1
|
Guo Q, Fu J, Yuan L, Liao Y, Li M, Li X, Yi B, Zhang J, Gao B. Diversity analysis of sea anemone peptide toxins in different tissues of Heteractis crispa based on transcriptomics. Sci Rep 2024; 14:7684. [PMID: 38561372 PMCID: PMC10985097 DOI: 10.1038/s41598-024-58402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Peptide toxins found in sea anemones venom have diverse properties that make them important research subjects in the fields of pharmacology, neuroscience and biotechnology. This study used high-throughput sequencing technology to systematically analyze the venom components of the tentacles, column, and mesenterial filaments of sea anemone Heteractis crispa, revealing the diversity and complexity of sea anemone toxins in different tissues. A total of 1049 transcripts were identified and categorized into 60 families, of which 91.0% were proteins and 9.0% were peptides. Of those 1049 transcripts, 416, 291, and 307 putative proteins and peptide precursors were identified from tentacles, column, and mesenterial filaments respectively, while 428 were identified when the datasets were combined. Of these putative toxin sequences, 42 were detected in all three tissues, including 33 proteins and 9 peptides, with the majority of peptides being ShKT domain, β-defensin, and Kunitz-type. In addition, this study applied bioinformatics approaches to predict the family classification, 3D structures, and functional annotation of these representative peptides, as well as the evolutionary relationships between peptides, laying the foundation for the next step of peptide pharmacological activity research.
Collapse
Affiliation(s)
- Qiqi Guo
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Jinxing Fu
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Lin Yuan
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
- Department of Pharmacy, 928th Hospital of PLA Joint Logistics Support Force, Haikou, China
| | - Yanling Liao
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Ming Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Xinzhong Li
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Bo Yi
- Department of Pharmacy, 928th Hospital of PLA Joint Logistics Support Force, Haikou, China
| | - Junqing Zhang
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.
| |
Collapse
|
2
|
Lopes D, Aveiro SS, Cruz S, Cartaxana P, Domingues P. Proteomic analysis of the mucus of the photosynthetic sea slug Elysia crispata. J Proteomics 2024; 294:105087. [PMID: 38237665 DOI: 10.1016/j.jprot.2024.105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Elysia crispata is a tropical sea slug that can retain intracellular functional chloroplasts from its algae prey, a mechanism termed kleptoplasty. This sea slug, like other gastropods, secretes mucus, a viscous secretion with multiple functions, including lubrication, protection, and locomotion. This study presents the first comprehensive analysis of the mucus proteome of the sea slug E. crispata using gel electrophoresis and HPLC-MS/MS. We identified 306 proteins in the mucus secretions of this animal, despite the limited entries for E. crispata in the Uniprot database. The functional annotation of the mucus proteome using Gene Ontology identified proteins involved in different functions such as hydrolase activity (molecular function), carbohydrate-derived metabolic processes (biological processes) and cytoskeletal organization (cell component). Moreover, a high proportion of proteins with enzymatic activity in the mucus of E. crispata suggests potential biotechnological applications including antimicrobial and antitumor activities. Putative antimicrobial properties are reinforced by the high abundance of hydrolases. This study also identified proteins common in mucus samples from various species, supporting a common mechanism of mucus in protecting cells and tissues while facilitating animal movement. SIGNIFICANCE: Marine species are increasingly drawing the interest of researchers for their role in discovering new bioactive compounds. The study "Proteomic Analysis of the Mucus of the Photosynthetic Sea Slug Elysia crispata" is a pioneering effort that uncovers the complex protein content in this fascinating sea slug's mucus. This detailed proteomic study has revealed proteins with potential use in biotechnology, particularly for antimicrobial and antitumor purposes. This research is a first step in exploring the possibilities within the mucus of Elysia crispata, suggesting the potential for new drug discoveries. These findings could be crucial in developing treatments for severe diseases, especially those caused by multidrug-resistant bacteria, and may lead to significant advances in medical research.
Collapse
Affiliation(s)
- Diana Lopes
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S Aveiro
- GreenCoLab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sónia Cruz
- ECOMARE, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cartaxana
- ECOMARE, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE - Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Hoepner CM, Stewart ZK, Qiao R, Fobert EK, Prentis PJ, Colella A, Chataway T, Burke da Silva K, Abbott CA. Proteotransciptomics of the Most Popular Host Sea Anemone Entacmaea quadricolor Reveals Not All Toxin Genes Expressed by Tentacles Are Recruited into Its Venom Arsenal. Toxins (Basel) 2024; 16:85. [PMID: 38393163 PMCID: PMC10893224 DOI: 10.3390/toxins16020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.
Collapse
Affiliation(s)
- Cassie M. Hoepner
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Zachary K. Stewart
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Robert Qiao
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Emily K. Fobert
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peter J. Prentis
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Alex Colella
- Flinders Proteomics Facility, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Tim Chataway
- Flinders Proteomics Facility, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Catherine A. Abbott
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
4
|
Li M, Mao K, Huang M, Liao Y, Fu J, Pan K, Shi Q, Gao B. Venomics Reveals the Venom Complexity of Sea Anemone Heteractis magnifica. Mar Drugs 2024; 22:71. [PMID: 38393042 PMCID: PMC10890322 DOI: 10.3390/md22020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The venoms of various sea anemones are rich in diverse toxins, which usually play a dual role in capturing prey and deterring predators. However, the complex components of such venoms have not been well known yet. Here, venomics of integrating transcriptomic and proteomic technologies was applied for the first time to identify putative protein and peptide toxins from different tissues of the representative sea anemone, Heteractis magnifica. The transcriptomic analysis of H. magnifica identified 728 putative toxin sequences, including 442 and 381 from the tentacles and the column, respectively, and they were assigned to 68 gene superfamilies. The proteomic analysis confirmed 101 protein and peptide toxins in the venom, including 91 in the tentacles and 39 in the column. The integrated venomics also confirmed that some toxins such as the ShK-like peptides and defensins are co-expressed in both the tentacles and the column. Meanwhile, a homology analysis was conducted to predict the three-dimensional structures and potential activity of seven representative toxins. Altogether, this venomics study revealed the venom complexity of H. magnifica, which will help deepen our understanding of cnidarian toxins, thereby supporting the in-depth development of valuable marine drugs.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Kailin Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Meiling Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Yanling Liao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Jinxing Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Kun Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Bingmiao Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (M.L.); (K.M.); (M.H.); (Y.L.); (J.F.); (K.P.)
| |
Collapse
|
5
|
Lecaudey LA, Netzer R, Wibberg D, Busche T, Bloecher N. Metatranscriptome analysis reveals the putative venom toxin repertoire of the biofouling hydroid Ectopleura larynx. Toxicon 2024; 237:107556. [PMID: 38072317 DOI: 10.1016/j.toxicon.2023.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Cnidarians thriving in biofouling communities on aquaculture net pens represent a significant health risk for farmed finfish due to their stinging cells. The toxins coming into contact with the fish, during net cleaning, can adversely affect their behavior, welfare, and survival, with a particularly serious health risk for the gills, causing direct tissue damage such as formation of thrombi and increasing risks of secondary infections. The hydroid Ectopleura larynx is one of the most common fouling organisms in Northern Europe. However, despite its significant economic, environmental, and operational impact on finfish aquaculture, biological information on this species is scarce and its venom composition has never been investigated. In this study, we generated a whole transcriptome of E. larynx, and identified its putative expressed venom toxin proteins (predicted toxin proteins, not functionally characterized) based on in silico transcriptome annotation mining and protein sequence analysis. The results uncovered a broad and diverse repertoire of putative toxin proteins for this hydroid species. Its toxic arsenal appears to include a wide and complex selection of toxin proteins, covering a large panel of potential biological functions that play important roles in envenomation. The putative toxins identified in this species, such as neurotoxins, GTPase toxins, metalloprotease toxins, ion channel impairing toxins, hemorrhagic toxins, serine protease toxins, phospholipase toxins, pore-forming toxins, and multifunction toxins may cause various major deleterious effects in prey, predators, and competitors. These results provide valuable new insights into the venom composition of cnidarians, and venomous marine organisms in general, and offer new opportunities for further research into novel and valuable bioactive molecules for medicine, agronomics and biotechnology.
Collapse
Affiliation(s)
| | - Roman Netzer
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany; Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Nina Bloecher
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| |
Collapse
|
6
|
Ramírez-Carreto S, Miranda-Zaragoza B, Simões N, González-Muñoz R, Rodríguez-Almazán C. Marine Bioprospecting: Enzymes and Stress Proteins from the Sea Anemones Anthopleura dowii and Lebrunia neglecta. Mar Drugs 2023; 22:12. [PMID: 38248637 PMCID: PMC10821040 DOI: 10.3390/md22010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The bioprospecting of sea anemone tissues and secretions has revealed that they are natural libraries of polypeptides with diverse biological activities that can be utilized to develop of biotechnological tools with potential medical and industrial applications. This study conducted a proteomic analysis of crude venom extracts from Anthopleura dowii Verrill, 1869, and Lebrunia neglecta Duchassaing & Michelotti, 1860. The obtained data allowed us to identify 201 polypeptides, of which 39% were present in both extracts. Among the obtained sequences, hydrolase-type enzymes, oxidoreductases, transferases, heat shock proteins, adhesion proteins, and protease inhibitors, among others, were identified. Interaction analysis and functional annotation indicated that these proteins are primarily involved in endoplasmic reticulum metabolic processes such as carbon metabolism and protein processing. In addition, several proteins related to oxidative stress were identified, including superoxide dismutase, peroxiredoxins, thioredoxin, and glutathione oxidase. Our results provide novel information on the polypeptide composition of the crude venom extract from sea anemones, which can be utilized to develop molecules for therapeutic tools and industrial applications.
Collapse
Affiliation(s)
- Santos Ramírez-Carreto
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Av. Universidad #655, Santa María Ahuacatitlan, Cuernavaca C.P. 62100, Mexico;
| | - Beatriz Miranda-Zaragoza
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico;
| | - Nuno Simões
- Unidad Multidisciplinaria de Docencia e Investigación en Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto Abrigo s/n, Sisal C.P. 97356, Mexico;
- International Chair for Coastal and Marine Studies, Harte Research Institute for Gulf of Mexico Studies, Texas A and M University-Corpus Christi, Corpus Christi, TX 78412, USA
- Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios Nacionales, CONACYT, Sisal C.P. 97356, Mexico
| | - Ricardo González-Muñoz
- Instituto de Investigaciones Marinas y Costeras, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Dean Funes 3350, Mar del Plata C.P. 7600, Argentina;
| | - Claudia Rodríguez-Almazán
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico;
| |
Collapse
|
7
|
Hérnández-Elizárraga VH, Vega-Tamayo JE, Olguín-López N, Ibarra-Alvarado C, Rojas-Molina A. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis. J Proteomics 2023; 288:104984. [PMID: 37536522 DOI: 10.1016/j.jprot.2023.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Millepora alcicornis is a reef-forming cnidarian widely distributed in the Mexican Caribbean. Millepora species or "fire corals" inflict a painful stinging reaction in humans when touched. Even though hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, there are few reports regarding the diversity of toxins synthesized by fire corals. Here, based on transcriptomic analysis of M. alcicornis, several predicted proteins that show amino acid sequence similarity to toxins were identified, including neurotoxins, metalloproteases, hemostasis-impairing toxins, serin proteases, cysteine-rich venom proteins, phospholipases, complement system-impairing toxins, phosphodiesterases, pore-forming toxins, and L-aminoacid oxidases. The soluble nematocyst proteome of this organism was shown to induce hemolytic, proteolytic, and phospholipase A2 effects by gel zymography. Protein bands or spots on 1D- and 2D-PAGE gels corresponding to zones of hemolytic and enzymatic activities were excised, subjected to in-gel digestion with trypsin, and analyzed by mass spectrometry. These proteins exhibited sequence homology to PLA2s, metalloproteinases, pore-forming toxins, and neurotoxins, such as actitoxins and CrTX-A. The complex array of venom-related transcripts that were identified in M. alcicornis, some of which are first reported in "fire corals", provide novel insight into the structural richness of Cnidarian toxins and their distribution among species. SIGNIFICANCE: Marine organisms are a promising source of bioactive compounds with valuable contributions in diverse fields such as human health, pharmaceuticals, and industrial application. Currently, not much attention has been paid to the study of fire corals, which possess a variety of molecules that exhibit diverse toxic effects and therefore have great pharmaceutical and biotechnological potential. The isolation and identification of novel marine-derived toxins by classical approaches are time-consuming and have low yields. Thus, next-generation strategies, like base-'omics technologies, are essential for the high-throughput characterization of venom compounds such as those synthesized by fire corals. This study moves the field forward because it provides new insights regarding the first occurrence of diverse toxin groups in Millepora alcicornis. The findings presented here will contribute to the current understanding of the mechanisms of action of Millepora toxins. This research also reveals important information related to the potential role of toxins in the defense and capture of prey mechanisms and for designing appropriate treatments for fire coral envenomation. Moreover, due to the lack of information on the taxonomic identification of Millepora, the insights presented here can advise the taxonomic classification of the species of this genus.
Collapse
Affiliation(s)
- Víctor Hugo Hérnández-Elizárraga
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; University of Minnesota Genomics Center, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Norma Olguín-López
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; División Química y Energías Renovables, Universidad Tecnológica de San Juan del Río. Av La Palma No 125 Vista Hermosa, 76800 San Juan del Río, Qro, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico.
| |
Collapse
|
8
|
da Silva DL, Valladão R, Beraldo-Neto E, Coelho GR, Neto OBDS, Vigerelli H, Lopes AR, Hamilton BR, Undheim EAB, Sciani JM, Pimenta DC. Spatial Distribution and Biochemical Characterization of Serine Peptidase Inhibitors in the Venom of the Brazilian Sea Anemone Anthopleura cascaia Using Mass Spectrometry Imaging. Mar Drugs 2023; 21:481. [PMID: 37755094 PMCID: PMC10532579 DOI: 10.3390/md21090481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent proteolysis of other secreted anemone toxins. In this study, we isolated three serine peptidase inhibitors named Anthopleura cascaia peptide inhibitors I, II, and III (ACPI-I, ACPI-II, and ACPI-III) from the venom of the endemic Brazilian sea anemone A. cascaia. The venom was fractionated using RP-HPLC, and the inhibitory activity of these fractions against trypsin was determined and found to range from 59% to 93%. The spatial distribution of the anemone peptides throughout A. cascaia was observed using mass spectrometry imaging. The inhibitory peptides were found to be present in the tentacles, pedal disc, and mesenterial filaments. We suggest that the three inhibitors observed during this study belong to the venom Kunitz toxin family on the basis of their similarity to PI-actitoxin-aeq3a-like and the identification of amino acid residues that correspond to a serine peptidase binding site. Our findings expand our understanding of the diversity of toxins present in sea anemone venom and shed light on their potential role in protecting other venom components from proteolysis.
Collapse
Affiliation(s)
- Daiane Laise da Silva
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
- Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Rodrigo Valladão
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| | - Emidio Beraldo-Neto
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| | - Guilherme Rabelo Coelho
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| | - Oscar Bento da Silva Neto
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| | - Hugo Vigerelli
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil
| | - Adriana Rios Lopes
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| | - Brett R. Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia;
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Juliana Mozer Sciani
- Laboratório de Farmacologia Molecular e Compostos Bioativos, Universidade São Francisco, Av. São Francisco de Assis, 218, São Paulo 12916-900, Brazil;
| | - Daniel Carvalho Pimenta
- Programa de Pós-Graduação em Ciências-Toxinologia, Instituto Butantan, Av. Vital Brasil 1500, Butantã, São Paulo 05503-900, Brazil; (E.B.-N.); (G.R.C.); (H.V.); (A.R.L.)
- Laboratório de Bioquímica, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil; (R.V.); (O.B.d.S.N.)
| |
Collapse
|
9
|
Mazzi Esquinca ME, Correa CN, Marques de Barros G, Montenegro H, Mantovani de Castro L. Multiomic Approach for Bioprospection: Investigation of Toxins and Peptides of Brazilian Sea Anemone Bunodosoma caissarum. Mar Drugs 2023; 21:md21030197. [PMID: 36976246 PMCID: PMC10058367 DOI: 10.3390/md21030197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Sea anemones are sessile invertebrates of the phylum Cnidaria and their survival and evolutive success are highly related to the ability to produce and quickly inoculate venom, with the presence of potent toxins. In this study, a multi-omics approach was applied to characterize the protein composition of the tentacles and mucus of Bunodosoma caissarum, a species of sea anemone from the Brazilian coast. The tentacles transcriptome resulted in 23,444 annotated genes, of which 1% showed similarity with toxins or proteins related to toxin activity. In the proteome analysis, 430 polypeptides were consistently identified: 316 of them were more abundant in the tentacles while 114 were enriched in the mucus. Tentacle proteins were mostly enzymes, followed by DNA- and RNA-associated proteins, while in the mucus most proteins were toxins. In addition, peptidomics allowed the identification of large and small fragments of mature toxins, neuropeptides, and intracellular peptides. In conclusion, integrated omics identified previously unknown or uncharacterized genes in addition to 23 toxin-like proteins of therapeutic potential, improving the understanding of tentacle and mucus composition of sea anemones.
Collapse
Affiliation(s)
- Maria Eduarda Mazzi Esquinca
- Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
| | - Claudia Neves Correa
- Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
- Biodiversity of Coastal Environments Postgraduate Program, Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
| | - Gabriel Marques de Barros
- Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
- Biodiversity of Coastal Environments Postgraduate Program, Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
| | | | - Leandro Mantovani de Castro
- Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
- Biodiversity of Coastal Environments Postgraduate Program, Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
| |
Collapse
|
10
|
Monastyrnaya MM, Kalina RS, Kozlovskaya EP. The Sea Anemone Neurotoxins Modulating Sodium Channels: An Insight at Structure and Functional Activity after Four Decades of Investigation. Toxins (Basel) 2022; 15:8. [PMID: 36668828 PMCID: PMC9863223 DOI: 10.3390/toxins15010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/NaVs). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an indispensable and promising tool in pharmacological researches. They have widely been carried out over the past three decades, in particular, in establishing different NaV subtypes functional properties and a specific role in various pathologies. Therefore, a large number of publications are currently dedicated to the search and study of the structure-functional relationships of new sea anemone natural neurotoxins-potential pharmacologically active compounds that specifically interact with various subtypes of voltage gated sodium channels as drug discovery targets. This review presents and summarizes some updated data on the structure-functional relationships of known sea anemone neurotoxins belonging to four structural types. The review also emphasizes the study of type 2 neurotoxins, produced by the tropical sea anemone Heteractis crispa, five structurally homologous and one unique double-stranded peptide that, due to the absence of a functionally significant Arg14 residue, loses toxicity but retains the ability to modulate several VGSCs subtypes.
Collapse
|
11
|
Delgado A, Benedict C, Macrander J, Daly M. Never, Ever Make an Enemy… Out of an Anemone: Transcriptomic Comparison of Clownfish Hosting Sea Anemone Venoms. Mar Drugs 2022; 20:730. [PMID: 36547877 PMCID: PMC9782873 DOI: 10.3390/md20120730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Sea anemones are predatory marine invertebrates and have diverse venom arsenals. Venom is integral to their biology, and is used in competition, defense, and feeding. Three lineages of sea anemones are known to have independently evolved symbiotic relationships with clownfish, however the evolutionary impact of this relationship on the venom composition of the host is still unknown. Here, we investigate the potential of this symbiotic relationship to shape the venom profiles of the sea anemones that host clownfish. We use transcriptomic data to identify differences and similarities in venom profiles of six sea anemone species, representing the three known clades of clownfish-hosting sea anemones. We recovered 1121 transcripts matching verified toxins across all species, and show that hemolytic and hemorrhagic toxins are consistently the most dominant and diverse toxins across all species examined. These results are consistent with the known biology of sea anemones, provide foundational data on venom diversity of these species, and allow for a review of existing hierarchical structures in venomic studies.
Collapse
Affiliation(s)
- Alonso Delgado
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Charlotte Benedict
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Macrander
- Department of Biology, Florida Southern College, Lakeland, FL 33815, USA
| | - Marymegan Daly
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Hosseini H, Al-Jabri HM, Moheimani NR, Siddiqui SA, Saadaoui I. Marine microbial bioprospecting: Exploitation of marine biodiversity towards biotechnological applications-a review. J Basic Microbiol 2022; 62:1030-1043. [PMID: 35467037 DOI: 10.1002/jobm.202100504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
The increase in the human population causes an increase in the demand for nutritional supplies and energy resources. Thus, the novel, natural, and renewable resources became of great interest. Here comes the optimistic role of bioprospecting as a promising tool to isolate novel and interesting molecules and microorganisms from the marine environment as alternatives to the existing resources. Bioprospecting of marine metabolites and microorganisms with high biotechnological potentials has gained wide interest due to the variability and richness of the marine environment. Indeed, the existence of extreme conditions that increases the adaptability of marine organisms, especially planktons, allow the presence of interesting biological species that are able to produce novel compounds with multiple health benefits and high economical value. This review aims to provide a comprehensive overview of marine microbial bioprospecting as a growing field of interest. It emphasizes functional bioprospecting that facilitates the discovery of interesting metabolites. Marine bioprospecting was also discussed from a legal aspect for the first time, focusing on the shortcomings of international law. We also summarized the challenges facing bioprospecting in the marine environment including economic feasibility issues.
Collapse
Affiliation(s)
- Hoda Hosseini
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hareb M Al-Jabri
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Navid R Moheimani
- Algae R&D Centre, Harry Buttler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simil A Siddiqui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
13
|
Americus B, Hams N, Klompen AML, Alama-Bermejo G, Lotan T, Bartholomew JL, Atkinson SD. The cnidarian parasite Ceratonova shasta utilizes inherited and recruited venom-like compounds during infection. PeerJ 2022; 9:e12606. [PMID: 35003924 PMCID: PMC8684318 DOI: 10.7717/peerj.12606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cnidarians are the most ancient venomous organisms. They store a cocktail of venom proteins inside unique stinging organelles called nematocysts. When a cnidarian encounters chemical and physical cues from a potential threat or prey animal, the nematocyst is triggered and fires a harpoon-like tubule to penetrate and inject venom into the prey. Nematocysts are present in all Cnidaria, including the morphologically simple Myxozoa, which are a speciose group of microscopic, spore-forming, obligate parasites of fish and invertebrates. Rather than predation or defense, myxozoans use nematocysts for adhesion to hosts, but the involvement of venom in this process is poorly understood. Recent work shows some myxozoans have a reduced repertoire of venom-like compounds (VLCs) relative to free-living cnidarians, however the function of these proteins is not known. Methods We searched for VLCs in the nematocyst proteome and a time-series infection transcriptome of Ceratonova shasta, a myxozoan parasite of salmonid fish. We used four parallel approaches to detect VLCs: BLAST and HMMER searches to preexisting cnidarian venom datasets, the machine learning tool ToxClassifier, and structural modeling of nematocyst proteomes. Sequences that scored positive by at least three methods were considered VLCs. We then mapped their time-series expressions in the fish host and analyzed their phylogenetic relatedness to sequences from other venomous animals. Results We identified eight VLCs, all of which have closely related sequences in other myxozoan datasets, suggesting a conserved venom profile across Myxozoa, and an overall reduction in venom diversity relative to free-living cnidarians. Expression of the VLCs over the 3-week fish infection varied considerably: three sequences were most expressed at one day post-exposure in the fish’s gills; whereas expression of the other five VLCs peaked at 21 days post-exposure in the intestines, coinciding with the formation of mature parasite spores with nematocysts. Expression of VLC genes early in infection, prior to the development of nematocysts, suggests venoms in C. shasta have been repurposed to facilitate parasite invasion and proliferation within the host. Molecular phylogenetics suggested some VLCs were inherited from a cnidarian ancestor, whereas others were more closely related to sequences from venomous non-Cnidarian organisms and thus may have gained qualities of venom components via convergent evolution. The presence of VLCs and their differential expression during parasite infection enrich the concept of what functions a “venom” can have and represent targets for designing therapeutics against myxozoan infections.
Collapse
Affiliation(s)
- Benjamin Americus
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Nicole Hams
- Columbia River Fish and Wildlife Conservation Office, U.S. Fish and Wildlife Service, Vancouver, Washington, United States of America
| | - Anna M L Klompen
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gema Alama-Bermejo
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
14
|
Ashwood LM, Undheim EAB, Madio B, Hamilton BR, Daly M, Hurwood DA, King GF, Prentis PJ. Venoms for all occasions: The functional toxin profiles of different anatomical regions in sea anemones are related to their ecological function. Mol Ecol 2021; 31:866-883. [PMID: 34837433 DOI: 10.1111/mec.16286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
The phylum Cnidaria is the oldest extant venomous group and is defined by the presence of nematocysts, specialized organelles responsible for venom production and delivery. Although toxin peptides and the cells housing nematocysts are distributed across the entire animal, nematocyte and venom profiles have been shown to differ across morphological structures in actiniarians. In this study, we explore the relationship between patterns of toxin expression and the ecological roles of discrete anatomical structures in Telmatactis stephensoni. Specifically, using a combination of proteomic and transcriptomic approaches, we examined whether there is a direct correlation between the functional similarity of regions and the similarity of their associated toxin expression profiles. We report that the regionalization of toxin production is consistent with the partitioning of the ecological roles of venom across envenomating structures, and that three major functional regions are present in T. stephensoni: tentacles, epidermis and gastrodermis. Additionally, we find that most structures that serve similar functions not only have comparable putative toxin profiles but also similar nematocyst types. There was no overlap in the putative toxins identified using proteomics and transcriptomics, but the expression patterns of specific milked venom peptides were conserved across RNA-sequencing and mass spectrometry imaging data sets. Furthermore, based on our data, it appears that acontia of T. stephensoni may be transcriptionally inactive and only mature nematocysts are present in the distal portions of the threads. Overall, we find that the venom profile of different anatomical regions in sea anemones varies according to its ecological functions.
Collapse
Affiliation(s)
- Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, Australia.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, Australia.,Centre for Microscopy and Microscopy and Microanalysis, University of Queensland, St Lucia, Queensland, Australia
| | - Marymegan Daly
- Department of Evolution, Ecology & Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - David A Hurwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia.,Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.,ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia.,Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Intrabody Tetrodotoxin Distribution and Possible Hypothesis for Its Migration in Ribbon Worms Cephalothrix cf. simula (Palaeonemertea, Nemertea). Mar Drugs 2021; 19:md19090494. [PMID: 34564156 PMCID: PMC8465930 DOI: 10.3390/md19090494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin found in many marine and terrestrial animals, but only a few species, such as the ribbon worms of the genus Cephalothrix, accumulate it in extremely high concentrations. The intrabody distribution of TTX in highly toxic organisms is of great interest because it helps researchers to understand the pathways by which the toxin migrates, accumulates, and functions in tissues. Using immunohistochemistry with anti-TTX antibodies, the authors of this study investigated the toxin's distribution inside the organs, tissues, and cells of Cephalothrix cf. simula. The cell types of TTX-positive tissues were identified by light microscopy. The main sites of TTX accumulation occurred in the secretory cells of the integuments, the microvilli of the epidermal ciliary cells, cephalic glands, the glandular epithelia of the proboscises, the enterocytes of the digestive systems, and nephridia. Obtained data suggest the toxin migrates from the digestive system through blood vessels to target organs. TTX is excreted from the body through the nephridia and mucus of epidermal cells.
Collapse
|
16
|
Rádis-Baptista G. Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins (Basel) 2021; 13:147. [PMID: 33671927 PMCID: PMC7919042 DOI: 10.3390/toxins13020147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-penetrating peptides (CPPs) comprise a class of short polypeptides that possess the ability to selectively interact with the cytoplasmic membrane of certain cell types, translocate across plasma membranes and accumulate in the cell cytoplasm, organelles (e.g., the nucleus and mitochondria) and other subcellular compartments. CPPs are either of natural origin or de novo designed and synthesized from segments and patches of larger proteins or designed by algorithms. With such intrinsic properties, along with membrane permeation, translocation and cellular uptake properties, CPPs can intracellularly convey diverse substances and nanomaterials, such as hydrophilic organic compounds and drugs, macromolecules (nucleic acids and proteins), nanoparticles (nanocrystals and polyplexes), metals and radionuclides, which can be covalently attached via CPP N- and C-terminals or through preparation of CPP complexes. A cumulative number of studies on animal toxins, primarily isolated from the venom of arthropods and snakes, have revealed the cell-penetrating activities of venom peptides and toxins, which can be harnessed for application in biomedicine and pharmaceutical biotechnology. In this review, I aimed to collate examples of peptides from animal venoms and toxic secretions that possess the ability to penetrate diverse types of cells. These venom CPPs have been chemically or structurally modified to enhance cell selectivity, bioavailability and a range of target applications. Herein, examples are listed and discussed, including cysteine-stabilized and linear, α-helical peptides, with cationic and amphipathic character, from the venom of insects (e.g., melittin, anoplin, mastoparans), arachnids (latarcin, lycosin, chlorotoxin, maurocalcine/imperatoxin homologs and wasabi receptor toxin), fish (pardaxins), amphibian (bombesin) and snakes (crotamine and cathelicidins).
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| |
Collapse
|
17
|
Krishnarjuna B, Sunanda P, Villegas-Moreno J, Csoti A, A V Morales R, Wai DCC, Panyi G, Prentis P, Norton RS. A disulfide-stabilised helical hairpin fold in acrorhagin I: An emerging structural motif in peptide toxins. J Struct Biol 2020; 213:107692. [PMID: 33387653 DOI: 10.1016/j.jsb.2020.107692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022]
Abstract
Acrorhagin I (U-AITX-Aeq5a) is a disulfide-rich peptide identified in the aggressive organs (acrorhagi) of the sea anemone Actinia equina. Previous studies (Toxicon 2005, 46:768-74) found that the peptide is toxic in crabs, although the structural and functional properties of acrorhagin I have not been reported. In this work, an Escherichia coli (BL21 strain) expression system was established for the preparation of 13C,15N-labelled acrorhagin I, and the solution structure was determined using NMR spectroscopy. Structurally, acrorhagin I is similar to B-IV toxin from the marine worm Cerebratulus lacteus (PDB id 1VIB), with a well-defined helical hairpin structure stabilised by four intramolecular disulfide bonds. The recombinant peptide was tested in patch-clamp electrophysiology assays against voltage-gated potassium and sodium channels, and in bacterial and fungal growth inhibitory assays and haemolytic assays. Acrorhagin I was not active against any of the ion channels tested and showed no activity in functional assays, indicating that this peptide may possess a different biological function. Metal ion interaction studies using NMR spectroscopy showed that acrorhagin I bound zinc and nickel, suggesting that its function might be modulated by metal ions or that it may be involved in regulating metal ion levels and their transport. The similarity between the structure of acrorhagin I and that of B-IV toxin from a marine worm suggests that this fold may prove to be a recurring motif in disulfide-rich peptides from marine organisms.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Punnepalli Sunanda
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jessica Villegas-Moreno
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Agota Csoti
- Department of Biophysics and Cell Biology, University of Debrecen, 4032 Debrecen, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 4032 Debrecen, Hungary
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, 4032 Debrecen, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 4032 Debrecen, Hungary
| | - Peter Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia; Institute for Future Environments, Queensland University of Technology, Brisbane, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
18
|
Gene Expression and Photophysiological Changes in Pocillopora acuta Coral Holobiont Following Heat Stress and Recovery. Microorganisms 2020; 8:microorganisms8081227. [PMID: 32806647 PMCID: PMC7463449 DOI: 10.3390/microorganisms8081227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/25/2022] Open
Abstract
The ability of corals to withstand changes in their surroundings is a critical survival mechanism for coping with environmental stress. While many studies have examined responses of the coral holobiont to stressful conditions, its capacity to reverse responses and recover when the stressor is removed is not well-understood. In this study, we investigated among-colony responses of Pocillopora acuta from two sites with differing distance to the mainland (Kusu (closer to the mainland) and Raffles Lighthouse (further from the mainland)) to heat stress through differential expression analysis of target genes and quantification of photophysiological metrics. We then examined how these attributes were regulated after the stressor was removed to assess the recovery potential of P. acuta. The fragments that were subjected to heat stress (2 °C above ambient levels) generally exhibited significant reduction in their endosymbiont densities, but the extent of recovery following stress removal varied depending on natal site and colony. There were minimal changes in chl a concentration and maximum quantum yield (Fv/Fm, the proportion of variable fluorescence (Fv) to maximum fluorescence (Fm)) in heat-stressed corals, suggesting that the algal endosymbionts’ Photosystem II was not severely compromised. Significant changes in gene expression levels of selected genes of interest (GOI) were observed following heat exposure and stress removal among sites and colonies, including Actin, calcium/calmodulin-dependent protein kinase type IV (Camk4), kinesin-like protein (KIF9), and small heat shock protein 16.1 (Hsp16.1). The most responsive GOIs were Actin, a major component of the cytoskeleton, and the adaptive immune-related Camk4 which both showed significant reduction following heat exposure and subsequent upregulation during the recovery phase. Our findings clearly demonstrate specific responses of P. acuta in both photophysiological attributes and gene expression levels, suggesting differential capacity of P. acuta corals to tolerate heat stress depending on the colony, so that certain colonies may be more resilient than others.
Collapse
|
19
|
Klompen AML, Macrander J, Reitzel AM, Stampar SN. Transcriptomic Analysis of Four Cerianthid (Cnidaria, Ceriantharia) Venoms. Mar Drugs 2020; 18:md18080413. [PMID: 32764303 PMCID: PMC7460484 DOI: 10.3390/md18080413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize their proteinaceous-dominated toxins to capture prey and defend against predators, in addition to several other ecological functions, including intraspecific interactions. At present there are no studies describing the venom for any species within cerianthids. Given their unique development, ecology, and distinct phylogenetic-placement within Cnidaria, our objective is to evaluate the venom-like gene diversity of four species of cerianthids from newly collected transcriptomic data. We identified 525 venom-like genes between all four species. The venom-gene profile for each species was dominated by enzymatic protein and peptide families, which is consistent with previous findings in other cnidarian venoms. However, we found few toxins that are typical of sea anemones and corals, and furthermore, three of the four species express toxin-like genes closely related to potent pore-forming toxins in box jellyfish. Our study is the first to provide a survey of the putative venom composition of cerianthids and contributes to our general understanding of the diversity of cnidarian toxins.
Collapse
Affiliation(s)
- Anna M. L. Klompen
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
- Correspondence:
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28262, USA; (J.M.); (A.M.R.)
- Department of Biology, Florida Southern College, 111 Lake Hollingsworth, Drive Lakeland, FL 33801, USA
| | - Adam M. Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28262, USA; (J.M.); (A.M.R.)
| | - Sérgio N. Stampar
- Department of Biological Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), FCL, Assis, SP 19806, Brazil;
| |
Collapse
|
20
|
Mitchell ML, Tonkin-Hill GQ, Morales RAV, Purcell AW, Papenfuss AT, Norton RS. Tentacle Transcriptomes of the Speckled Anemone (Actiniaria: Actiniidae: Oulactis sp.): Venom-Related Components and Their Domain Structure. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:207-219. [PMID: 31981004 DOI: 10.1007/s10126-020-09945-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Cnidarians are one of the oldest known animal lineages (ca. 700 million years), with a unique envenomation apparatus to deliver a potent mixture of peptides and proteins. Some peptide toxins from cnidarian venom have proven therapeutic potential. Here, we use a transcriptomic/proteomic strategy to identify sequences with similarity to known venom protein families in the tentacles of the endemic Australian 'speckled anemone' (Oulactis sp.). Illumina RNASeq data were assembled de novo. Annotated sequences in the library were verified by cross-referencing individuals' transcriptomes or protein expression evidence from LC-MS/MS data. Sequences include pore-forming toxins, phospholipases, peptidases, neurotoxins (sodium and potassium channel modulators), cysteine-rich secretory proteins and defensins (antimicrobial peptides). Fewer than 4% of the sequences in the library occurred across the three individuals examined, demonstrating high sequence variability of an individual's arsenal. We searched for actinoporins in Oulactis sp. to assess sequence similarity to the only described toxins (OR-A and -G) for this genus and examined the domain architecture of venom-related peptides and proteins. The novel putative actinoporin of Oulactis sp. has a greater similarity to other species in the Actiniidae family than to O. orientalis. Venom-related sequences have an architecture that occurs in single, repeat or multi-domain combinations of venom-related (e.g. ShK-like) and non-venom (e.g. whey acid protein) domains. This study has produced the first transcriptomes for an endemic Australian sea anemone species and the genus Oulactis, while identifying nearly 400 novel venom-related peptides and proteins for future structural and functional analyses and venom evolution studies.
Collapse
Affiliation(s)
- Michela L Mitchell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
- Sciences Department, Museum Victoria, G.P.O. Box 666, Melbourne, Victoria, 3001, Australia.
- Queensland Museum, P.O. Box 3000, South Brisbane, Queensland, 4101, Australia.
- Bioinformatics Division, Walter & Eliza Hall Institute of Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
| | - Gerry Q Tonkin-Hill
- Bioinformatics Division, Walter & Eliza Hall Institute of Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- CSL Limited, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter & Eliza Hall Institute of Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3010, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, 3010, Australia
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia
| |
Collapse
|
21
|
The venoms of the lesser ( Echiichthys vipera) and greater ( Trachinus draco) weever fish- A review. Toxicon X 2020; 6:100025. [PMID: 32550581 PMCID: PMC7285994 DOI: 10.1016/j.toxcx.2020.100025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/24/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
In comparison with other animal venoms, fish venoms remain relatively understudied. This is especially true for that of the lesser Echiichthys vipera and greater weever fish Trachinus draco which, apart from the isolation of their unique venom cytolysins, trachinine and dracotoxin, respectively, remain relatively uncharacterised. Envenomation reports mainly include mild symptoms consisting of nociception and inflammation. However, like most fish venoms, if the venom becomes systemic it causes cardiorespiratory and blood pressure changes. Although T. draco venom has not been studied since the 1990's, recent studies on E. vipera venom have discovered novel cytotoxic components on human cancer cells, but due to the scarcity of research on the molecular make-up of the venom, the molecule(s) causing this cytotoxicity remains unknown. This review analyses past studies on E. vipera and T. draco venom, the methods used in the , the venom constituents characterised, the reported symptoms of envenomation and compares these findings with those from other venomous Scorpaeniformes. Research on the weever fish venoms Echiichthys vipera and Trachinus draco has been scarce. E. vipera and T. draco venoms elicit cardiorespiratory symptoms in victims. E. vipera and T. draco contain unique cytolysins – Trachinine and Dracotoxin. Dracotoxin is haemolytic and contains membrane depolarising activities. E. vipera venom triggers apoptosis in human colon carcinoma cells.
Collapse
|