental and Safety Engineering College of Engineering Suwon, Gyeonggi-do South Korea
| |
Collapse
|
20
|
The Bioactive Potential of Trawl Discard: Case Study from a Crinoid Bed Off Blanes (North-Western Mediterranean). Mar Drugs 2021; 19:md19020083. [PMID: 33540649 PMCID: PMC7913049 DOI: 10.3390/md19020083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/26/2023] Open
Abstract
Although knowledge of the bioactive compounds produced by species inhabiting coastal waters is increasing, little is known about the bioactive potential produced by marine species occupying deeper habitats with high biodiversity and productivity. Here, we investigate about the bioactive potential of molecules produced by species that inhabit the crinoid beds, a poorly known essential fish habitat affected by trawling, wherein large amounts of commercial and noncommercial species are discarded. Based on a trawl survey conducted in 2019, 14% of the 64 species discarded on crinoid beds produce molecules with some type of bioactive potential, including; soft corals (Alcyonium palmatum); tunicates (Ascidia mentula); bony fish, such as horse mackerel (Trachurus trachurus); European hake (Merluccius merluccius); and chondrichthyans, such as small-spotted catshark (Scyliorhinus canicula). In addition, 16% of the discarded species had congeneric species that produce compounds with bioactive potential, indicating that such species might also possess similar types of bioactive molecules. Molecules with antioxidant, antitumour, antihypertensive, and antibacterial properties were the most frequent, which could provide the basis for future research aiming to discover new marine-based drugs and compounds for other human uses. Among all species or genera that produce compounds with bioactive potential, 68% presented medium or high vulnerability to trawling. Results show that the discarded catch contains many species, which produce different bioactive compounds that represent an added-value resource. These results highlight the importance of manage properly crinoid beds, to ensure that species that produce molecules with bioactive potential inhabiting these habitats are protected.
Collapse
|
21
|
Festa M, Sansone C, Brunet C, Crocetta F, Di Paola L, Lombardo M, Bruno A, Noonan DM, Albini A. Cardiovascular Active Peptides of Marine Origin with ACE Inhibitory Activities: Potential Role as Anti-Hypertensive Drugs and in Prevention of SARS-CoV-2 Infection. Int J Mol Sci 2020; 21:E8364. [PMID: 33171852 PMCID: PMC7664667 DOI: 10.3390/ijms21218364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Growing interest in hypertension-one of the main factors characterizing the cardiometabolic syndrome (CMS)-and anti-hypertensive drugs raised from the emergence of a new coronavirus, SARS-CoV-2, responsible for the COVID19 pandemic. The virus SARS-CoV-2 employs the Angiotensin-converting enzyme 2 (ACE2), a component of the RAAS (Renin-Angiotensin-Aldosterone System) system, as a receptor for entry into the cells. Several classes of synthetic drugs are available for hypertension, rarely associated with severe or mild adverse effects. New natural compounds, such as peptides, might be useful to treat some hypertensive patients. The main feature of ACE inhibitory peptides is the location of the hydrophobic residue, usually Proline, at the C-terminus. Some already known bioactive peptides derived from marine resources have potential ACE inhibitory activity and can be considered therapeutic agents to treat hypertension. Peptides isolated from marine vertebrates, invertebrates, seaweeds, or sea microorganisms displayed important biological activities to treat hypertensive patients. Here, we reviewed the anti-hypertensive activities of bioactive molecules isolated/extracted from marine organisms and discussed the associated molecular mechanisms involved. We also examined ACE2 modulation in sight of SARS2-Cov infection prevention.
Collapse
Affiliation(s)
- Marco Festa
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (C.S.); (C.B.)
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (C.S.); (C.B.)
| | - Fabio Crocetta
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Luisa Di Paola
- Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | | | - Antonino Bruno
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
| | - Douglas M. Noonan
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Adriana Albini
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
| |
Collapse
|
22
|
Valcarcel J, Sanz N, Vázquez JA. Optimization of the Enzymatic Protein Hydrolysis of By-Products from Seabream ( Sparus aurata) and Seabass ( Dicentrarchus labrax), Chemical and Functional Characterization. Foods 2020; 9:E1503. [PMID: 33092225 PMCID: PMC7589672 DOI: 10.3390/foods9101503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023] Open
Abstract
Valorization of seabass and seabream by-products is becoming increasingly relevant, as marketing of these species moves from selling whole fish to filleting for convenience products. With this aim, we optimized for the first time the production of fish protein hydrolysates (FPH) by enzymatic hydrolysis from filleting by-products of these commercially relevant aquaculture species, isolating fish oil at the same time. On the whole, both fish yielded similar amounts of protein, but frames and trimmings (FT) were the best source, followed by heads and viscera. In vitro antioxidant and antihypertensive activities showed similar figures for both species, placing FPHs from FT as the most active. Molecular weights ranged from 1381 to 2023 Da, corresponding to the lowest values of FT, in line with the higher hydrolysis degrees observed. All FPHs reached high digestibility (>86%) and displayed an excellent amino acid profile in terms of essential amino acids and flavor, making them suitable as food additives and supplements.
Collapse
Affiliation(s)
- Jesus Valcarcel
- Marine Biotechnology and Bioprocesses Group, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (N.S.); (J.A.V.)
- Recycling and Valorisation of Waste Materials Laboratory (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Noelia Sanz
- Marine Biotechnology and Bioprocesses Group, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (N.S.); (J.A.V.)
- Food Biochemistry Laboratory, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - José Antonio Vázquez
- Marine Biotechnology and Bioprocesses Group, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (N.S.); (J.A.V.)
- Recycling and Valorisation of Waste Materials Laboratory (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
23
|
Rocha Camargo T, Ramos P, Monserrat JM, Prentice C, Fernandes CJC, Zambuzzi WF, Valenti WC. Biological activities of the protein hydrolysate obtained from two fishes common in the fisheries bycatch. Food Chem 2020; 342:128361. [PMID: 33077277 DOI: 10.1016/j.foodchem.2020.128361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023]
Abstract
Shrimp trawling is an important socio-economic activity; however, the bycatch can be problematic to the environment. Thus, the present study investigated potential uses of the bycatch to generate value-added products. The biological activity of the protein hydrolysates obtained from the two most abundant fish species (Micropogonias furnieri and Paralonchurus brasiliensis) was evaluated. Muscle and skin samples of both species were hydrolyzed using two enzymes, Alcalase 2.4 L® or Protamex®. The in vitro antioxidant capacity against peroxyl radicals, DPPH, and sulfhydryl groups were analyzed. Cell viability, Western Blotting, Zymogram, and Real-time PCR analyses were performed. The results showed that the hydrolysates have antioxidant activity and no effect on cell viability at doses lower than 16 mg/mL. In addition, they can modulate extracellular remodelling and intracellular pathways related to cell adhesion. Thus, the hydrolysis of the fish bycatch allows the release of bioactive peptides with potential use in the food industry.
Collapse
Affiliation(s)
- Tavani Rocha Camargo
- Aquaculture Center, São Paulo State University (UNESP), Campus Jaboticabal, Jaboticabal, SP, Brazil.
| | - Patrícia Ramos
- Marine Station of Aquaculture, Aquaculture postgraduate, Oceanography Institute, Federal University of Rio Grande (FURG) Rio Grande, RS, Brazil
| | - José M Monserrat
- Marine Station of Aquaculture, Aquaculture postgraduate, Oceanography Institute, Federal University of Rio Grande (FURG) Rio Grande, RS, Brazil; Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Carlos Prentice
- Marine Station of Aquaculture, Aquaculture postgraduate, Oceanography Institute, Federal University of Rio Grande (FURG) Rio Grande, RS, Brazil
| | - Célio J C Fernandes
- Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP, Brazil
| | - Willian F Zambuzzi
- Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP, Brazil
| | - Wagner C Valenti
- Aquaculture Center, São Paulo State University (UNESP), Campus Jaboticabal, Jaboticabal, SP, Brazil
| |
Collapse
|
24
|
Valorization of Aquaculture By-Products of Salmonids to Produce Enzymatic Hydrolysates: Process Optimization, Chemical Characterization and Evaluation of Bioactives. Mar Drugs 2019; 17:md17120676. [PMID: 31801228 PMCID: PMC6950744 DOI: 10.3390/md17120676] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/02/2023] Open
Abstract
In the present manuscript, various by-products (heads, trimmings, and frames) generated from salmonids (rainbow trout and salmon) processing were evaluated as substrates for the production of fish protein hydrolysates (FPHs), potentially adequate as protein ingredients of aquaculture feeds. Initially, enzymatic conditions of hydrolysis were optimized using second order rotatable designs and multivariable statistical analysis. The optimal conditions for the Alcalase hydrolysis of heads were 0.1% (v/w) of enzyme concentration, pH 8.27, 56.2°C, ratio (Solid:Liquid = 1:1), 3 h of hydrolysis, and agitation of 200 rpm for rainbow trout and 0.2% (v/w) of enzyme, pH 8.98, 64.2 °C, 200 rpm, 3 h of hydrolysis, and S:L = 1:1 for salmon. These conditions obtained at 100 mL-reactor scale were then validated at 5L-reactor scale. The hydrolytic capacity of Alcalase and the protein quality of FPHs were excellent in terms of digestion of wastes (Vdig > 84%), high degrees of hydrolysis (Hm > 30%), high concentration of soluble protein (Prs > 48 g/L), good balance of amino acids, and almost full in vitro digestibility (Dig > 93%). Fish oils were recovered from wastes jointly with FPHs and bioactive properties of hydrolysates (antioxidant and antihypertensive) were also determined. The salmon FPHs from trimmings + frames (TF) showed the higher protein content in comparison to the rest of FPHs from salmonids. Average molecular weights of salmonid-FPHs ranged from 1.4 to 2.0 kDa and the peptide sizes distribution indicated that hydrolysates of rainbow trout heads and salmon TF led to the highest percentages of small peptides (0-500 Da).
Collapse
|
25
|
Conversion of Shrimp Head Waste for Production of a Thermotolerant, Detergent-Stable, Alkaline Protease by Paenibacillus sp. Catalysts 2019. [DOI: 10.3390/catal9100798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fishery processing by-products have been of great interest to researchers due to their beneficial applications in many fields. In this study, five types of marine by-products, including demineralized crab shell, demineralized shrimp shell, shrimp head, shrimp shell, and squid pen, provided sources of carbon and nitrogen nutrition by producing a protease from Paenibacillus sp. TKU047. Strain TKU047 demonstrated the highest protease productivity (2.98 U/mL) when cultured for two days on a medium containing 0.5% of shrimp head powder (SHP). The mass of TKU047 protease was determined to be 32 kDa (approximately). TKU047 protease displayed optimal activity at 70–80 °C and pH 9, with a pH range of stability from 6 to 11. TKU047 protease also showed stability in solutions containing surfactants and detergents. Based on its excellent properties, Paenibacillus sp. TKU047 protease may be a feasible candidate for inclusion in laundry detergents.
Collapse
|
26
|
New Strategy to Cope with Common Fishery Policy Landing Obligation: Collagen Extraction from Skins and Bones of Undersized Hake ( Merluccius merluccius). Polymers (Basel) 2019; 11:polym11091485. [PMID: 31514432 PMCID: PMC6780104 DOI: 10.3390/polym11091485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 02/01/2023] Open
Abstract
In order to promote sustainable fishing practices within European fishing fleets and to avoid the large waste of valuable fish biomass through the practice of fish discarding, the new reform of the common fisheries policy includes the obligation of landing all species under total allowable catch (TAC) regulations. The new policy also prohibits the use of specimens under minimum conservation reference size for direct human cons38umption. In this context, it is necessary to find new uses for undersized fish, which might help to alleviate the costs associated with the landing obligation but without prompting the creation of a market. European hake (EH) (Merluccius merluccius), which is one of the most important commercial fish species for the Spanish fishing industry, with a total TAC for 2018 of 3,7423 t, is used for this study. Consistent with the current policy framework and taking into account the commercial importance of this species, the aim of this work is to study a new strategy for the extraction of collagen from the skin and bone fraction of Merluccius merluccius undersized discards. Three collagen fractions are successfully isolated for the first time from the skin of M. merluccius skin and bone discarded raw material: acid-soluble collagen (ASC) fraction 1 and pepsin-soluble collagen (PSC) fraction 2 from the skin and ASC fraction 3 from bones. The total collagen yield of the process is 13.55 ± 3.18% in a dry basis (g collagen/100 g of skin and bone fraction (SBF)) and 47.80 ± 9.83% (g collagen/100 g of collagen determined by the hydroxyproline content in SBF). The three fractions are further characterized by using different physical and chemical analysis techniques, with the conclusion drawn that the triple helix structure is preserved in the three fractions, although ASC fractions (F1 and F3) present more or stronger hydrogen bonds than the PSC fraction (F2). With the process herein presented, deboned and skinned hake specimens could represent an interesting source of high quality type I collagen, which could be useful as a raw material for the biomedical, cosmetic, and nutraceutical industries.
Collapse
|
27
|
Wang CH, Doan CT, Nguyen VB, Nguyen AD, Wang SL. Reclamation of Fishery Processing Waste: A Mini-Review. Molecules 2019; 24:E2234. [PMID: 31207992 PMCID: PMC6630555 DOI: 10.3390/molecules24122234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
: Seafood such as fish, shellfish, and squid are a unique source of nutrients. However, many marine processing byproducts, such as viscera, shells, heads, and bones, are discarded, even though they are rich sources of structurally diverse bioactive nitrogenous components. Based on emerging evidence of their potential health benefits, these components show significant promise as functional food ingredients. Fish waste components contain significant levels of high-quality protein, which represents a source for biofunctional peptide mining. The chitin contained in shrimp shells, crab shells, and squid pens may also be of value. The components produced by bioconversion are reported to have antioxidative, antimicrobial, anticancer, antihypertensive, antidiabetic, and anticoagulant activities. This review provides an overview of the extraordinary potential of processing fish and chitin-containing seafood byproducts via chemical procedures, enzymatic and fermentation technologies, and chemical modifications, as well as their applications.
Collapse
Affiliation(s)
- Chi-Hao Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.-H.W.); (C.T.D.)
| | - Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.-H.W.); (C.T.D.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.-H.W.); (C.T.D.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
28
|
Vázquez JA, Fraguas J, Novoa-Carballal R, Reis RL, Pérez-Martín RI, Valcarcel J. Optimal isolation and characterisation of chondroitin sulfate from rabbit fish (Chimaera monstrosa). Carbohydr Polym 2019; 210:302-313. [DOI: 10.1016/j.carbpol.2019.01.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
29
|
|
30
|
Vázquez JA, Meduíña A, Durán AI, Nogueira M, Fernández-Compás A, Pérez-Martín RI, Rodríguez-Amado I. Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. Mar Drugs 2019; 17:E139. [PMID: 30818811 PMCID: PMC6470541 DOI: 10.3390/md17030139] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
The objective of this report was to investigate the isolation and recovery of different biocompounds and bioproducts from wastes (skins and heads) that were obtained from five species discarded by fishing fleets (megrim, hake, boarfish, grenadier, and Atlantic horse mackerel). Based on chemical treatments, enzymatic hydrolysis, and bacterial fermentation, we have isolated and produced gelatinous solutions, oils that are rich in omega-3, fish protein hydrolysates (FPHs) with antioxidant and antihypertensive activities, and peptones. FPHs showed degrees of hydrolysis higher than 13%, with soluble protein concentrations greater than 27 g/L and in vitro digestibilities superior to 90%. Additionally, amino acids compositions were always valuable and bioactivities were, in some cases, remarkable. Peptones that were obtained from FPHs of skin and the heads were demonstrated to be a viable alternative to expensive commercial ones indicated for the production of biomass, lactic acid, and pediocin SA-1 from Pediococcus acidilactici.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Araceli Meduíña
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Ana I Durán
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Margarita Nogueira
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Andrea Fernández-Compás
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N°1 Escollera Norte, Mar del Plata C.C.175-7600, Argentina.
| | - Ricardo I Pérez-Martín
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Bioquímica de Alimentos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Isabel Rodríguez-Amado
- Departamento de Química Analítica y Alimentaria, Universidad de Vigo, Campus As Lagoas s/n, 32004 Ourense, España.
| |
Collapse
|
31
|
Isolation and Chemical Characterization of Chondroitin Sulfate from Cartilage By-Products of Blackmouth Catshark ( Galeus melastomus). Mar Drugs 2018; 16:md16100344. [PMID: 30241332 PMCID: PMC6213352 DOI: 10.3390/md16100344] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan actively researched for pharmaceutical, nutraceutical and tissue engineering applications. CS extracted from marine animals displays different features from common terrestrial sources, resulting in distinct properties, such as anti-viral and anti-metastatic. Therefore, exploration of undescribed marine species holds potential to expand the possibilities of currently-known CS. Accordingly, we have studied for the first time the production and characterization of CS from blackmouth catshark (Galeus melastomus), a shark species commonly discarded as by-catch. The process of CS purification consists of cartilage hydrolysis with alcalase, followed by two different chemical treatments and ending with membrane purification. All steps were optimized by response surface methodology. According to this, the best conditions for cartilage proteolysis were established at 52.9 °C and pH = 7.31. Subsequent purification by either alkaline treatment or hydroalcoholic alkaline precipitation yielded CS with purities of 81.2%, 82.3% and 97.4% respectively, after 30-kDa membrane separation. The molecular weight of CS obtained ranges 53–66 kDa, depending on the conditions. Sulfation profiles were similar for all materials, with dominant CS-C (GlcA-GalNAc6S) units (55%), followed by 23–24% of CS-A (GlcA-GalNAc4S), a substantial amount (15–16%) of CS-D (GlcA2S-GalNAc6S) and less than 7% of other disulfated and unsulfated disaccharides.
Collapse
|
32
|
Marine Waste Utilization as a Source of Functional and Health Compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:187-254. [PMID: 30678815 DOI: 10.1016/bs.afnr.2018.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Consumer demand for convenience has led to large quantities of seafood being value-added processed before marketing, resulting in large amounts of marine by-products being generated by processing industries. Several bioconversion processes have been proposed to transform some of these by-products. In addition to their relatively low value conventional use as animal feed and fertilizers, several investigations have been reported that have demonstrated the potential to add value to viscera, heads, skins, fins, trimmings, and crab and shrimp shells by extraction of lipids, bioactive peptides, enzymes, and other functional proteins and chitin that can be used in food and pharmaceutical applications. This chapter is focused on reviewing the opportunities for utilization of these marine by-products. The chapter discusses the various products and bioactive compounds that can be obtained from seafood waste and describes various methods that can be used to produce these products with the aim of highlighting opportunities to add value to these marine waste streams.
Collapse
|
33
|
Valorization of recurrently discarded fish species in trawler fisheries in North-West Spain. Journal of Food Science and Technology 2018; 55:4477-4484. [PMID: 30333644 DOI: 10.1007/s13197-018-3376-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
The progressive elimination of fish discards established by the European Union Council in 2013 has stimulated the valorization of flesh from discarded high-quality species with good protein functional properties but which frequently have excessive fish-bones, fat, strange flavours, soft texture, etc. The present study therefore focuses on valorization of the extracted muscle (minced muscle), from several fish species frequently discarded in north-western Spanish fisheries (Atlantic Ocean): Blue whiting (Micromesistius poutassou), Mackerel (Scomber scombrus), Red scorpionfish (Scorpaena scrofa), Pouting (Trisoreptus luscus) and Gurnard (Trigla spp.). Valorization of these discarded fish resources is a key objective for the survival of the fishery sector in this area. In this regard present study was planned to examine the behaviour of the mince during 6 months of frozen storage by means of physicochemical and sensory analyses, and to test consumer acceptance of three technologically different products (burgers, nuggets and structured fingers) prepared with fish mince from different species. Results indicated that protein aggregation started at the outset of frozen storage but progressed very slowly, with the exception of non-washed blue whiting and red scorpionfish minces. Moreover, during frozen storage lipid oxidation increased in all samples; the increase was with two objectives highest in minced mackerel, a fatty fish, but no rancid flavour was detected. All mince samples presented acceptable physicochemical properties and good sensory acceptability after 6 months of frozen storage. Acceptability of final products made with these minces was high in all cases. Burgers were more acceptable for consumers aged over 40 and fingers and nuggets more for younger people.
Collapse
|
34
|
|
35
|
Optimization of Collagenase Production by Pseudoalteromonas sp. SJN2 and Application of Collagenases in the Preparation of Antioxidative Hydrolysates. Mar Drugs 2017; 15:md15120377. [PMID: 29207560 PMCID: PMC5742837 DOI: 10.3390/md15120377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Collagenases are the most important group of commercially-produced enzymes. However, even though biological resources are abundant in the sea, very few of these commercially popular enzymes are from marine sources, especially from marine bacteria. We optimized the production of marine collagenases by Pseudoalteromonas sp. SJN2 and investigated the antioxidant activities of the hydrolysates. Media components and culture conditions associated with marine collagenase production by Pseudoalteromonas sp. SJN2 were optimized by statistical methods, namely Plackett–Burman design and response surface methodology (RSM). Furthermore, the marine collagenases produced by Pseudoalteromonas sp. SJN2 were seen to efficiently hydrolyze marine collagens extracted from fish by-products, and remarkable antioxidant capacities of the enzymatic hydrolysates were shown by DPPH radical scavenging and oxygen radical absorbance capacity (ORAC) tests. The final optimized fermentation conditions were as follows: soybean powder, 34.23 g·L−1; culture time, 3.72 d; and temperature, 17.32 °C. Under the optimal fermentation conditions, the experimental collagenase yield obtained was 322.58 ± 9.61 U·mL−1, which was in agreement with the predicted yield of 306.68 U·mL−1. Collagen from Spanish mackerel bone, seabream scale and octopus flesh also showed higher DPPH radical scavenging rates and ORAC values after hydrolysis by the collagenase. This study may have implications for the development and use of marine collagenases. Moreover, seafood waste containing beneficial collagen could be used to produce antioxidant peptides by proteolysis.
Collapse
|