1
|
Yan XY, Zhang L, Yang QB, Ge ZY, Liang LF, Guo YW. Genus Litophyton: A Hidden Treasure Trove of Structurally Unique and Diversely Bioactive Secondary Metabolites. Mar Drugs 2023; 21:523. [PMID: 37888458 PMCID: PMC10608288 DOI: 10.3390/md21100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Marine soft corals are prolific sources of various natural products that have served as a wealthy reservoir of diverse chemical scaffolds with potential as new drug leads. The genus Litophyton contains almost 100 species but only a small proportion of them has been chemically investigated, which calls for more attentions from global researchers. In the current work, 175 secondary metabolites have been discussed, drawing from published data spanning almost five decades, up to July 2023. The studied species of the genus Litophyton resided in various tropical and temperate regions and encompassed a broad range of biologically active natural products including terpenes, steroids, nitrogen-containing metabolites, lipids, and other metabolites. A wide spectrum of pharmacological effects of these compounds had been evaluated, such as cytotoxic, antiviral, antibacterial, antifungal, anti-malarial, antifeedant, anti-inflammatory, molluscicidal, PTP1B inhibitory, insect growth inhibitory, and neuroprotective activities. This review aims to offer an up-to-date survey of the literature and provide a comprehensive understanding of the chemical structures, taxonomical distributions, and biological activities of the reported metabolites from the title genus whenever available.
Collapse
Affiliation(s)
- Xian-Yun Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Ling Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Qi-Bin Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Zeng-Yue Ge
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Lin-Fu Liang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Yue-Wei Guo
- School of Medicine, Shanghai University, 99 Shangda Road, Bao Shan District, Shanghai 200444, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 Binhai East Road, High-tech Zone, Yantai 264117, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
3
|
Alarif W, Alassass A, Abubakr M, Ayyad SE, Mohammed AE. Anti-inflammatory, antioxidant, cytotoxic activities, and sesquiterpenoid contents of Paralemnalia thyrsoides. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_222_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Elshamy AI, Mohamed TA, Elkady EM, Saleh IA, El-Beih AA, Alhammady MA, Ohta S, Umeyama A, Paré PW, Hegazy MEF. Paralemnolins X and Y, New Antimicrobial Sesquiterpenoids from the Soft Coral Paralemnalia thyrsoide. Antibiotics (Basel) 2021; 10:1158. [PMID: 34680740 PMCID: PMC8532672 DOI: 10.3390/antibiotics10101158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023] Open
Abstract
The organic extracts of the Red Sea soft coral Paralemnalia thyrsoides has led to the identification of two neolemnane-type sesquiterpenoids: paralemnolins X and Y (1, 2). In addition to these newly characterized compounds, ten known metabolites (3-12) were isolated. Previously reported compounds were elucidated by literature comparison of spectroscopic data (1D and 2D NMR as well as MS data). In vitro antimicrobial activity was investigated for compounds (1-12) against Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus niger. Compound 5 showed antimicrobial activity against all assayed microorganisms.
Collapse
Affiliation(s)
- Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Tarik A. Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (T.A.M.); (I.A.S.)
| | - Eman M. Elkady
- National Institute of Oceanography & Fisheries, NIOF, Cairo 11516, Egypt; (E.M.E.); (M.A.A.)
| | - Ibrahim A. Saleh
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (T.A.M.); (I.A.S.)
| | - Ahmed A. El-Beih
- Chemistry of Natural& Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Montaser A. Alhammady
- National Institute of Oceanography & Fisheries, NIOF, Cairo 11516, Egypt; (E.M.E.); (M.A.A.)
| | - Shinji Ohta
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan;
| | - Akemi Umeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan;
| | - Paul W. Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (T.A.M.); (I.A.S.)
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
5
|
Mohamed TA, Elshamy AI, Ibrahim MAA, Atia MAM, Ahmed RF, Ali SK, Mahdy KA, Alshammari SO, Al-Abd AM, Moustafa MF, Farrag ARH, Hegazy MEF. Gastroprotection against Rat Ulcers by Nephthea Sterol Derivative. Biomolecules 2021; 11:1247. [PMID: 34439913 PMCID: PMC8393318 DOI: 10.3390/biom11081247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Different species belonging to the genus Nephthea (Acyonaceae) are a rich resource for bioactive secondary metabolites. The literature reveals that the gastroprotective effects of marine secondary metabolites have not been comprehensively studied in vivo. Hence, the present investigation aimed to examine and determine the anti-ulcer activity of 4α,24-dimethyl-5α-cholest-8β,18-dihydroxy,22E-en-3β-ol (ST-1) isolated from samples of a Nephthea species. This in vivo study was supported by in silico molecular docking and protein-protein interaction techniques. Oral administration of ST-1 reduced rat stomach ulcers with a concurrent increase in gastric mucosa. Molecular docking calculations against the H+/K+-ATPase transporter showed a higher binding affinity of ST-1, with a docking score value of -9.9 kcal/mol and a pKi value of 59.7 nM, compared to ranitidine (a commercial proton pump inhibitor, which gave values of -6.2 kcal/mol and 27.9 µM, respectively). The combined PEA-reactome analysis results revealed promising evidence of ST-1 potency as an anti-ulcer compound through significant modulation of the gene set controlling the PI3K signaling pathway, which subsequently plays a crucial role in signaling regarding epithelialization and tissue regeneration, tissue repairing and tissue remodeling. These results indicate a probable protective role for ST-1 against ethanol-induced gastric ulcers.
Collapse
Affiliation(s)
- Tarik A. Mohamed
- National Research Centre, Chemistry of Medicinal Plants Department, 33 El−Bohouth St., Dokki, Giza 12622, Egypt; (T.A.M.); (S.K.A.); (M.-E.F.H.)
| | - Abdelsamed I. Elshamy
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Giza 12622, Egypt; (A.I.E.); (R.F.A.)
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Rania F. Ahmed
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Giza 12622, Egypt; (A.I.E.); (R.F.A.)
| | - Sherin K. Ali
- National Research Centre, Chemistry of Medicinal Plants Department, 33 El−Bohouth St., Dokki, Giza 12622, Egypt; (T.A.M.); (S.K.A.); (M.-E.F.H.)
| | - Karam A. Mahdy
- National Research Centre, Medical Biochemistry Department, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Shifaa O. Alshammari
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia;
| | - Ahmed M. Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy & Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
- Pharmacology Department, Medical Division, National Research Centre, Cairo 12622, Egypt
| | - Mahmoud F. Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia;
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Abdel Razik H. Farrag
- National Research Centre, Pathology Department, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed-Elamir F. Hegazy
- National Research Centre, Chemistry of Medicinal Plants Department, 33 El−Bohouth St., Dokki, Giza 12622, Egypt; (T.A.M.); (S.K.A.); (M.-E.F.H.)
| |
Collapse
|
6
|
Abdelhafez OH, Fahim JR, El Masri RR, Salem MA, Desoukey SY, Ahmed S, Kamel MS, Pimentel-Elardo SM, Nodwell JR, Abdelmohsen UR. Chemical and biological studies on the soft coral Nephthea sp. RSC Adv 2021; 11:23654-23663. [PMID: 35479817 PMCID: PMC9036784 DOI: 10.1039/d1ra03045k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022] Open
Abstract
Soft corals belonging to the family Nephtheidae have been appreciated as marine sources of diverse metabolites with promising anticancer potential. In view of that, the current work investigates the anti-proliferative potential of the crude extract, different fractions, and green synthesized silver nanoparticles (AgNPs) of the Red Sea soft coral, Nephthea sp. against a panel of tumor cell lines. The metabolic pool of the soft coral under study was also explored via an LC-HR-ESI-MS metabolomics approach, followed by molecular docking analysis of the characterized metabolites against the target proteins, EGFR, VEGFR, and HER2 (erbB2) that are known to be involved in cancer cell proliferation, growth, and survival. Overall, the n-butanol fraction of Nephthea sp. exhibited the highest inhibitory activities against MCF7 (breast cancer) and A549 (lung cancer) cell lines, with interesting IC50 values of 2.30 ± 0.07 and 3.12 ± 0.10 μg ml-1, respectively, whereas the maximum growth inhibition of HL60 (leukemia) cells was recorded by the total extract (IC50 = 2.78 ± 0.09 μg ml-1). More interestingly, the anti-proliferative potential of the total soft coral extract was evidently improved when packaged in the form of biogenic AgNPs, particularly against A549 and MCF7 tumor cells, showing IC50 values of 0.72 ± 0.06 and 9.32 ± 0.57 μg ml-1, respectively. On the other hand, metabolic profiling of Nephthea sp. resulted in the annotation of structurally diverse terpenoids, some of which displayed considerable binding affinities and molecular interactions with the studied target proteins, suggesting their possible contribution to the anti-proliferative properties of Nephthea sp. via inhibition of tyrosine kinases, especially the EGFR type. Taken together, the present findings highlighted the relevance of Nephthea sp. to future anticancer drug discovery and provided a base for further work on the green synthesis of a range of bioactive NPs from marine soft corals.
Collapse
Affiliation(s)
| | - John Refaat Fahim
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20-86-2369075 +20-86-2369075
| | - Ramy R El Masri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza Egypt
| | - M Alaraby Salem
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation New Administrative Capital Cairo Egypt
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20-86-2369075 +20-86-2369075
| | - Safwat Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University 41522 Ismailia Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20-86-2369075 +20-86-2369075
| | | | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, MaRS Centre West Toronto ON Canada
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20-86-2369075 +20-86-2369075
| |
Collapse
|
7
|
Wei J, Liu R, Hu X, Liang T, Zhou Z, Huang Z. MAPK signaling pathway-targeted marine compounds in cancer therapy. J Cancer Res Clin Oncol 2021; 147:3-22. [PMID: 33389079 DOI: 10.1007/s00432-020-03460-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE This paper reviews marine compounds that target the mitogen-activated protein kinase (MAPK) signaling pathway and their main sources, chemical structures, major targeted cancers and possible mechanisms to provide comprehensive and basic information for the development of marine compound-based antitumor drugs in clinical cancer therapy research. METHODS This paper searched the PubMed database using the keywords "cancer", "marine*" and "MAPK signaling pathway"; this search was supplemented by the literature-tracing method. The marine compounds screened for review in this paper are pure compounds with a chemical structure and have antitumor effects on more than one tumor cell line by targeting the MAPK signaling pathway. The PubChem database was used to search for the PubMed CID and draw the chemical structures of the marine compounds. RESULTS A total of 128 studies were searched, and 32 marine compounds with unique structures from extensive sources were collected for this review. These compounds are cytotoxic to cancer cell lines, although their targets are still unclear. This paper describes their anticancer effect mechanisms and the protein expression changes in the MAPK pathway induced by these marine compound treatments. This review is the first to highlight MAPK signaling pathway-targeted marine compounds and their use in cancer therapy. CONCLUSION The MAPK signaling pathway is a promising potential target for cancer therapy. Searching for marine compounds that exert anticancer effects by targeting the MAPK signaling pathway and developing them into new marine anticancer drugs will be beneficial for cancer treatment.
Collapse
Affiliation(s)
- Jiaen Wei
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Ruining Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Xiyun Hu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Tingen Liang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Zhiran Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China. .,Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
8
|
Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, Ambrožić G, Marković D. Marine Natural Products with High Anticancer Activities. Curr Med Chem 2020; 27:1243-1307. [PMID: 31931690 DOI: 10.2174/0929867327666200113154115] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
This review covers recent literature from 2012-2019 concerning 170 marine natural products and their semisynthetic analogues with strong anticancer biological activities. Reports that shed light on cellular and molecular mechanisms and biological functions of these compounds, thus advancing the understanding in cancer biology are also included. Biosynthetic studies and total syntheses, which have provided access to derivatives and have contributed to the proper structure or stereochemistry elucidation or revision are mentioned. The natural compounds isolated from marine organisms are divided into nine groups, namely: alkaloids, sterols and steroids, glycosides, terpenes and terpenoids, macrolides, polypeptides, quinones, phenols and polyphenols, and miscellaneous products. An emphasis is placed on several drugs originating from marine natural products that have already been marketed or are currently in clinical trials.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agro-ressources (LG2A), CNRS FRE 3517, 33 rue Saint-Leu, 80039 Amiens, France
| | - Maris Turks
- Faculty of Material Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1007, Latvia
| | - Maria Kolympadi Markovic
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Gabriela Ambrožić
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Sun J, Xu J, Wang S, Hou Z, Lu X, An L, Du P. A new cerebroside from cordyceps militaris with anti-PTP1B activity. Fitoterapia 2019; 138:104342. [DOI: 10.1016/j.fitote.2019.104342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 01/13/2023]
|
10
|
Abdelhafez OH, Fahim JR, Desoukey SY, Kamel MS, Abdelmohsen UR. Recent Updates on Corals from Nephtheidae. Chem Biodivers 2019; 16:e1800692. [PMID: 30957385 DOI: 10.1002/cbdv.201800692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/04/2019] [Indexed: 01/04/2023]
Abstract
Marine natural products display a wide range of biological activities, which play a vital role in the innovation of lead compounds for the drug development. Soft corals have been ranked at the top in regard to the discovery of bioactive metabolites with potential pharmaceutical applications. Many of the isolated cembranoids revealed diverse biological activities, such as anticancer, antidiabetic and anti-osteoporosis. Likewise, sterols from soft corals exhibited interesting biological potential as anti-inflammatory, antituberculosis and anticancer. Consequently, investigating marine soft corals will definitely lead to the discovery of a large number of chemically varied secondary metabolites with countless bioactivities for possible applications in medicine and pharmaceutical industry. This review provides a complete survey of all metabolites isolated from the family Nephtheidae, from 2011 until November 2018, along with their natural sources and biological potential whenever possible.
Collapse
Affiliation(s)
- Omnia Hesham Abdelhafez
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111, New Minia City, Minia, 61519, Egypt
| | - John Refaat Fahim
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111, New Minia City, Minia, 61519, Egypt
| | | |
Collapse
|
11
|
Alcyonium Octocorals: Potential Source of Diverse Bioactive Terpenoids. Molecules 2019; 24:molecules24071370. [PMID: 30965598 PMCID: PMC6479912 DOI: 10.3390/molecules24071370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/13/2023] Open
Abstract
Alcyonium corals are benthic animals, which live in different climatic areas, including temperate, Antarctic and sub-Antarctic waters. They were found to produce different chemical substances with molecular diversity and unique architectures. These metabolites embrace several terpenoidal classes with different functionalities. This wide array of structures supports the productivity of genus Alcyonium. Yet, majority of the reported compounds are still biologically unscreened and require substantial efforts to explore their importance. This review is an entryway to push forward the bio-investigation of this genus. It covers the era from the beginning of reporting metabolites from Alcyonium up to March 2019. Ninety-two metabolites are presented; forty-two sesquiterpenes, twenty-five diterpenes and twenty-five steroids have been reported from sixteen species.
Collapse
|
12
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
13
|
Wu Q, Sun J, Chen J, Zhang H, Guo YW, Wang H. Terpenoids from Marine Soft Coral of the Genus Lemnalia: Chemistry and Biological Activities. Mar Drugs 2018; 16:md16090320. [PMID: 30205594 PMCID: PMC6165112 DOI: 10.3390/md16090320] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022] Open
Abstract
Lemnalia is one of the most widely-distributed marine soft coral in tropical oceans and is known to produce novel terpenoids with a broad spectrum of biological activities. This review provides the first comprehensive overview of terpenoids produced by soft coral Lemnalia since their first discovery in 1974.
Collapse
Affiliation(s)
- Qihao Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Jiadong Sun
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20878, USA.
| | - Jianwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Huawei Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yue-Wei Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Hong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
14
|
Xeniaphyllane-Derived Terpenoids from Soft Coral Sinularia nanolobata. Mar Drugs 2018; 16:md16020040. [PMID: 29364140 PMCID: PMC5852468 DOI: 10.3390/md16020040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
A novel tetranorditerpenoid, sinubatin A (1) (having an unprecedented carbon skeleton), a new norditerpenoid, sinubatin B (2) (a 4,5-epoxycaryophyllene possessing an unusual methylfuran moiety side chain), and a known diterpenoid, gibberosin J (3) were isolated from soft coral Sinulariananolobata. The structures of the new compounds were elucidated by extensive analysis of spectroscopic data.
Collapse
|
15
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2018. [DOI: 10.1039/c8np90008f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as tundrenone from Methylobacter tundripaludum.
Collapse
|