1
|
Sato D, Sasaki M, Umehara A. Stereocontrolled Synthesis of the Portimine Skeleton via Organocatalyst-Mediated Asymmetric Stannylation and Stereoretentive C( sp3)-C( sp2) Stille Coupling. Org Lett 2025; 27:942-947. [PMID: 39838860 PMCID: PMC11791881 DOI: 10.1021/acs.orglett.4c04245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Our efforts toward the synthesis of the marine natural product portimine are described. The key to the synthesis of the skeleton is a stereoretentive copper-catalyzed C(sp3)-C(sp2) Stille-type cross-coupling that enables the convergent assembly of functionalized fragments. The core skeleton of portimine was constructed via ring-closing metathesis and transannular acetal formation.
Collapse
Affiliation(s)
- Daisuke Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, 980-8577 Aoba-ku, Sendai, Japan
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, 980-8577 Aoba-ku, Sendai, Japan
| | - Atsushi Umehara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, 980-8577 Aoba-ku, Sendai, Japan
| |
Collapse
|
2
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
3
|
Hu C. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:12. [PMID: 38282092 PMCID: PMC10822835 DOI: 10.1007/s13659-024-00432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Marine natural products (MNPs) and marine organisms include sea urchin, sea squirts or ascidians, sea cucumbers, sea snake, sponge, soft coral, marine algae, and microalgae. As vital biomedical resources for the discovery of marine drugs, bioactive molecules, and agents, these MNPs have bioactive potentials of antioxidant, anti-infection, anti-inflammatory, anticoagulant, anti-diabetic effects, cancer treatment, and improvement of human immunity. This article reviews the role of MNPs on anti-infection of coronavirus, SARS-CoV-2 and its major variants (such as Delta and Omicron) as well as tuberculosis, H. Pylori, and HIV infection, and as promising biomedical resources for infection related cardiovascular disease (irCVD), diabetes, and cancer. The anti-inflammatory mechanisms of current MNPs against SARS-CoV-2 infection are also discussed. Since the use of other chemical agents for COVID-19 treatment are associated with some adverse effects in cardiovascular system, MNPs have more therapeutic advantages. Herein, it's time to protect this ecosystem for better sustainable development in the new era of ocean economy. As huge, novel and promising biomedical resources for anti-infection of SARS-CoV-2 and irCVD, the novel potential mechanisms of MNPs may be through multiple targets and pathways regulating human immunity and inhibiting inflammation. In conclusion, MNPs are worthy of translational research for further clinical application.
Collapse
Affiliation(s)
- Chunsong Hu
- Department of Cardiovascular Medicine, Jiangxi Academy of Medical Science, Nanchang University, Hospital of Nanchang University, No. 461 Bayi Ave, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Dakkouri M. A Theoretical Investigation of Novel Sila- and Germa-Spirocyclic Imines and Their Relevance for Electron-Transporting Materials and Drug Discovery. Molecules 2023; 28:6298. [PMID: 37687127 PMCID: PMC10489060 DOI: 10.3390/molecules28176298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A new class of spirocyclic imines (SCIs) has been theoretically investigated by applying a variety of quantum chemical methods and basis sets. The uniqueness of these compounds is depicted by various peculiarities, e.g., the incidence of planar six-membered rings each with two imine groups (two π bonds) and the incorporation of the isosteres carbon, silicon, or germanium spiro centers. Additional peculiarities of these novel SCIs are mirrored by their three-dimensionality, the simultaneous occurrence of nucleophilic and electrophilic centers, and the cross-hyperconjugative (spiro-conjugation) interactions, which provoke charge mobility along the spirocyclic scaffold. Substitution of SCIs with strong electron-withdrawing substituents, like the cyano group or fluorine, enhances their docking capability and impacts their reactivity and charge mobility. To gain thorough knowledge about the molecular properties of these SCIs, their structures have been optimized and various quantum chemical concepts and models were applied, e.g., full NBO analysis and the frontier molecular orbitals (FMOs) theory (HOMO-LUMO energy gap) and the chemical reactivity descriptors derived from them. For the assessment of the charge density distribution along the SCI framework, additional complementary quantum chemical methods were used, e.g., molecular electrostatic potential (MESP) and Bader's QTAIM. Additionally, using the aromaticity index NICS (nuclear independent chemical shift) and other criteria, it could be shown that the investigated cross-hyperconjugated sila and germa SCIs are spiro-aromatics of the Heilbronner Craig-type Möbius aromaticity.
Collapse
Affiliation(s)
- Marwan Dakkouri
- Department of Electrochemistry, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
5
|
Unique Mode of Antiviral Action of a Marine Alkaloid against Ebola Virus and SARS-CoV-2. Viruses 2022; 14:v14040816. [PMID: 35458549 PMCID: PMC9028129 DOI: 10.3390/v14040816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.
Collapse
|
6
|
Jean-Louis Kraus. Natural Products as Potential Antiviral Drugs: The Specific Case of Marine Biotoxins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:1127-1132. [PMID: 34931111 PMCID: PMC8675108 DOI: 10.1134/s1068162021060133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/04/2022]
Abstract
To fight against various viral infections researchers turned to new chemical structures resulting from natural medicinal plants and more recently from "marine origin" as sources of active molecules against viral infections. The present manuscript describes complex marine origin drugs, their chemical complex structure, their therapeutic use, and their antiviral properties. Emphasis is placed more particularly on the properties of ionic channels (Na+, K+, Ca2+) blockers compounds from marine origin, named Dinotoxins, derived from "dinoflagellates microalgae". These compounds are of particular pharmaceutical interest since ionic channels blockers could be used to fight against a wide diversity of viruses, including SARS-CoV2 virus.
Collapse
Affiliation(s)
- Jean-Louis Kraus
- Institut de Biologie du Développement de Marseille (IBDM), UMR-7288 CNRS Aix-Marseille University, 13288 Marseille Cedex, France
| |
Collapse
|
7
|
de Sousa LHN, de Araújo RD, Sousa-Fontoura D, Menezes FG, Araújo RM. Metabolities from Marine Sponges of the Genus Callyspongia: Occurrence, Biological Activity, and NMR Data. Mar Drugs 2021; 19:663. [PMID: 34940662 PMCID: PMC8706505 DOI: 10.3390/md19120663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
The genus Callyspongia (Callyspongiidae) encompasses a group of demosponges including 261 described species, of which approximately 180 have been accepted after taxonomic reviews. The marine organisms of Callyspongia are distributed in tropical ecosystems, especially in the central and western Pacific, but also in the regions of the Indian, the West Atlantic, and the East Pacific Oceans. The reason for the interest in the genus Callyspongia is related to its potential production of bioactive compounds. In this review, we group the chemical information about the metabolites isolated from the genus Callyspongia, as well as studies of the biological activity of these compounds. Through NMR data, 212 metabolites were identified from genus Callyspongia (15 species and Callyspongia sp.), belonging to classes such as polyacetylenes, terpenoids, steroids, alkaloids, polyketides, simple phenols, phenylpropanoids, nucleosides, cyclic peptides, and cyclic depsipeptides. A total of 109 molecules have been reported with bioactive activity, mainly cytotoxic and antimicrobial (antibacterial and antifungal) action. Thus, we conclude that polyacetylenes, terpenoids and steroids correspond to the largest classes of compounds of the genus, and that future research involving the anticancer action of the species' bioactive metabolites may become relevant.
Collapse
Affiliation(s)
- Lucas Hilário Nogueira de Sousa
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil; (L.H.N.d.S.); (R.D.d.A.); (F.G.M.)
| | - Rusceli Diego de Araújo
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil; (L.H.N.d.S.); (R.D.d.A.); (F.G.M.)
| | | | - Fabrício Gava Menezes
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil; (L.H.N.d.S.); (R.D.d.A.); (F.G.M.)
| | - Renata Mendonça Araújo
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil; (L.H.N.d.S.); (R.D.d.A.); (F.G.M.)
| |
Collapse
|
8
|
Ding XB, Aitken HRM, Pearl ES, Furkert DP, Brimble MA. Synthesis of the C4-C16 Polyketide Fragment of Portimines A and B. J Org Chem 2021; 86:12840-12850. [PMID: 34469687 DOI: 10.1021/acs.joc.1c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stereoselective synthesis of the C4-C16 polyketide fragment of portimines A and B is reported, enabled by our previously established method for the stereoselective synthesis of syn-α,α'-dihydroxyketones. The preparation of this advanced fragment provides insights useful for the total synthesis of portimines A and B. An asymmetric Evans aldol reaction was used to install the C10-C11 adjacent stereogenic centers before incorporation of indantrione, followed by epoxidation and epoxide opening to forge the challenging syn-α,α'-dihydroxyketone functionality.
Collapse
Affiliation(s)
- Xiao-Bo Ding
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Harry R M Aitken
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Esperanza S Pearl
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
9
|
Geahchan S, Ehrlich H, Rahman MA. The Anti-Viral Applications of Marine Resources for COVID-19 Treatment: An Overview. Mar Drugs 2021; 19:409. [PMID: 34436248 PMCID: PMC8402008 DOI: 10.3390/md19080409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing pandemic has led to an urgent need for novel drug discovery and potential therapeutics for Sars-CoV-2 infected patients. Although Remdesivir and the anti-inflammatory agent dexamethasone are currently on the market for treatment, Remdesivir lacks full efficacy and thus, more drugs are needed. This review was conducted through literature search of PubMed, MDPI, Google Scholar and Scopus. Upon review of existing literature, it is evident that marine organisms harbor numerous active metabolites with anti-viral properties that serve as potential leads for COVID-19 therapy. Inorganic polyphosphates (polyP) naturally found in marine bacteria and sponges have been shown to prevent viral entry, induce the innate immune response, and downregulate human ACE-2. Furthermore, several marine metabolites isolated from diverse sponges and algae have been shown to inhibit main protease (Mpro), a crucial protein required for the viral life cycle. Sulfated polysaccharides have also been shown to have potent anti-viral effects due to their anionic properties and high molecular weight. Likewise, select marine sponges produce bromotyrosines which have been shown to prevent viral entry, replication and protein synthesis. The numerous compounds isolated from marine resources demonstrate significant potential against COVID-19. The present review for the first time highlights marine bioactive compounds, their sources, and their anti-viral mechanisms of action, with a focus on potential COVID-19 treatment.
Collapse
Affiliation(s)
- Sarah Geahchan
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; (S.G.); (H.E.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Hermann Ehrlich
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; (S.G.); (H.E.)
- A.R. Environmental Solutions, University of Toronto, ICUBE-UTM, Mississauga, ON L5L 1C6, Canada
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| | - M. Azizur Rahman
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; (S.G.); (H.E.)
- A.R. Environmental Solutions, University of Toronto, ICUBE-UTM, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
10
|
In vitro investigation of the genotoxicity of portimine, a cyclic imine toxin produced by the dinoflagellate Vulcanodinium rugosum, on human hepatic HepaRG cells. Toxicol In Vitro 2021; 73:105125. [PMID: 33631200 DOI: 10.1016/j.tiv.2021.105125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022]
Abstract
Portimine, a recently identified cyclic imine produced by the dinoflagellate Vulcanodinium rugosum, has been described as a potent apoptotic agent in contrast to most of the cyclic imines that are well-known to be neurological toxins. As apoptosis can be a consequence of a high level of DNA lesions, we investigated the responses of portimine on several endpoints aimed at detecting DNA damage in the hepatic cell line HepaRG. Portimine induced phosphorylation of H2AX, which could possibly be consistent with the previously published induction of apoptosis with this toxin. In addition, detection of apoptosis through the activation of caspase-3, the induction of strand breaks detected by the comet assay as well as chromosome and genome mutations using the micronucleus assay were addressed. Surprisingly, portimine treatment resulted in increases in only γH2AX in differentiated HepaRG cells whereas no effects on the other endpoints were detected. These increases in γH2AX in the absence of genotoxic effects in the other tests could indicate that portimine could possibly induce a DNA replication stress and/or that the compound can be detoxified by the HepaRG cells.
Collapse
|
11
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|