1
|
Jadhav V, Roy A, Kaur K, Roy A, Sharma K, Verma R, Rustagi S, Malik S. Current advancements in functional nanomaterials for drug delivery systems. NANO-STRUCTURES & NANO-OBJECTS 2024; 38:101177. [DOI: 10.1016/j.nanoso.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
2
|
Yugatama A, Huang YL, Hsu MJ, Lin JP, Chao FC, Lam JKW, Hsieh CM. Oral Delivery of Photopolymerizable Nanogels Loaded with Gemcitabine for Pancreatic Cancer Therapy: Formulation Design, and in vitro and in vivo Evaluations. Int J Nanomedicine 2024; 19:3753-3772. [PMID: 38686338 PMCID: PMC11057685 DOI: 10.2147/ijn.s443610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Background Gemcitabine (GEM) faces challenges of poor oral bioavailability and extensive first-pass metabolism. Currently, only injectable formulations are available for clinical use. Hence, there is an urgent demand for the development of advanced, efficacious, and user-friendly dosage forms to maintain its status as the primary treatment for pancreatic ductal adenocarcinoma (PDAC). Nanogels (NGs) offer a novel oral drug delivery system, ideal for hydrophilic compounds like GEM. This study aims to develop NGs tailored for GEM delivery, with the goal of enhancing cellular uptake and gastrointestinal permeability for improved administration in PDAC patients. Methods We developed cross-linked NGs via photopolymerization of methacryloyl for drug delivery of GEM. We reveal characterization, cytotoxicity, and cellular uptake studies in Caco-2 and MIA PaCa-2 cells. In addition, studies of in vitro permeability and pharmacokinetics were carried out to evaluate the bioavailability of the drug. Results Our results show NGs, formed via photopolymerization of methacryloyl, had a spherical shape with a size of 233.91±7.75 nm. Gemcitabine-loaded NGs (NGs-GEM) with 5% GelMA exhibited efficient drug loading (particle size: 244.07±19.52 nm). In vitro drug release from NGs-GEM was slower at pH 1.2 than pH 6.8. Cellular uptake studies indicated significantly enhanced uptake in both MIA PaCa-2 and Caco-2 cells. While there was no significant difference in GEM's AUC and Cmax between NGs-GEM and free-GEM groups, NGs-GEM showed markedly lower dFdU content (10.07 hr∙μg/mL) compared to oral free-GEM (19.04 hr∙μg/mL) after oral administration (p<0.01), highlighting NGs' efficacy in impeding rapid drug metabolism and enhancing retention. Conclusion In summary, NGs enhance cellular uptake, inhibit rapid metabolic degradation of GEM, and prolong retention after oral administration. These findings suggest NGs-GEM as a promising candidate for clinical use in oral pancreatic cancer therapy.
Collapse
Affiliation(s)
- Adi Yugatama
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmacy, Sebelas Maret University, Surakarta, 57126, Indonesia
| | - Ya-Lin Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Pei Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Fang-Ching Chao
- CNRS UMR 8612, Institut Galien Paris-Saclay, Université Paris-Saclay, Orsay, 91400, France
| | - Jenny K W Lam
- Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
3
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
4
|
Li J, Zhu T, Jiang Y, Zhang Q, Zu Y, Shen X. Microfluidic printed 3D bioactive scaffolds for postoperative treatment of gastric cancer. Mater Today Bio 2024; 24:100911. [PMID: 38188649 PMCID: PMC10770549 DOI: 10.1016/j.mtbio.2023.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Tumor recurrence and tissue regeneration are two major challenges in the postoperative treatment of cancer. Current research hotspots are focusing on developing novel scaffold materials that can simultaneously suppress tumor recurrence and promote tissue repair. Here, we propose a microfluidic 3D-printed methacrylate fish gelatin (F-GelMA@BBR) scaffold loaded with berberine (BBR) for the postoperative treatment of gastric cancer. The F-GelMA@BBR scaffold displayed a significant killing effect on gastric cancer MKN-45 cells in vitro and demonstrated excellent anti-recurrence efficiency in gastric cancer postoperative models. In vitro experiments have shown that F-GelMA@BBR exhibits significant cytotoxicity on gastric cancer cells while maintaining the cell viability of normal cells. The results of in vivo experiments show that F-GelMA@BBR can significantly suppress the tumor volume to 49.7 % of the control group. In addition, the scaffold has an ordered porous structure and good biocompatibility, which could support the attachment and proliferation of normal cells to promote tissue repair at the tumor resection site. These features indicated that such scaffold material is a promising candidate for postoperative tumor treatment in the practical application.
Collapse
Affiliation(s)
- Jiante Li
- Department of Anorectal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Tianru Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yiwei Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingfei Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yan Zu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
5
|
Galasso C, Ruocco N, Mutalipassi M, Barra L, Costa V, Giommi C, Dinoi A, Genovese M, Pica D, Romano C, Greco S, Pennesi C. Marine polysaccharides, proteins, lipids, and silica for drug delivery systems: A review. Int J Biol Macromol 2023; 253:127145. [PMID: 37778590 DOI: 10.1016/j.ijbiomac.2023.127145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Marine environments represent an incredible source of biopolymers with potential biomedical applications. Recently, drug delivery studies have received great attention for the increasing need to improve site specificity, therapeutic value, and bioavailability, reducing off-target effects. Marine polymers, such as alginate, carrageenan, collagen, chitosan, and silica, have reported unique biochemical features, allowing an efficient binding with drugs, and a controlled release to the target tissue, also obtainable through "green processes". In the present review, we i) analysed the last ten years of scientific peer-reviewed literature; ii) divided the articles based on the achieved experimental phases, tagged as chemistry, drug release, and drug delivery, and iii) compared the best performances among marine polymers extracted from micro- and macro-organisms. Many reviews describe drug carriers from marine organisms, focusing on a single biopolymer or a chemical class. Our study is a groundbreaking literature collection, representing the first thorough investigation of all marine biopolymers described. Most articles report experimental results on the chemical characterisation of marine biopolymers and their in vitro behaviour as drug carriers, although development processes and commercial applications are still in the early stages. Hence, the next efforts should be focused on the sustainable production of marine polymers and final product development.
Collapse
Affiliation(s)
- Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| | - Nadia Ruocco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Lucia Barra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Valentina Costa
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Giommi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Alessia Dinoi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Martina Genovese
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Daniela Pica
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Romano
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Bra CN, Italy
| | - Silvestro Greco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Pennesi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| |
Collapse
|
6
|
Zuev YF, Derkach SR, Bogdanova LR, Voron’ko NG, Kuchina YA, Gubaidullin AT, Lunev IV, Gnezdilov OI, Sedov IA, Larionov RA, Latypova L, Zueva OS. Underused Marine Resources: Sudden Properties of Cod Skin Gelatin Gel. Gels 2023; 9:990. [PMID: 38131976 PMCID: PMC10742947 DOI: 10.3390/gels9120990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The main object of this work was to characterize the structure and properties of laboratory-made fish gelatin from cod skin in comparison with known commercial gelatins of fish and mammalian origin. This is one way we can contribute to the World Food Program and characterize foodstuff resources from alternative natural sources. Our research was based on the combination of an expanded set of complementary physical-chemical methods to study the similarities and distinctions of hydrogels from traditional and novel gelatin sources from underused marine resources. In this work, we have compared the morphology, supramolecular structure and colloid properties of two commercial (mammalian and fish) gelatins with gelatin we extracted from cold-water cod skin in laboratory conditions. The obtained results are novel, showing that our laboratory-produced fish gelatin is much closer to the mammalian one in terms of such parameters as thermal stability and strength of structural network under temperature alterations. Especially interesting are our experimental observations comparing both fish gelatins: it was shown that the laboratory-extracted cod gelatin is essentially more thermally stable compared to its commercial analogue, being even closer in its rheological properties to the mammalian one.
Collapse
Affiliation(s)
- Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
| | - Svetlana R. Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Liliya R. Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
| | - Nikolai G. Voron’ko
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Yulia A. Kuchina
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Aidar T. Gubaidullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Ivan V. Lunev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Oleg I. Gnezdilov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Igor A. Sedov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Radik A. Larionov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Larisa Latypova
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China;
| | - Olga S. Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia;
| |
Collapse
|
7
|
Jia Z, Zeng H, Ye X, Dai M, Tang C, Liu L. Hydrogel-based treatments for spinal cord injuries. Heliyon 2023; 9:e19933. [PMID: 37809859 PMCID: PMC10559361 DOI: 10.1016/j.heliyon.2023.e19933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal cord injury (SCI) is characterized by damage resulting in dysfunction of the spinal cord. Hydrogels are common biomaterials that play an important role in the treatment of SCI. Hydrogels are biocompatible, and some have electrical conductivity that are compatible with spinal cord tissues. Hydrogels have a high drug-carrying capacity, allowing them to be used for SCI treatment through the loading of various types of active substances, drugs, or cells. We first discuss the basic anatomy and physiology of the human spinal cord and briefly discuss SCI and its treatment. Then, we describe different treatment strategies for SCI. We further discuss the crosslinking methods and classification of hydrogels and detail hydrogel biomaterials prepared using different processing methods for the treatment of SCI. Finally, we analyze the future applications and limitations of hydrogels for SCI. The development of biomaterials opens up new possibilities and options for the treatment of SCI. Thus, our findings will inspire scholars in related fields and promote the development of hydrogel therapy for SCI.
Collapse
Affiliation(s)
- Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
8
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
9
|
Ho TC, Lim JS, Kim SJ, Kim SY, Chun BS. In Vitro Biodegradation, Drug Absorption, and Physical Properties of Gelatin-Fucoidan Microspheres Made of Subcritical-Water-Modified Fish Gelatin. Mar Drugs 2023; 21:md21050287. [PMID: 37233481 DOI: 10.3390/md21050287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
This study aimed to prepare gelatin-fucoidan microspheres with enhanced doxorubicin binding efficiency and controllable biodegradation using fish gelatin combined with low molecular weight (LMW) gelatin and fucoidan at fixed ratios. The MW of gelatin was modified by subcritical water (SW), which is known as a safe solvent, at 120 °C, 140 °C, and 160 °C. In addition, gelatin-fucoidan microspheres were prepared using a solvent exchange technique. Our findings revealed that particle size decreased, the surface was rougher, the swelling ratio increased, and particle shape was irregular in microspheres composed of SW-modified gelatin. Doxorubicin binding efficiency was improved by fucoidan and SW-modified gelatin at 120 °C but not at 140 °C and 160 °C. Interestingly, an increase in in vitro enzymatic degradation was observed in the microspheres consisting of SW-modified fish gelatin, although the cross-linking degree between them was not significantly different. This is because LMW gelatin could form more cross-linked bonds, which might be weaker than the intramolecular bonds of gelatin molecules. Gelatin-fucoidan microspheres consisting of SW-modified fish gelatin with controlled biodegradation rates could be a candidate for a short-term transient embolization agent. In addition, SW would be a promising method to modify the MW of gelatin for medical applications.
Collapse
Affiliation(s)
- Truc Cong Ho
- PL MICROMED Co., Ltd., 1F, 15-5, Yangju 3-gil, Yangsan-si 50620, Republic of Korea
| | - Ju-Sop Lim
- PL MICROMED Co., Ltd., 1F, 15-5, Yangju 3-gil, Yangsan-si 50620, Republic of Korea
| | - Shin-Jun Kim
- PL MICROMED Co., Ltd., 1F, 15-5, Yangju 3-gil, Yangsan-si 50620, Republic of Korea
| | - Sung-Yeoul Kim
- PL MICROMED Co., Ltd., 1F, 15-5, Yangju 3-gil, Yangsan-si 50620, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
10
|
Munawaroh HSH, Pratiwi RN, Gumilar GG, Aisyah S, Rohilah S, Nurjanah A, Ningrum A, Susanto E, Pratiwi A, Arindita NPY, Martha L, Chew KW, Show PL. Synthesis, modification and application of fish skin gelatin-based hydrogel as sustainable and versatile bioresource of antidiabetic peptide. Int J Biol Macromol 2023; 231:123248. [PMID: 36642356 DOI: 10.1016/j.ijbiomac.2023.123248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Gelatin hydrogel is widely employed in various fields, however, commercially available gelatin hydrogels are mostly derived from mammalian which has many disadvantages due to the supply and ethical issues. In this study, the properties of hydrogels from fish-derived collagen fabricated with varying Glutaraldehyde (GA) determined. The antidiabetic properties of salmon gelatin (SG) and tilapia gelatin (TG) was also evaluated against α-glucosidase. Glutaraldehyde-crosslinked salmon gelatin and tilapia gelatin were used, and compared with different concentrations of GA by 0.05 %, 0.1 %, and 0.15 %. Water absorbency, swelling, porosity, pore size and water retention of the hydrogels were dependent on the degree of crosslinking. The synthesis of hydrogels was confirmed by FTIR study. Scanning electron microscope (SEM) observation showed that all hydrogels have a porous structure with irregular shapes and heterogeneous morphology. Performance tests showed that gelatin-GA 0.05 % mixture had the best performance. Antidiabetic bioactivity in vitro and in silico tests showed that the active peptides of SG and TG showed a high binding affinity to α-glucosidase enzyme. In conclusion, SG and TG cross-linked GA 0.05 % have the potential as an antidiabetic agent and as a useful option over mammalian-derived gelatin.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia.
| | - Riska Nur Pratiwi
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Gun Gun Gumilar
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Siti Aisyah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Siti Rohilah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Anisa Nurjanah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Andriati Ningrum
- Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 5528, Indonesia
| | - Eko Susanto
- Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jalan Prof. Jacub Rais Tembalang, Semarang 50275, Indonesia
| | - Amelinda Pratiwi
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Ni Putu Yunika Arindita
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Larasati Martha
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki City, Gunma prefecture 370-0033, Japan
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Pau-Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1 - Abu Dhabi - United Arab Emirates; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga 43500, Selangor, Malaysia.
| |
Collapse
|
11
|
Mishra S, Jayronia S, Tyagi LK, Kohli K. Targeted Delivery Strategies of Herbal-Based Nanogels: Advancements and Applications. Curr Drug Targets 2023; 24:1260-1270. [PMID: 37953621 DOI: 10.2174/0113894501275800231103063853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023]
Abstract
The objective of this review is to thoroughly investigate herbal nano gels as a promising drug delivery approach for the management of various chronic and acute disorders. Herbal nano gels are a novel and promising drug delivery technique, offering special benefits for better therapeutic efficacy. This review offers a comprehensive analysis of the herbal nano gels with a particular emphasis on their evaluation concerning conventional dosage forms, polymer selection criteria, drug release mechanisms, and applications. The comparison study demonstrates that herbal nano gels have different benefits over conventional dose forms. In the areas of oral administration for improved bioavailability and targeted delivery to the gastrointestinal tract, topical drug delivery for dermatological conditions, and targeted delivery strategies for the site-specific treatment of cancer, inflammatory diseases, and infections, they demonstrate encouraging results in transdermal drug delivery for systemic absorption. A promising platform for improved medication delivery and therapeutic effectiveness is provided by herbal nanogels. Understanding drug release mechanisms further contributes to the controlled and sustained delivery of herbal therapeutics. Some of the patents are discussed and the comparative analysis showcases their superiority over conventional dosage forms, and the polymer selection criteria ensure the design of efficient and optimized formulations. Herbal-based nano gels have become a potential approach for improving drug administration. They provide several advantages such as better stability, targeted delivery, and controlled release of therapeutic components. Herbal nano gels are a promising therapeutic approach with the ability to combat a wide range of conditions like cancer, wound healing and also improve patient compliance.
Collapse
Affiliation(s)
- Sudhanshu Mishra
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Sonali Jayronia
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Lalit Kumar Tyagi
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Kanchan Kohli
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| |
Collapse
|
12
|
Makhathini SS, Mdanda S, Kondiah PJ, Kharodia ME, Rumbold K, Alagidede I, Pathak Y, Bulbulia Z, Rants’o TA, Kondiah PPD. Biomedicine Innovations and Its Nanohydrogel Classifications. Pharmaceutics 2022; 14:2839. [PMID: 36559335 PMCID: PMC9787506 DOI: 10.3390/pharmaceutics14122839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
As one of the most cutting-edge and promising polymer crosslinked network nanoparticle systems. Polymer nano-sized hydrogels (nanogels) have been a hot topic in the biomedical field over the last few decades. Due to their unique characteristics, which include their relatively high drug encapsulation efficiency, ease of preparation, high tunability, low toxicity, high stability in serum and responsive behavior to a range of stimuli to facilitate drug release. Nanogels are thought to be the next generation of drug delivery systems that can completely change the way that drug delivery systems have an impact on patients' lives. Nanogels have demonstrated significant potential in a variety of fields, including chemotherapy, diagnosis, organ targeting, and delivery of bioactive molecules of different dimensions. However, the lack of substantial clinical data from nanogels becomes one of the major barriers to translating the nanogel concept into a practical therapeutic application for many disease conditions. In addition, nanogel safety profiles have been the major concern that hinders it advancement to the clinical trial phase. This review aims to emphasize the unique properties of nanogels as delivery systems for a variety of bioactive molecules over other nano-delivery systems. Also, this review attempts to give insight into the recent progress in nanogels as a carrier in the field of nanomedicine to overcome complex biological barriers. Relevant scientific data and clinical rationale for the development and the potential use of nanogel as a carrier for targeted therapeutic interventions are discussed. Finally, the concluding points of this review highlight the importance of understanding the long-term toxicity profile of nanogel within the biological system to fully understand their biocompatibility.
Collapse
Affiliation(s)
- Sifiso S. Makhathini
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Sipho Mdanda
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pariksha J. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Moosa E. Kharodia
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Karl Rumbold
- FH Campus Wien, University of Applied Sciences, Vienna, Höchstädtpl. 6, 1200 Wien, Austria
| | - Imhotep Alagidede
- Simon Diedong Dombo University of Business and Integrated Development Studies, Bamahu Box WA64 Wa, Upper West Region, Ghana
- Wits Business School, University of the Witwatersrand, 2 St Davids Pl &, St Andrew Rd, Parktown, Johannesburg 2193, South Africa
| | - Yashwant Pathak
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Zain Bulbulia
- Policy Research & Advisory Services Branch, Gauteng Office of Premier, 1 Central Place 30 Rahima Moosa Street Newtown, Johannesburg 2113, South Africa
| | - Thankhoe A. Rants’o
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pierre P. D. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Pearson College London Alumni (Pearson plc), London WC1V 7BH, UK
| |
Collapse
|
13
|
Hoshi M, Taira M, Sawada T, Hachinohe Y, Hatakeyama W, Takafuji K, Tekemoto S, Kondo H. Preparation of Collagen/Hydroxyapatite Composites Using the Alternate Immersion Method and Evaluation of the Cranial Bone-Forming Capability of Composites Complexed with Acidic Gelatin and b-FGF. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8802. [PMID: 36556608 PMCID: PMC9787395 DOI: 10.3390/ma15248802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Bone-substitute materials are essential in dental implantology. We prepared collagen (Col)/hydroxyapatite (Hap)/acidic gelatin (AG)/basic fibroblast growth factor (b-FGF) constructs with enhanced bone-forming capability. The Col/Hap apatite composites were prepared by immersing Col sponges alternately in calcium and phosphate ion solutions five times, for 20 and 60 min, respectively. Then, the sponges were heated to 56 °C for 48 h. Scanning electron microscopy/energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analyses showed that the Col/Hap composites contained poorly crystalline Hap precipitates on the Col matrix. Col/Hap composite granules were infiltrated by AG, freeze-dried, and immersed in b-FGF solution. The wet quaternary constructs were implanted in rat cranial bone defects for 8 weeks, followed by soft X-ray measurements and histological analysis. Animal studies have shown that the constructs moderately increase bone formation in cranial bone defects. We found that an alternate immersion time of 20 min led to the greatest bone formation (p < 0.05). Constructs placed inside defects slightly extend the preexisting bone from the defect edges and lead to the formation of small island-like bones inside the defect, followed by disappearance of the constructs. The combined use of Col, Hap, AG, and b-FGF might bring about novel bone-forming biomaterials.
Collapse
Affiliation(s)
- Miki Hoshi
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Masayuki Taira
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Tomofumi Sawada
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Yuki Hachinohe
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Wataru Hatakeyama
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Kyoko Takafuji
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Shinji Tekemoto
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| |
Collapse
|
14
|
Li G, Zhou Q, Liu S, Qian C, Han J, Zhou T, Li P, Gu Q. Effect of Tribute citrus essential oil nanoemulsion-loaded gelatin on the gel behavior and gelation surface morphologies. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Indrakumar J, Sankar S, Madhyastha H, Muthukaliannan GK. Progressive Application of Marine Biomaterials in Targeted Cancer Nanotherapeutics. Curr Pharm Des 2022; 28:3337-3350. [PMID: 35466870 DOI: 10.2174/1381612828666220422091611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 01/28/2023]
Abstract
The marine microenvironment harbors many unique species of organisms that produce a plethora of compounds that help mankind cure a wide range of diseases. The diversity of products from the ocean bed serves as potentially healing materials and inert vehicles carrying the drug of interest to the target site. Several composites still lay undiscovered under the blue canopy, which can provide treatment for untreated diseases that keep haunting the earth periodically. Cancer is one such disease that has been of interest to several eminent scientists worldwide due to the heterogenic complexity involved in the disease's pathophysiology. Due to extensive globalization and environmental changes, cancer has become a lifestyle disease continuously increasing exponentially in the current decade. This ailment requires a definite remedy that treats by causing minimal damage to the body's normal cells. The application of nanotechnology in medicine has opened up new avenues of research in targeted therapeutics due to their highly malleable characteristics. Marine waters contain an immense ionic environment that succors the production of distinct nanomaterials with exceptional character, yielding highly flexible molecules to modify, thus facilitating the engineering of targeted biomolecules. This review provides a short insight into an array of marine biomolecules that can be probed into cancer nanotherapeutics sparing healthy cells.
Collapse
Affiliation(s)
- Janani Indrakumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Srivarshini Sankar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Medical Sciences, Division of Cardio-Vascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | |
Collapse
|
16
|
Han J, Jiang J, Wang Q, Li P, Zhu B, Gu Q. Current Research on the Extraction, Functional Properties, Interaction with Polyphenols, and Application Evaluation in Delivery Systems of Aquatic-Based Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11844-11859. [PMID: 36112349 DOI: 10.1021/acs.jafc.2c04325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Globally, aquatic processing industries pay great attention to the production of aquatic proteins for the fulfillment of the nutritive requirements of human beings. Aquatic protein can replace terrestrial animal protein due to its high protein content, complete amino acids, unique flavor, high quality and nutritional value, and requirements of religious preferences. Due to the superior functional properties, an aquatic protein based delivery system has been proposed as a novel candidate for improving the absorption and bioavailability of bioactive substances, which might have potential applications in the food industry. This review outlines the extraction techniques for and functional properties of aquatic proteins, summarizes the potential modification technologies for interaction with polyphenols, and focuses on the application of aquatic-derived protein in delivery systems as well as their interaction with the gastrointestinal tract (GIT). The extraction techniques for aquatic proteins include water, salt, alkali/acid, enzyme, organic solvent, and ultrasound-assisted extraction. The quality and functionality of the aquatic proteins could be improved after modification with polyphenols via covalent or noncovalent interactions. Furthermore, some aquatic protein based delivery systems, such as emulsions, gels, films, and microcapsules, have been reported to enhance the absorption and bioavailability of bioactive substances by in vitro GIT, cell, and in vivo animal models. By promoting comprehensive understanding, this review is expected to provide a real-time reference for developing functional foods and potential food delivery systems based on aquatic-derived proteins.
Collapse
Affiliation(s)
- Jiarun Han
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jialan Jiang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ping Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Beiwei Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qing Gu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
17
|
Ionogels Derived from Fluorinated Ionic Liquids to Enhance Aqueous Drug Solubility for Local Drug Administration. Gels 2022; 8:gels8090594. [PMID: 36135306 PMCID: PMC9498591 DOI: 10.3390/gels8090594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
Gelatin is a popular biopolymer for biomedical applications due to its harmless impact with a negligible inflammatory response in the host organism. Gelatin interacts with soluble molecules in aqueous media as ionic counterparts such as ionic liquids (ILs) to be used as cosolvents to generate the so-called Ionogels. The perfluorinated IL (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate, has been selected as co-hydrosolvent for fish gelatin due to its low cytotoxicity and hydrophobicity aprotic polar structure to improve the drug aqueous solubility. A series of FIL/water emulsions with different FIL content and their corresponding shark gelatin/FIL Ionogel has been designed to enhance the drug solubility whilst retaining the mechanical structure and their nanostructure was probed by simultaneous SAXS/WAXS, FTIR and Raman spectroscopy, DSC and rheological experiments. Likewise, the FIL assisted the solubility of the antitumoural Doxorubicin whilst retaining the performing mechanical properties of the drug delivery system network for the drug storage as well as the local administration by a syringe. In addition, the different controlled release mechanisms of two different antitumoral such as Doxorubicin and Mithramycin from two different Ionogels formulations were compared to previous gelatin hydrogels which proved the key structure correlation required to attain specific therapeutic dosages.
Collapse
|
18
|
Attama AA, Nnamani PO, Onokala OB, Ugwu AA, Onugwu AL. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade. Front Pharmacol 2022; 13:874510. [PMID: 36160424 PMCID: PMC9493206 DOI: 10.3389/fphar.2022.874510] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is an important cause of morbidity and mortality worldwide, irrespective of the level of human development. Globally, it was estimated that there were 19.3 million new cases of cancer and almost 10 million deaths from cancer in 2020. The importance of prevention, early detection as well as effective cancer therapies cannot be over-emphasized. One of the important strategies in cancer therapy is targeted drug delivery to the specific tumor sites. Nanogels are among the several drug delivery systems (DDS) being explored as potential candidates for targeted drug delivery in cancer therapy. Nanogels, which are new generation, versatile DDS with the possession of dual characteristics of hydrogels and nanoparticles have shown great potential as targeted DDS in cancer therapy. Nanogels are hydrogels with a three-dimensional (3D) tunable porous structure and a particle size in the nanometre range, from 20 to 200 nm. They have been visualized as ideal DDS with enormous drug loading capacity, and high stability. Nanogels can be modified to achieve active targeting and enhance drug accumulation in disease sites. They can be designed to be stimulus-responsive, and react to internal or external stimuli such as pH, temperature, light, redox, thus resulting in the controlled release of loaded drug. This prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. Drugs with severe adverse effects, short circulation half-life, and easy degradability by enzymes, such as anti-cancer drugs, and proteins, are suitable for delivery by chemically cross-linked or physically assembled nanogel systems. This systematic review summarizes the evolution of nanogels for targeted drug delivery for cancer therapy over the last decade. On-going clinical trials and recent applications of nanogels as targeted DDS for cancer therapy will be discussed in detail. The review will be concluded with discussions on safety and regulatory considerations as well as future research prospects of nanogel-targeted drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Anthony A. Attama
- Drug Delivery and Nanomedicine Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
- Public Health and Environmental Sustainability Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
- Institute for Drug-Herbal Medicines-Excipients Research and Development, University of Nigeria, Nsukka, Enugu, Nigeria
- *Correspondence: Anthony A. Attama, ; Petra O. Nnamani,
| | - Petra O. Nnamani
- Drug Delivery and Nanomedicine Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
- Public Health and Environmental Sustainability Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
- *Correspondence: Anthony A. Attama, ; Petra O. Nnamani,
| | - Ozioma B. Onokala
- Drug Delivery and Nanomedicine Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Agatha A. Ugwu
- Drug Delivery and Nanomedicine Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
- Public Health and Environmental Sustainability Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Adaeze L. Onugwu
- Drug Delivery and Nanomedicine Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
| |
Collapse
|
19
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
20
|
Hermida-Merino C, Cabaleiro D, Lugo L, Valcarcel J, Vázquez JA, Bravo I, Longo A, Salloum-Abou-Jaoude G, Solano E, Gracia-Fernández C, Piñeiro MM, Hermida-Merino D. Characterization of Tuna Gelatin-Based Hydrogels as a Matrix for Drug Delivery. Gels 2022; 8:gels8040237. [PMID: 35448138 PMCID: PMC9026235 DOI: 10.3390/gels8040237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
Abstract
The skin of yellowfin tuna is one of the fishery industry solid residues with the greatest potential to add extra value to its circular economy that remains yet unexploited. Particularly, the high collagen content of fish skin allows generating gelatin by hydrolysis, which is ideal for forming hydrogels due to its biocompatibility and gelling capability. Hydrogels have been used as drug carriers for local administration due to their mechanical properties and drug loading capacity. Herein, novel tuna gelatin hydrogels were designed as drug vehicles with two structurally different antitumoral model compounds such as Doxorubicin and Crocin to be administrated locally in tissues with complex human anatomies after surgical resection. The characterization by gel permeation chromatography (GPC) of purified gelatin confirmed their heterogeneity composition, exhibiting three major bands that correspond to the β and α chains along with high molecular weight species. In addition, the Fourier Transform Infrared (FT-IR) spectra of gelatin probed the secondary structure of the gelatin showing the simultaneous existence of α helix, β sheet, and random coil structures. Morphological studies at different length scales were performed by a multi-technique approach using SAXS/WAXS, AFM and cryo-SEM that revealed the porous network formed by the interaction of gelatin planar aggregates. In addition, the sol-gel transition, as well as the gelation point and the hydrogel strength, were studied using dynamic rheology and differential scanning calorimetry. Likewise, the loading and release profiles followed by UV-visible spectroscopy indicated that the novel gelatin hydrogels improve the drug release of Doxorubicin and Crocin in a sustained fashion, indicating the structure-function importance in the material composition.
Collapse
Affiliation(s)
- Carolina Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Correspondence: (C.H.-M.); (D.H.-M.)
| | - David Cabaleiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Luis Lugo
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Jose Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Ivan Bravo
- Departamento de Química Física, Facultad de Farmacia, UCLM, 02071 Albacete, Spain;
| | - Alessandro Longo
- ID20, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France;
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Georges Salloum-Abou-Jaoude
- Constellium C-TEC Technology Center, Parc Economique Centr’alp, 725 rue Aristide Bergès, 38341 Voreppe, France;
| | - Eduardo Solano
- ALBA Synchrotron Light Source, NCD-SWEET Beamline, 08290 Cerdanyola del Valles, Spain;
| | | | - Manuel M. Piñeiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Daniel Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Netherlands Organisation for Scientific Research (NWO), c/o ESRF BP 220, DUBBLE CRG/ESRF, CEDEX, 38043 Grenoble, France
- Correspondence: (C.H.-M.); (D.H.-M.)
| |
Collapse
|
21
|
Ismail I, Djide MN, Manggau MA, Rahman L. Physicochemical Properties of Milkfish Gelatin-Natural Starch Composite. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Halal gelatin sourced from fish can be improved in quality through mixing with other polymers so that it can be an alternative as food, pharmaceutical, and cosmetic ingredient. The purpose of this study was to determine the characteristics of milkfish scale gelatin after the formation of a composite with corn, potato, and cassava starch to be used as a pharmaceutical and food excipient.
The gelatin composite (FMG) of milkfish scales with corn, potato, and cassava starch (GM, GS, and GC) was made by casting method, using a ratio of gelatin and starch (4,5:0,5). Characteristic assessment includes organoleptic, viscosity, swelling index, FT-IR spectroscopy, and Calorimetry (DSC). Data analysis used a non-parametric One Way ANOVA statistical method (p<0.05).
The composites produced from mixing FMG with corn starch (GM), potato (GS) and cassava (GC) showed hygroscopic properties, increased viscosity values and decreased swelling index in GM (7.89 cP & 25.0%), GS (8 .36 cP & 21.0%), and GC (8.64 cP & 12.7%), compared to FMG (0.11 cP & 75%) at p < 0.05. The behavior of the composite FT-IR spectrum follows the FMG spectrum pattern with a shift in wavenumber in the typical bands (Amide A, Amide B, Amide I, Amide II, and Amide III) in the gelatin spectrum. There was a shift of Tg to higher values in GM and GS, Tm increased in GM and GC, and all composites showed a decrease in melting enthalpy.
The spectral pattern of the composite follows the typical spectral pattern of FMG. GM, GS, and GC composites showed increased viscosity, water retention, and thermal stability compared to FMG. GM and GS may be used as pharmaceutical and food excipients.
Collapse
|
22
|
Alves AL, Fraguas FJ, Carvalho AC, Valcárcel J, Pérez-Martín RI, Reis RL, Vázquez JA, Silva TH. Characterization of codfish gelatin: A comparative study of fresh and salted skins and different extraction methods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Soliman AM, Teoh SL, Das S. Fish Gelatin: Current Nutritional, Medicinal, Tissue Repair Applications and Carrier of Drug Delivery. Curr Pharm Des 2022; 28:1019-1030. [PMID: 35088658 DOI: 10.2174/1381612828666220128103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Gelatin is obtained via partial denaturation of collagen and is extensively used in various industries. The majority of gelatin utilized globally is derived from a mammalian source. Several health and religious concerns associated with porcine/bovine gelatin were reported. Therefore, gelatin from a marine source is widely being investigated for its efficiency and utilization in a variety of applications as a potential substitute for porcine/bovine gelatin. Although fish gelatin is less durable and possesses lower melting and gelling temperatures compared to mammal-derived gelatin, various modifications are being reported to promote its rheological and functional properties to be efficiently employed. The present review describes in detail the current innovative applications of fish gelatin involving the food industry, drug delivery and possible therapeutic applications. Gelatin bioactive molecules may be utilized as carriers for drug delivery. Due to its versatility, gelatin can be used in different carrier systems, such as microparticles, nanoparticles, fibers and hydrogels. The present review also provides a perspective on the other potential pharmaceutical applications of fish gelatin, such as tissue regeneration, antioxidant supplementation, antihypertensive and anticancer treatments.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences-Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
24
|
Sadeghian A, Kharaziha M, Khoroushi M. Osteoconductive visible light-crosslinkable nanocomposite for hard tissue engineering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Patel P, Thareja P. Hydrogels differentiated by length scales: A review of biopolymer-based hydrogel preparation methods, characterization techniques, and targeted applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
27
|
Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers (Basel) 2021; 13:2959. [PMID: 34502997 PMCID: PMC8434607 DOI: 10.3390/polym13172959] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa; (S.P.N.); (K.N.); (S.A.)
| |
Collapse
|
28
|
Elkhoury K, Morsink M, Tahri Y, Kahn C, Cleymand F, Shin SR, Arab-Tehrany E, Sanchez-Gonzalez L. Synthesis and characterization of C2C12-laden gelatin methacryloyl (GelMA) from marine and mammalian sources. Int J Biol Macromol 2021; 183:918-926. [PMID: 33971227 DOI: 10.1016/j.ijbiomac.2021.05.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
Gelatin methacryloyl (GelMA) is widely used for tissue engineering applications as an extracellular matrix (ECM) mimicking scaffold due to its cost-effectiveness, ease of synthesis, and high biocompatibility. GelMA is widely synthesized from porcine skin gelatin, which labors under clinical, religious, and economical restrictions. In order to overcome these limitations, GelMA can be produced from fish skin gelatin, which is eco-friendly as well. Here, we present a comparative study of the physicochemical (structural, thermal, water uptake, swelling, rheological, and mechanical) and biological (cell viability, proliferation, and spreading) properties of porcine and fish skin GelMA with low and high methacrylation degrees, before and after crosslinking, to check whether fish skin can replace porcine skin as the source of GelMA. Porcine and fish skin GelMA presented similar structural, thermal, and water uptake properties prior to crosslinking. However, subsequent to crosslinking, fish skin GelMA hydrogels exhibited a higher mass swelling ratio and a lower elastic and compressive Young's moduli than porcine skin GelMA hydrogels of similar methacrylation level. Both types of GelMA hydrogels showed great biocompatibility toward encapsulated mouse myoblast cells (C2C12), however, improved cell spreading was observed in fish skin GelMA hydrogels, and cell proliferation was only induced in low methacrylated GelMA. These results suggest that fish skin GelMA is a promising substitute for porcine skin GelMA for biomedical applications and that low methacrylated fish skin GelMA can be used as a potential scaffold for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LIBio, Université de Lorraine, F-54000 Nancy, France; Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, United States of America.
| | - Margaretha Morsink
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, United States of America; Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
| | - Yasmina Tahri
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | - Cyril Kahn
- LIBio, Université de Lorraine, F-54000 Nancy, France.
| | - Franck Cleymand
- Institut Jean Lamour, CNRS-Université de Lorraine, F-54000 Nancy, France.
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, United States of America.
| | | | | |
Collapse
|
29
|
Agnieray H, Glasson J, Chen Q, Kaur M, Domigan L. Recent developments in sustainably sourced protein-based biomaterials. Biochem Soc Trans 2021; 49:953-964. [PMID: 33729443 PMCID: PMC8106505 DOI: 10.1042/bst20200896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Research into the development of sustainable biomaterials is increasing in both interest and global importance due to the increasing demand for materials with decreased environmental impact. This research field utilises natural, renewable resources to develop innovative biomaterials. The development of sustainable biomaterials encompasses the entire material life cycle, from desirable traits, and environmental impact from production through to recycling or disposal. The main objective of this review is to provide a comprehensive definition of sustainable biomaterials and to give an overview of the use of natural proteins in biomaterial development. Proteins such as collagen, gelatin, keratin, and silk, are biocompatible, biodegradable, and may form materials with varying properties. Proteins, therefore, provide an intriguing source of biomaterials for numerous applications, including additive manufacturing, nanotechnology, and tissue engineering. We give an insight into current research and future directions in each of these areas, to expand knowledge on the capabilities of sustainably sourced proteins as advanced biomaterials.
Collapse
Affiliation(s)
- H. Agnieray
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - J.L. Glasson
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| | - Q. Chen
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| | - M. Kaur
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - L.J. Domigan
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Salahuddin B, Wang S, Sangian D, Aziz S, Gu Q. Hybrid Gelatin Hydrogels in Nanomedicine Applications. ACS APPLIED BIO MATERIALS 2021; 4:2886-2906. [PMID: 35014383 DOI: 10.1021/acsabm.0c01630] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gelatin based hydrogels are often incorporated with supporting materials such as chitosan, poly(vinyl alcohol), alginate, carbon nanotubes, and hyaluronic acid. These hybrid materials are specifically of interest in diversified nanomedicine fields as they exhibit unique physicochemical properties, antimicrobial activity, biodegradability, and biocompatibility. The applications include drug delivery, wound healing, cell culture, and tissue engineering. This paper reviews the various up-to-date methods to fabricate gelatin-based hydrogels, including UV photo-cross-linking, electrospinning, and 3D bioprinting. This paper also includes physical, chemical, mechanical, and biocompatibility characterization studies of several hybrid gelatin hydrogels and discusses their relevance in nanomedicine based applications. Challenges associated with the fabrication of hybrid materials for nanotechnology implementation, specifically in nanomedicine development, are critically discussed, and some future recommendations are provided.
Collapse
Affiliation(s)
- Bidita Salahuddin
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Shuo Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P. R. China
| | - Danial Sangian
- Mechatronic Systems Laboratory, Faculty of Mechanical Engineering and Transport Systems, Technical University of Berlin, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Shazed Aziz
- School of Chemical Engineering, The University of Queensland, Don Nicklin Building (74), St. Lucia, QLD 4072, Australia
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 3 Datun Road, Chaoyang District, Beijing 100101, P. R. China
| |
Collapse
|
31
|
Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Mar Drugs 2021; 19:md19030145. [PMID: 33800149 PMCID: PMC8000627 DOI: 10.3390/md19030145] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
There are several reviews that separately cover different aspects of fish gelatin including its preparation, characteristics, modifications, and applications. Its packaging application in food industry is extensively covered but other applications are not covered or covered alongside with those of collagen. This review is comprehensive, specific to fish gelatin/hydrolysate and cites recent research. It covers cosmetic applications, intrinsic activities, and biomedical applications in wound dressing and wound healing, gene therapy, tissue engineering, implants, and bone substitutes. It also covers its pharmaceutical applications including manufacturing of capsules, coating of microparticles/oils, coating of tablets, stabilization of emulsions and drug delivery (microspheres, nanospheres, scaffolds, microneedles, and hydrogels). The main outcomes are that fish gelatin is immunologically safe, protects from the possibility of transmission of bovine spongiform encephalopathy and foot and mouth diseases, has an economic and environmental benefits, and may be suitable for those that practice religious-based food restrictions, i.e., people of Muslim, Jewish and Hindu faiths. It has unique rheological properties, making it more suitable for certain applications than mammalian gelatins. It can be easily modified to enhance its mechanical properties. However, extensive research is still needed to characterize gelatin hydrolysates, elucidate the Structure Activity Relationship (SAR), and formulate them into dosage forms. Additionally, expansion into cosmetic applications and drug delivery is needed.
Collapse
|
32
|
Xiang L, Cui W. Biomedical application of photo-crosslinked gelatin hydrogels. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00043-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
During the past decades, photo-crosslinked gelatin hydrogel (methacrylated gelatin, GelMA) has gained a lot of attention due to its remarkable application in the biomedical field. It has been widely used in cell transplantation, cell culture and drug delivery, based on its crosslinking to form hydrogels with tunable mechanical properties and excellent bio-compatibility when exposed to light irradiation to mimic the micro-environment of native extracellular matrix (ECM). Because of its unique biofunctionality and mechanical tenability, it has also been widely applied in the repair and regeneration of bone, heart, cornea, epidermal tissue, cartilage, vascular, peripheral nerve, oral mucosa, and skeletal muscle et al. The purpose of this review is to summarize the recent application of GelMA in drug delivery and tissue engineering field. Moreover, this review article will briefly introduce both the development of GelMA and the characterization of GelMA. Finally, we discuss the challenges and future development prospects of GelMA as a tissue engineering material and drug or gene delivery carrier, hoping to contribute to accelerating the development of GelMA in the biomedical field.
Graphical abstract
Collapse
|
33
|
Alginate-Based Platforms for Cancer-Targeted Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1487259. [PMID: 33083451 PMCID: PMC7563048 DOI: 10.1155/2020/1487259] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
As an acidic, ocean colloid polysaccharide, alginate is both a biopolymer and a polyelectrolyte that is considered to be biocompatible, nontoxic, nonimmunogenic, and biodegradable. A significant number of studies have confirmed the potential use of alginate-based platforms as effective vehicles for drug delivery for cancer-targeted treatment. In this review, the focus is on the formation of alginate-based cancer-targeted delivery systems. Specifically, some general chemical and physical properties of alginate and different types of alginate-based delivery systems are discussed, and various kinds of alginate-based carriers are introduced. Finally, recent innovative strategies to functionalize alginate-based vehicles for cancer targeting are described to highlight research towards the optimization of alginate.
Collapse
|
34
|
Liu J, Tagami T, Ozeki T. Fabrication of 3D-Printed Fish-Gelatin-Based Polymer Hydrogel Patches for Local Delivery of PEGylated Liposomal Doxorubicin. Mar Drugs 2020; 18:md18060325. [PMID: 32575787 PMCID: PMC7344981 DOI: 10.3390/md18060325] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
3D printing technology has been applied to various fields and its medical applications are expanding. Here, we fabricated implantable 3D bio-printed hydrogel patches containing a nanomedicine as a future tailored cancer treatment. The patches were prepared using a semi-solid extrusion-type 3D bioprinter, a hydrogel-based printer ink, and UV-LED exposure. We focused on the composition of the printer ink and semi-synthesized fish gelatin methacryloyl (F-GelMA), derived from cold fish gelatin, as the main component. The low viscosity of F-GelMA due to its low melting point was remarkably improved by the addition of carboxymethyl cellulose sodium (CMC), a pharmaceutical excipient. PEGylated liposomal doxorubicin (DOX), as a model nanomedicine, was incorporated into the hydrogel and liposome stability after photo-polymerization was evaluated. The addition of CMC inhibited particle size increase. Three types of 3D-designed patches (cylinder, torus, gridlines) were produced using a 3D bioprinter. Drug release was dependent on the shape of the 3D-printed patches and UV-LED exposure time. The current study provides useful information for the preparation of 3D printed nanomedicine-based objects.
Collapse
|
35
|
Ahmed S, Alhareth K, Mignet N. Advancement in nanogel formulations provides controlled drug release. Int J Pharm 2020; 584:119435. [PMID: 32439585 DOI: 10.1016/j.ijpharm.2020.119435] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Nanogels are currently considered as promising nanosized drug delivery carriers. Nanogels are made of a crosslinked polymeric network which could encapsulate both hydrophilic and hydrophobic drugs due to their tunable nature. The ability of nanogels to control drug release is vastly described in the literature and researchers are consistently improving the control of drug release from nanogel by designing new polymers having specific sensitivity to a chemical or physical stimulus. In this review, we briefly discuss the definition of nanogels, their release profiles, their specific gel-based characteristics and the pathways of dug release from nanogels. We have focused on the stimuli responsive nanogels and their release profile. This compilation opens the window for understanding the influence of chemical composition and design of various nanogel on their release in the presence and absence of corresponding stimuli such as temperature, pH, enzymes and others. The uniqueness of this review is that it highlights the data of release profiles in terms of the different nanogel composition and triggers. It also points the high potential of nanogels in the list of candidates for drug delivery systems, thanks to their properties regarding drug encapsulation and release, combined advantages of nano-size and swelling characteristics of hydrogel.
Collapse
Affiliation(s)
- Shayan Ahmed
- Université de Paris, UTCBS (Chemical and Biological Technologies for Health Group), CNRS, INSERM, Faculté de Pharmacie, 75006 Paris, France
| | - Khair Alhareth
- Université de Paris, UTCBS (Chemical and Biological Technologies for Health Group), CNRS, INSERM, Faculté de Pharmacie, 75006 Paris, France
| | - Nathalie Mignet
- Université de Paris, UTCBS (Chemical and Biological Technologies for Health Group), CNRS, INSERM, Faculté de Pharmacie, 75006 Paris, France.
| |
Collapse
|
36
|
Ranasinghe RASN, Wijesekara WLI, Perera PRD, Senanayake SA, Pathmalal MM, Marapana RAUJ. Functional and Bioactive Properties of Gelatin Extracted from Aquatic Bioresources – A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1747486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R. A. S. N. Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - W. L. I. Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - P. R. D. Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - S. A. Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - M. M. Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - R. A. U. J. Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
37
|
Dong Z, Iqbal S, Zhao Z. Preparation of Ergosterol-Loaded Nanostructured Lipid Carriers for Enhancing Oral Bioavailability and Antidiabetic Nephropathy Effects. AAPS PharmSciTech 2020; 21:64. [PMID: 31932990 DOI: 10.1208/s12249-019-1597-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
In our previously studies, we confirmed that ergosterol could ameliorate diabetic nephropathy by suppressing the proliferation of mesangial cells and the accumulation of extracellular matrix (ECM). However, the therapeutic application of ergosterol may be confined due to poor aqueous solubility and low oral bioavailability. We aim to prepare ergosterol-loaded nanostructured lipid carriers (ERG-NLCs) to enhance the solubility and oral bioavailability of ergosterol. ERG-NLCs were prepared using glyceryl monostearate and decanoyl/octanoyl-glycerides by hot emulsification-ultrasonication method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) analysis, entrapment efficiency (EE), and drug loading (DL) capacity studies. The prepared ERG-NLCs were spherical, with particle size of 81.39 nm and negative zeta potential of 30.77 mV. Ergosterol was successfully encapsulated in NLCs with a high EE of 92.95% and a DL capacity of 6.51%. In pharmacokinetic study, Cmax and AUC0-∞ of ergosterol in ERG-NLCs were obviously enhanced, and the relative oral bioavailability of ERG-NLCs was 277.56% higher than that of raw ergosterol. Moreover, the in vitro pharmacodynamic study indicated that ERG-NLCs inhibited high-glucose-stimulated mesangial cells over proliferation and ECM accumulation more effectively compared to raw ergosterol. In conclusion, the validated ERG-NLCs showed that NLCs mediated delivery could be used as potential vehicle to enhance solubility, oral bioavailability and therapeutic efficacy of ergosterol.
Collapse
|
38
|
Cicciù M, Fiorillo L, Cervino G. Chitosan Use in Dentistry: A Systematic Review of Recent Clinical Studies. Mar Drugs 2019; 17:E417. [PMID: 31319609 PMCID: PMC6669505 DOI: 10.3390/md17070417] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/29/2022] Open
Abstract
This study aims to highlight the latest marine-derived technologies in the biomedical field. The dental field, in particular, uses many marine-derived biomaterials, including chitosan. Chitosan that is used in different fields of medicine, is analyzed in this review with the aim of highlighting its uses and advantages in the dental field. A literature search was conducted in scientific search engines, using keywords in order to achieve the highest possible number of results. A review of randomized controlled trials (RCT) was conducted to evaluate and process all the relevant results for chitosan and oral health. After a screening and a careful analysis of the literature, there were only 12 results highlighted. Chitosan performs different functions and it is used in different fields of dentistry in a safe and effective way. Among the uses of chitosan, we report on the remineralizing property of chitosan which hardens tissues of the tooth, and therefore its role as a desensibilizer used in toothpastes. According to our systematic review, the use of chitosan has shown better surgical healing of post-extraction oral wounds. Furthermore, some studies show a reduction in bacterial biofilm when used in dental cements. In addition, it has antibacterial, antifungal, hemostatic and other systemic properties which aid its use for drug delivering.
Collapse
Affiliation(s)
- Marco Cicciù
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, Messina 98100, Italy.
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, Messina 98100, Italy
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples 80100, Italy
| | - Gabriele Cervino
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, Messina 98100, Italy
| |
Collapse
|