1
|
Shi C, Zhao S, Mi L, Niu D, Hu F, Han W, Li B. Fucoidan MF4 from Fucus vesiculosus inhibits Lewis lung cancer via STING-TBK1-IRF3 pathway. Int J Biol Macromol 2024; 267:131336. [PMID: 38583840 DOI: 10.1016/j.ijbiomac.2024.131336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Fucoidan, a sulfated polysaccharide of marine origin found in brown algae and sea cucumbers, has been identified as a neuroprotective compound. In this study, a novel fucoidan MF4 was extracted from Fucus vesiculosus and isolated using Q-Sepharose fast-flow ion-exchange chromatography. The physicochemical properties of MF4 were characterized. MF4 is primarily composed of fucose, xylose, galactose, glucose, and mannose in a molar ratio of 12.3: 4.9: 1.1: 1.0: 1.1, with an average molecular weight of 67.7 kDa. Notably, MF4 demonstrated suppression of LLC tumor growth in vivo. RNA-sequencing analysis revealed that MF4 enhanced the expression of type I interferon-associated downstream genes in macrophages. Furthermore, MF4 increased the levels of phosphorylated TBK1 and IRF3 proteins in vitro. By activating the STING-TBK1-IRF3 signaling pathway, MF4 may enhance the antitumor activity of macrophages. Taken together, MF4 has promising potential as an antitumor and immunomodulatory agent.
Collapse
Affiliation(s)
- Chuanqin Shi
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266003, China; Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China
| | - Shihua Zhao
- Department of Endocrinology, Zibo Central Hospital, Zibo 255020, China
| | - Liyan Mi
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 261400, China
| | - Deying Niu
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255020, China
| | - Fanwen Hu
- Departmet of Pharmacy, Jinan Dermatosis Prevention and Contorl Hospital, Jinan 250000, China
| | - Wenwei Han
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266003, China; Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
2
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
3
|
Gaspar-Pintiliescu A, Stefan LM, Mihai E, Sanda C, Manoiu VS, Berger D, Craciunescu O. Antioxidant and antiproliferative effect of a glycosaminoglycan extract from Rapana venosa marine snail. PLoS One 2024; 19:e0297803. [PMID: 38359063 PMCID: PMC10868805 DOI: 10.1371/journal.pone.0297803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Marine glycosaminoglycans (GAG) isolated from different invertebrates, such as molluscs, starfish or jellyfish, have been described as unique molecules with important pharmacological applications. Scarce information is available on GAG extract from Rapana venosa marine snail. The aim of this study was to isolate a GAG extract from R. venosa marine snail and to investigate its physicochemical, antioxidant and antiproliferative properties for further biomedical use. The morphology, chemical and elemental composition of the extract were established as well as the sulfate content and N- to O-sulfation ratio. Fourier transform infrared (FTIR) spectra indicated that GAG extract presented similar structural characteristics to bovine heparan sulfate and chondroitin sulfate. The pattern of extract migration in agarose gel electrophoresis and specific digestion with chondroitinase ABC and heparinase III indicated the presence of a mixture of chondroitin sulfate-type GAG, as main component, and heparan sulfate-type GAG. Free radical scavenging and ferric ion reducing assays showed that GAG extract had high antioxidant activity, which slightly decreased after enzymatic treatment. In vitro MTT and Live/Dead assays showed that GAG extract had the ability to inhibit cell proliferation in human Hep-2 cell cultures, at cytocompatible concentrations in normal NCTC clone L929 fibroblasts. This capacity decreased after enzymatic digestion, in accordance to the antioxidant activity of the products. Tumoral cell migration was also inhibited by GAG extract and its digestion products. Overall, GAG extract from R. venosa marine snail exhibited antioxidant and antiproliferative activities, suggesting its potential use as novel bioactive compound for biomedical applications.
Collapse
Affiliation(s)
- Alexandra Gaspar-Pintiliescu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Laura M. Stefan
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Elena Mihai
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Catalina Sanda
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Vasile S. Manoiu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Daniela Berger
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Bucharest, Romania
| | - Oana Craciunescu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
4
|
Ou J, Wang Z, Huang H, Chen J, Liu X, Jia X, Song B, Cheong KL, Gao Y, Zhong S. Intervention effects of sulfate glycosaminoglycan from swim bladder against arsenic-induced damage in IEC-6 cells. Int J Biol Macromol 2023; 252:126460. [PMID: 37619679 DOI: 10.1016/j.ijbiomac.2023.126460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
In this study, a purified macromolecular sulfate glycosaminoglycan whose structural characterization is similar to chondroitin sulfate from the swim bladder of Aristichthys nobilis, named SBSG, was used to explore the intervention effects on arsenic-induced intestinal epithelial cells (IEC-6) damage. Arsenic exposure led to cell membrane rupture, mitochondrial dysfunction, oxidative damage, and down-regulation of tight junction proteins expression. Treatment with SBSG could alleviate arsenic exposure-induced cell damage by decreasing the extracellular lactate dehydrogenase activity and influencing mitochondrial membrane potential, reactive oxygen species level, malondialdehyde content, and anti-oxidative enzyme activity. On the other hand, SBSG could promote nitric oxide production to achieve potential immunoregulation. The Western blot showed that intervention of SBSG mainly could restrain the activation of the JNK signaling pathway and up-regulate the expression of ZO-1 against arsenic-induced cell damage. This study provides a new perspective for understanding the heavy metal detoxification of SBSG on the intestinal and indicates that SBSG could be used as natural antioxidant resistant to heavy metal toxicity.
Collapse
Affiliation(s)
- Jieying Ou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China.
| | - Houpei Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Jing Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Bingbing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Yuan Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Abdel-Rahman RM, Abdel-Mohsen AM. Marine Biomaterials: Hyaluronan. Mar Drugs 2023; 21:426. [PMID: 37623707 PMCID: PMC10456333 DOI: 10.3390/md21080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
The marine-derived hyaluronic acid and other natural biopolymers offer exciting possibilities in the field of biomaterials, providing sustainable and biocompatible alternatives to synthetic materials. Their unique properties and abundance in marine sources make them valuable resources for various biomedical and industrial applications. Due to high biocompatible features and participation in biological processes related to tissue healing, hyaluronic acid has become widely used in tissue engineering applications, especially in the wound healing process. The present review enlightens marine hyaluronan biomaterial providing its sources, extraction process, structures, chemical modifications, biological properties, and biocidal applications, especially for wound healing/dressing purposes. Meanwhile, we point out the future development of wound healing/dressing based on hyaluronan and its composites and potential challenges.
Collapse
Affiliation(s)
- Rasha M. Abdel-Rahman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Praha, Czech Republic
| | - A. M. Abdel-Mohsen
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Praha, Czech Republic
| |
Collapse
|
6
|
Shen T, Wang S, Liang Q, Sharp JS, Wei Z. Characterization and antioxidant activities of glycosaminoglycans from dried leech. Glycoconj J 2023; 40:169-178. [PMID: 36749437 DOI: 10.1007/s10719-023-10105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Dried leech (Whitmania pigra whitman) has been widely used as a traditional animal-based Chinese medicine. Dried leech extracts have been reported to have various biological activities that are often associated with mammalian glycosaminoglycans. However, their presence and possible structural characteristics within dried leech were previously unknown. In this study, glycosaminoglycans were isolated from dried leech for the first time and their structures were analyzed by the combination of Fourier-transform infrared spectroscopy, liquid chromatography-ion trap/time-of-flight mass spectrometry and polyacrylamide gel electrophoresis. Heparan sulfate and chondroitin sulfate/dermatan sulfate were detected in dried leech with varied disaccharide compositions and possess a heterogeneous structure. Heparan sulfate species possess an equal amount of total 2-O-sulfated, N-sulfated and acetylated disaccharides, while chondroitin sulfate /dermatan sulfate contain high content of 4-O-sulfated disaccharides. Also, the quantitative analysis revealed that the contents of heparan sulfate and chondroitin/dermatan sulfate in dried leech varied significantly, with chondroitin/dermatan sulfate being by far the most abundant. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of the dried leech. Furthermore, leech glycosaminoglycans showed a strong ABTS radical scavenging ability, which suggests the potential of leech polysaccharides for exploitation in the nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Tao Shen
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, 350002, Fu Zhou, P.R. China
| | - Shangteng Wang
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, 350002, Fu Zhou, P.R. China
| | - Quntao Liang
- College of Biological Science and Engineering, Fu Zhou University, 350002, Fu Zhou, P.R. China.
- College of Biological Science and Engineering, Fuzhou University, 350002, Fuzhou, P.R. China.
| | - Joshua S Sharp
- Department of BioMolecular Sciences, Department of Chemistry and Biochemistry, University of Mississippi, 38655, Oxford, MS, USA
| | - Zheng Wei
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fu Zhou University, 350002, Fu Zhou, P.R. China.
- College of Biological Science and Engineering, Fuzhou University, 350002, Fuzhou, P.R. China.
- Institute of Glycobiochemistry, National Engineering Research Centre of Chemical Fertilizer Catalyst, Fuzhou University, 350002, Fuzhou, P.R. China.
| |
Collapse
|
7
|
Cao MY, Wu J, Xie CQ, Wu L, Gu Z, Hu JW, Xiong W. Antioxidant and anti-inflammatory activities of Gynura procumbens flowers extract through suppressing LPS-induced MAPK/NF-κB signalling pathways. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2098935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ming-Yuan Cao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, People’s Republic of China
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Jing Wu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, People’s Republic of China
| | - Chuan-Qi Xie
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, People’s Republic of China
| | - Lei Wu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, People’s Republic of China
| | - Zhen Gu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, People’s Republic of China
| | - Ju-Wu Hu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, People’s Republic of China
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Wei Xiong
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, People’s Republic of China
| |
Collapse
|
8
|
Urbi Z, Azmi NS, Ming LC, Hossain MS. A Concise Review of Extraction and Characterization of Chondroitin Sulphate from Fish and Fish Wastes for Pharmacological Application. Curr Issues Mol Biol 2022; 44:3905-3922. [PMID: 36135180 PMCID: PMC9497668 DOI: 10.3390/cimb44090268] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Chondroitin sulphate (CS) is one of the most predominant glycosaminoglycans (GAGs) available in the extracellular matrix of tissues. It has many health benefits, including relief from osteoarthritis, antiviral properties, tissue engineering applications, and use in skin care, which have increased its commercial demand in recent years. The quest for CS sources exponentially increased due to several shortcomings of porcine, bovine, and other animal sources. Fish and fish wastes (i.e., fins, scales, skeleton, bone, and cartilage) are suitable sources of CS as they are low cost, easy to handle, and readily available. However, the lack of a standard isolation and characterization technique makes CS production challenging, particularly concerning the yield of pure GAGs. Many studies imply that enzyme-based extraction is more effective than chemical extraction. Critical evaluation of the existing extraction, isolation, and characterization techniques is crucial for establishing an optimized protocol of CS production from fish sources. The current techniques depend on tissue hydrolysis, protein removal, and purification. Therefore, this study critically evaluated and discussed the extraction, isolation, and characterization methods of CS from fish or fish wastes. Biosynthesis and pharmacological applications of CS were also critically reviewed and discussed. Our assessment suggests that CS could be a potential drug candidate; however, clinical studies should be conducted to warrant its effectiveness.
Collapse
Affiliation(s)
- Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Nina Suhaity Azmi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| |
Collapse
|
9
|
Yang M, Zhou D, Xiao H, Fu X, Kong Q, Zhu C, Han Z, Mou H. Marine-derived uronic acid-containing polysaccharides: Structures, sources, production, and nutritional functions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Ghio AJ, Pavlisko EN, Roggli VL, Todd NW, Sangani RG. Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis. Int J Chron Obstruct Pulmon Dis 2022; 17:117-140. [PMID: 35046648 PMCID: PMC8763205 DOI: 10.2147/copd.s337354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
It is proposed that the mechanistic basis for non-neoplastic lung injury with cigarette smoking is a disruption of iron homeostasis in cells after exposure to cigarette smoke particle (CSP). Following the complexation and sequestration of intracellular iron by CSP, the host response (eg, inflammation, mucus production, and fibrosis) attempts to reverse a functional metal deficiency. Clinical manifestations of this response can present as respiratory bronchiolitis, desquamative interstitial pneumonitis, pulmonary Langerhans’ cell histiocytosis, asthma, pulmonary hypertension, chronic bronchitis, and pulmonary fibrosis. If the response is unsuccessful, the functional deficiency of iron progresses to irreversible cell death evident in emphysema and bronchiectasis. The subsequent clinical and pathological presentation is a continuum of lung injuries, which overlap and coexist with one another. Designating these non-neoplastic lung injuries after smoking as distinct disease processes fails to recognize shared relationships to each other and ultimately to CSP, as well as the common mechanistic pathway (ie, disruption of iron homeostasis).
Collapse
Affiliation(s)
- Andrew J Ghio
- Human Studies Facility, US Environmental Protection Agency, Chapel Hill, NC, 27514, USA
- Correspondence: Andrew J Ghio Human Studies Facility, US Environmental Protection Agency, 104 Mason Farm Road, Chapel Hill, NC, USA Email
| | | | | | - Nevins W Todd
- Department of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Rahul G Sangani
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
11
|
Kong Y, Li Y, Dai Z, Qin M, Fan H, Hao J, Zhang C, Zhong Q, Qi C, Wang P. Glycosaminoglycan from Ostrea rivularis attenuates hyperlipidemia and regulates gut microbiota in high-cholesterol diet-fed zebrafish. Food Sci Nutr 2021; 9:5198-5210. [PMID: 34532028 PMCID: PMC8441474 DOI: 10.1002/fsn3.2492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/22/2022] Open
Abstract
Hyperlipidemia an immense group of acquired or genetic metabolic disorders that is characterized by an excess of lipids in the bloodstream. Altogether, they have a high prevalence worldwide and constitute a major threat to human health. Glycosaminoglycans (GAG) are natural biomolecules that have hypolipidemic activity. The purpose of this study was to investigate the potential hypolipidemic effect of glycosaminoglycans extracted from Ostrea rivularis (OGAG) on hyperlipidemic zebrafish, as well as the possible underlying mechanism of such effect. Dietary supplementation with OGAG during 4 weeks significantly reduced the serum and hepatic lipid levels and the hepatosomatic index in hyperlipidemic zebrafish. In addition, histopathological showed that OGAG supplementation decreases the volume and number of lipid droplets in hepatocytes. Transcriptome and real-time quantitative polymerase chain reaction analysis revealed that the gene expression levels of PPARγ, SCD, HMGRA, ACAT2, HMGCS, and HMGCR were significantly downregulated by OGAG treatment in hepatocytes, whereas those of CD36, FABP2, FABP6, ABCG5, and CYP7A1 were significantly upregulated. This suggests that the hypolipidemic effect of OGAG relies on increasing the ketogenic metabolism of fatty acids, inhibiting cholesterol synthesis, and enhancing the transformation of cholesterol to bile acid. Furthermore, OGAG treatment improved gut microbiota imbalance by reducing the Firmicutes-to-Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria (Bacteroidetes, Verrucomicrobia, Acidobacteria, and Sphingomonas), and reducing the relative abundance of harmful bacteria (Proteobacteria, Cohaesibacter, Vibrio, and Terrisporobacter). These findings highlight the potential benefit of implementing OGAG as a dietary supplement to prevent and treat hyperlipidemia.
Collapse
Affiliation(s)
- Yan Kong
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity ConservationBeibu Gulf UniversityQinzhouChina
- College of Light Industry and Food EngineeringGuangxi UniversityNanningChina
| | - Ying Li
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Zi‐Ru Dai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity ConservationBeibu Gulf UniversityQinzhouChina
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Mei Qin
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - He‐Liang Fan
- College of Light Industry and Food EngineeringGuangxi UniversityNanningChina
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Jun‐Guang Hao
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Chen‐Xiao Zhang
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Qiu‐Ping Zhong
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity ConservationBeibu Gulf UniversityQinzhouChina
| | - Cen Qi
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Pei Wang
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| |
Collapse
|
12
|
Medeiros LHC, Vasconcelos BMF, Silva MB, Souza-Junior AA, Chavante SF, Andrade GPV. Chondroitin sulfate from fish waste exhibits strong intracellular antioxidant potential. ACTA ACUST UNITED AC 2021; 54:e10730. [PMID: 34287577 PMCID: PMC8289345 DOI: 10.1590/1414-431x2020e10730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
Chondroitin sulfate (CS) is a type of glycosaminoglycan described as an antioxidant molecule that has been found in animal species such as fish. Tilapia (Oreochromis niloticus) represents an eco-friendly source of this compound, since its economical processing generates usable waste, reducing the negative environmental impact. This waste was used for CS extraction, purification, characterization by enzymatic degradation, and evaluation of its antioxidant effect. CS obtained from tilapia presented sulfation mainly at carbon 4 of galactosamine, and it was not cytotoxic at concentrations up to 200 µg/mL. Furthermore, 100 µg/mL of CS from tilapia reduced the levels of reactive oxygen species to 47% of the total intracellular reactive oxygen species level. The ability of CS to chelate metal ions in vitro also suggested an ability to react with other pathways that generate oxidative radicals, such as the Haber-Weiss reaction, acting intracellularly in more than one way. Although the role of CS from tilapia remains unclear, the pharmacological effects described herein indicate that CS is a potential molecule for further study of the relationship between the structures and functions of chondroitin sulfates as antioxidants.
Collapse
Affiliation(s)
- L H C Medeiros
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - B M F Vasconcelos
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - M B Silva
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - A A Souza-Junior
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil.,Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Parnamirim, RN, Brasil
| | - S F Chavante
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - G P V Andrade
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| |
Collapse
|
13
|
Dhahri M, Sioud S, Dridi R, Hassine M, Boughattas NA, Almulhim F, Al Talla Z, Jaremko M, Emwas AHM. Extraction, Characterization, and Anticoagulant Activity of a Sulfated Polysaccharide from Bursatella leachii Viscera. ACS OMEGA 2020; 5:14786-14795. [PMID: 32596616 PMCID: PMC7315596 DOI: 10.1021/acsomega.0c01724] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Bioactive compounds for drug discovery are increasingly extracted and purified from natural sources including marine organisms. Heparin is a therapeutic agent that has been used for several decades as an anticoagulant. However, heparin is known to cause many undesirable complications such as thrombocytopenia and risk of hemorrhage. Hence, there is a need to find alternatives to current widely used anticoagulant drugs. Here, we extract a sulfated polysaccharide from sea hare, that is, Bursatella leachii viscera, by enzymatic digestion. Several analytical approaches including elemental analysis, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-performance liquid chromatography-mass spectrometry analysis show that B. leachii polysaccharides have chemical structures similar to glycosaminoglycans. We explore the anticoagulant activity of the B. leachii extract using the activated partial thromboplastin time and the thrombin time. Our results demonstrate that the extracted sulfated polysaccharide has heparin-like anticoagulant activity, thus showing great promise as an alternative anticoagulant therapy.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department,
Faculty of Science Yanbu, Taibah University, 46423 Yanbu El-Bahr, Saudi Arabia
| | - Salim Sioud
- Analytical Core Lab, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Rihab Dridi
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Mohsen Hassine
- Hematology Department, Fattouma Bourguiba University Hospital, 5000 Monastir, Tunisia
| | - Naceur A. Boughattas
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Fatimah Almulhim
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Zeyad Al Talla
- ANPERC, King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Mariusz Jaremko
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Abdul-Hamid M. Emwas
- Core Labs, King
Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| |
Collapse
|
14
|
Abdallah MM, Fernández N, Matias AA, Bronze MDR. Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. Carbohydr Polym 2020; 243:116441. [PMID: 32532391 DOI: 10.1016/j.carbpol.2020.116441] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Hyaluronic acid (HA) and chondroitin sulfate (CS) are valuable bioactive polysaccharides that have been highly used in biomedical and pharmaceutical applications. Extensive research was done to ensure their efficient extraction from marine and terrestrial by-products at a high yield and purity, using specific techniques to isolate and purify them. In general, the cartilage is the most common source for CS, while the vitreous humor is main used source of HA. The developed methods were based in general on tissue hydrolysis, removal of proteins and purification of the target biopolymers. They differ in the extraction conditions, enzymes and/or solvents used and the purification technique. This leads to specific purity, molecular weight and sulfation pattern of the isolated HA and CS. This review focuses on the analysis and comparison of different extraction and purification methods developed to isolate these valuable biopolymers from marine and terrestrial animal by-products.
Collapse
Affiliation(s)
- Maha M Abdallah
- iBET, Institute of Experimental Biology and Technology, Avenida da República, Estação Agronómica, 2780-157, Portugal; ITQB-UNL, Institute of Chemical and Biological Technology, New University of Lisbon, Avenida da República, 2780-157, Portugal
| | - Naiara Fernández
- iBET, Institute of Experimental Biology and Technology, Avenida da República, Estação Agronómica, 2780-157, Portugal
| | - Ana A Matias
- iBET, Institute of Experimental Biology and Technology, Avenida da República, Estação Agronómica, 2780-157, Portugal
| | - Maria do Rosário Bronze
- iBET, Institute of Experimental Biology and Technology, Avenida da República, Estação Agronómica, 2780-157, Portugal; ITQB-UNL, Institute of Chemical and Biological Technology, New University of Lisbon, Avenida da República, 2780-157, Portugal; FFULisboa, Faculty of Pharmacy, University of Lisbon, Avenida Professor Gama Pinto, 1649-003, Portugal.
| |
Collapse
|
15
|
Yuan Y, Che L, Qi C, Meng Z. Protective effects of polysaccharides on hepatic injury: A review. Int J Biol Macromol 2019; 141:822-830. [PMID: 31487518 DOI: 10.1016/j.ijbiomac.2019.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022]
Abstract
Chronic hepatic injury caused by hepatitis B and C virus (HBV and HCV) infection, high fat diet and alcohol intake has increased to be the critical promoter of hepatocellular carcinoma (HCC). These high risk factors set into motion a vicious cycle of hepatocyte death, inflammation and fibrosis that finally results in cirrhosis and HCC after several decades. However, the treatment options for HCC are very limited. Therefore, early treatment of liver injury may reduce the incidence and probability of HCC or delay the progression of HCC. Substantial ongoing research has focused on nontoxic biological macromolecules, mainly polysaccharides, which possess prominent efficacies on hepatoprotective activity. Based on these encouraging observations, a great deal of effort has been devoted to discovering novel polysaccharides for the development of effective therapeutics for hepatic injury. This review focuses on the protective effects of polysaccharides on liver injury, including hepatitis virus infection, nonalcoholic steatohepatitis, alcoholic liver disease and other hepatic injuries, and describes the underlying mechanisms.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Medicine Laboratory, First Hospital, Jilin University, Changchun 130021, China
| | - Lihe Che
- Department of Infectious Disease, First Hospital, Jilin University, Changchun 130021, China
| | - Chong Qi
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|