1
|
Birgersson PS, Chahal AS, Klau LJ, Holte HB, Arlov Ø, Aachmann FL. Structural characterization and immunomodulating assessment of ultra-purified water extracted fucoidans from Saccharina latissima, Alaria esculenta and Laminaria hyperborea. Carbohydr Polym 2024; 343:122448. [PMID: 39174088 DOI: 10.1016/j.carbpol.2024.122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
Fucoidans, a group of high molecular weight polysaccharides derived mainly from brown algae, are characterized by their high fucose content, degree of sulfation (DS), and intra- and interspecific structural variation. Fucoidans are increasingly recognized due to various reported bioactivities, potentially beneficial for human health. To unlock their potential use within biomedical applications, a better understanding of their structure-functional relationship is needed. To achieve this, systematic bioactivity studies based on well-defined, pure fucoidans, and the establishment of standardized, satisfactory purification protocols are required. We performed a comprehensive compositional and structural characterization of crude and ultra-purified fucoidans from three kelps: Saccharina latissima (SL), Alaria esculenta (AE) and Laminaria hyperborea (LH). Further, the complement-inhibiting activity of the purified fucoidans was assessed in a human whole blood model. The purification process led to fucoidans with higher DS and fucose and lower concentrations of other monosaccharides. Fucoidans from SL and LH resembles homofucans, while AE is a heterofucan rich in galactose with comparably lower DS. Fucoidans from SL and LH showed complement-inhibiting activity in blood and blood plasma, while no inhibition was observed for AE under the same conditions. The results emphasize the importance of high DS and possibly fucose content for fucoidans' bioactive properties.
Collapse
Affiliation(s)
- Paulina S Birgersson
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway.
| | - Aman S Chahal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3 B, 7034 Trondheim, Norway.
| | - Leesa J Klau
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway; Department of Process Technology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway.
| | - Helle Bratsberg Holte
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3 B, 7034 Trondheim, Norway
| | - Øystein Arlov
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3 B, 7034 Trondheim, Norway.
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway.
| |
Collapse
|
2
|
Xie C, Leeming MG, Lee ZJ, Yao S, van de Meene A, Suleria HAR. Physiochemical changes, metabolite discrepancies of brown seaweed-derived sulphated polysaccharides in the upper gastrointestinal tract and their effects on bioactive expression. Int J Biol Macromol 2024; 272:132845. [PMID: 38830495 DOI: 10.1016/j.ijbiomac.2024.132845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Brown seaweed-derived polysaccharides, notably fucoidan and laminarin, are known for their extensive array of bioactivities and physicochemical properties. However, the effects of upper digestive tract modification on the bioactive performance of fucoidan and laminarin fractions (FLFs) sourced from Australian native species are largely unknown. Here, the digestibility and bioaccessibility of FLFs were evaluated by tracking the dynamic changes in reducing sugar content (CR), profiling the free monosaccharide composition using LC-MS, and comparing high-performance gel permeation chromatography profile variation via LC-SEC-RI. The effects of digestive progression on bioactive performance were assessed by comparing the antioxidant and antidiabetic potential of FLFs and FLF digesta. We observed that molecular weight (Mw) decreased during gastric digestion indicating that FLF aggregates were disrupted in the stomach. During intestinal digestion, Mw gradually decreased and CR increased indicating cleavage of glycosidic bonds releasing free sugars. Although the antioxidant and antidiabetic capacities were not eliminated by the digestion progression, the bioactive performance of FLFs under a digestive environment was reduced contrasting with the same concentration level of the undigested FLFs. These data provide comprehensive information on the digestibility and bioaccessibility of FLFs, and shed light on the effects of digestive progression on bioactive expression.
Collapse
Affiliation(s)
- Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Michael G Leeming
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Zu Jia Lee
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Allison van de Meene
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Dörschmann P, Hunger F, Schroth H, Chen S, Kopplin G, Roider J, Klettner A. Effects of Fucoidans on Activated Retinal Microglia. Int J Mol Sci 2024; 25:6018. [PMID: 38892206 PMCID: PMC11173224 DOI: 10.3390/ijms25116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Sulfated marine polysaccharides, so-called fucoidans, have been shown to exhibit anti-inflammatory and immunomodulatory activities in retinal pigment epithelium (RPE). In this study, we tested the effects of different fucoidans (and of fucoidan-treated RPE cells) on retinal microglia to investigate whether its anti-inflammatory effect can be extrapolated to the innate immune cells of the retina. In addition, we tested whether fucoidan treatment influenced the anti-inflammatory effect of RPE cells on retinal microglia. Three fucoidans were tested (FVs from Fucus vesiculosus, Fuc1 and FucBB04 from Laminaria hyperborea) as well as the supernatant of primary porcine RPE treated with fucoidans for their effects on inflammatory activated (using lipopolysaccharide, LPS) microglia cell line SIM-A9 and primary porcine retinal microglia. Cell viability was detected with a tetrazolium assay (MTT), and morphology by Coomassie staining. Secretion of tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL1β) and interleukin 8 (IL8) was detected with ELISA, gene expression (NOS2 (Nitric oxide synthase 2), and CXCL8 (IL8)) with qPCR. Phagocytosis was detected with a fluorescence assay. FucBB04 and FVs slightly reduced the viability of SIM-A9 and primary microglia, respectively. Treatment with RPE supernatants increased the viability of LPS-treated primary microglia. FVs and FucBB04 reduced the size of LPS-activated primary microglia, indicating an anti-inflammatory phenotype. RPE supernatant reduced the size of LPS-activated SIM-A9 cells. Proinflammatory cytokine secretion and gene expression in SIM-A9, as well as primary microglia, were not significantly affected by fucoidans, but RPE supernatants reduced the secretion of LPS-induced proinflammatory cytokine secretion in SIM-A9 and primary microglia. The phagocytosis ability of primary microglia was reduced by FucBB04. In conclusion, fucoidans exhibited only modest effects on inflammatorily activated microglia by maintaining their cell size under stimulation, while the anti-inflammatory effect of RPE cells on microglia irrespective of fucoidan treatment could be confirmed, stressing the role of RPE in regulating innate immunity in the retina.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Florentine Hunger
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Hannah Schroth
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Sibei Chen
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Georg Kopplin
- Alginor ASA, Haraldsgata 162, 5525 Haugesund, Norway;
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| |
Collapse
|
4
|
Reis MBE, Maximo AI, Magno JM, de Lima Bellan D, Buzzo JLA, Simas FF, Rocha HAO, da Silva Trindade E, Camargo de Oliveira C. A Fucose-Containing Sulfated Polysaccharide from Spatoglossum schröederi Potentially Targets Tumor Growth Rather Than Cytotoxicity: Distinguishing Action on Human Melanoma Cell Lines. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:181-198. [PMID: 38273163 DOI: 10.1007/s10126-024-10287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Natural substances are strategic candidates for drug development in cancer research. Marine-derived molecules are of special interest due to their wide range of biological activities and sustainable large-scale production. Melanoma is a type of skin cancer that originates from genetic mutations in melanocytes. BRAF, RAS, and NF1 mutations are described as the major melanoma drivers, but approximately 20% of patients lack these mutations and are included in the triple wild-type (tripleWT) classification. Recent advances in targeted therapy directed at driver mutations along with immunotherapy have only partially improved patients' overall survival, and consequently, melanoma remains deadly when in advanced stages. Fucose-containing sulfated polysaccharides (FCSP) are potential candidates to treat melanoma; therefore, we investigated Fucan A, a FCSP from Spatoglossum schröederi brown seaweed, in vitro in human melanoma cell lines presenting different mutations. Up to 72 h Fucan A treatment was not cytotoxic either to normal melanocytes or melanoma cell lines. Interestingly, it was able to impair the tripleWT CHL-1 cell proliferation (57%), comparable to the chemotherapeutic cytotoxic drug cisplatin results, with the advantage of not causing cytotoxicity. Fucan A increased CHL-1 doubling time, an effect attributed to cell cycle arrest. Vascular mimicry, a close related angiogenesis process, was also impaired (73%). Fucan A mode of action could be related to gene expression modulation, in special β-catenin downregulation, a molecule with protagonist roles in important signaling pathways. Taken together, results indicate that Fucan A is a potential anticancer molecule and, therefore, deserves further investigation.
Collapse
Affiliation(s)
- Maíra Barbosa E Reis
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | - Jessica Maria Magno
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Daniel de Lima Bellan
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | | | - Hugo Alexandre Oliveira Rocha
- Biochemistry Department, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | | | |
Collapse
|
5
|
Dörschmann P, Thalenhorst T, Seeba C, Tischhöfer MT, Neupane S, Roider J, Alban S, Klettner A. Comparison of Fucoidans from Saccharina latissima Regarding Age-Related Macular Degeneration Relevant Pathomechanisms in Retinal Pigment Epithelium. Int J Mol Sci 2023; 24:7939. [PMID: 37175646 PMCID: PMC10178501 DOI: 10.3390/ijms24097939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Fucoidans from brown algae are described as anti-inflammatory, antioxidative, and antiangiogenic. We tested two Saccharina latissima fucoidans (SL-FRO and SL-NOR) regarding their potential biological effects against age-related macular degeneration (AMD). Primary porcine retinal pigment epithelium (RPE), human RPE cell line ARPE-19, and human uveal melanoma cell line OMM-1 were used. Cell survival was assessed in tetrazolium assay (MTT). Oxidative stress assays were induced with erastin or H2O2. Supernatants were harvested to assess secreted vascular endothelial growth factor A (VEGF-A) in ELISA. Barrier function was assessed by measurement of trans-epithelial electrical resistance (TEER). Protectin (CD59) and retinal pigment epithelium-specific 65 kDa protein (RPE65) were evaluated in western blot. Polymorphonuclear elastase and complement inhibition assays were performed. Phagocytosis of photoreceptor outer segments was tested in a fluorescence assay. Secretion and expression of proinflammatory cytokines were assessed with ELISA and real-time PCR. Fucoidans were chemically analyzed. Neither toxic nor antioxidative effects were detected in ARPE-19 or OMM-1. Interleukin 8 gene expression was slightly reduced by SL-NOR but induced by SL-FRO in RPE. VEGF secretion was reduced in ARPE-19 by SL-FRO and in RPE by both fucoidans. Polyinosinic:polycytidylic acid induced interleukin 6 and interleukin 8 secretion was reduced by both fucoidans in RPE. CD59 expression was positively influenced by fucoidans, and they exhibited a complement and elastase inhibitory effect in cell-free assay. RPE65 expression was reduced by SL-NOR in RPE. Barrier function of RPE was transiently reduced. Phagocytosis ability was slightly reduced by both fucoidans in primary RPE but not in ARPE-19. Fucoidans from Saccharina latissima, especially SL-FRO, are promising agents against AMD, as they reduce angiogenic cytokines and show anti-inflammatory and complement inhibiting properties; however, potential effects on gene expression and RPE functions need to be considered for further research.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Tabea Thalenhorst
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Charlotte Seeba
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | | | - Sandesh Neupane
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Susanne Alban
- Pharmaceutical Institute, University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| |
Collapse
|
6
|
Dörschmann P, Akkurt H, Kopplin G, Mikkelsen MD, Meyer AS, Roider J, Klettner A. Establishment of specific age-related macular degeneration relevant gene expression panels using porcine retinal pigment epithelium for assessing fucoidan bioactivity. Exp Eye Res 2023; 231:109469. [PMID: 37037364 DOI: 10.1016/j.exer.2023.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE Age-related macular degeneration (AMD) is the leading cause of severe vision loss in industrialized nations. Important factors in pathogenesis are oxidative stress, inflammation, and, in the wet form of AMD, angiogenesis. Fucoidans, sulfated polysaccharides from brown algae, may have antioxidant, anti-inflammatory, and antiangiogenic effects. In this study, we established specific gene expression panels for inflammation, oxidative stress and angiogenesis in porcine retinal pigment epithelium (RPE), and investigated the effect of fucoidans on gene expression under different noxious agents. METHODS Primary porcine RPE cells cultured for at least 14 days were used. Using viability assays with tetrazolium bromide and real-time polymerase chain reaction of marker genes, positive controls were established for appropriate concentrations and exposure times of selected noxious agents (lipopolysaccharide (LPS), H2O2, CoCl2). Three different AMD relevant gene panels specific for porcine RPE for inflammation, oxidative stress, and angiogenesis were established, and the influence of fucoidans (mainly Fucus vesiculosus; FV) on gene expression was investigated. RESULTS The following was shown by gene expression analyses: (1) Inflammation panel: Expression of 18 genes was affected under LPS (three days). Among them, LPS increased genes for interleukin 1 receptor 2, interleukin 8, cyclooxygenase-2 and vascular cell adhesion protein 1 expression which were diminished when FV was present. (2) Oxidative stress panel: Under stimulation of H2O2 (one day) and LPS (one day), expression of a total of 15 genes was affected. LPS induced increase in genes for superoxide dismutase-1, C-X-C motif chemokine 10, and CC chemokine ligand-5 expression was not detected when FV was present. (3) Angiogenesis panel: Under stimulation with CoCl2 (three days) expression of six genes was affected, with the increase of genes for angiopoietin 2, vascular endothelial growth factor receptor-1, and follistatin being diminished when FV was present. CONCLUSION Three specific gene expression panels for porcine RPE that map genes for three of the major pathological factors of AMD, inflammation, oxidative stress, and angiogenesis, were established. Further, we demonstrated that fucoidans can reduce stress related gene activation in all of these three major pathogenic pathways. This study is another indication that fucoidans can act on different pathomechanisms of AMD simultaneously, which provides further evidence for fucoidans as a possible drug for treatment and prevention of AMD.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Kiel University, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany.
| | - Hubeydullah Akkurt
- Kiel University, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Georg Kopplin
- Alginor ASA, Haraldsgata 162, 5525, Haugesund, Norway
| | | | - Anne S Meyer
- Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Johann Roider
- Kiel University, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| | - Alexa Klettner
- Kiel University, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus B2, 24105, Kiel, Germany
| |
Collapse
|
7
|
Dörschmann P, Seeba C, Thalenhorst T, Roider J, Klettner A. Anti-inflammatory properties of antiangiogenic fucoidan in retinal pigment epithelium cells. Heliyon 2023; 9:e15202. [PMID: 37123974 PMCID: PMC10130777 DOI: 10.1016/j.heliyon.2023.e15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease in which angiogenesis, oxidative stress and inflammation are important contributing factors. In this study, we investigated the anti-inflammatory effects of a fucoidan from the brown algae Fucus vesiculosus (FV) in primary porcine RPE cells. Inflammation was induced by lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (Poly I:C), Pam2CSK4 (Pam), or tumor necrosis factor alpha (TNF-α). Cell viability was tested with thiazolyl blue tetrazolium bromide (MTT) test, barrier function by measuring transepithelial electric resistance (TEER), interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion in ELISA, retinal pigment epithelium-specific 65 kDa protein (RPE65) and protectin (CD59) expression in Western blot, gene expression with quantitative polymerase chain reaction (qPCR) (IL6, IL8, MERTK, PIK3CA), and phagocytotic activity in a microscopic assay. FV fucoidan did not influence RPE cell viability. FV fucoidan reduced the Poly I:C proinflammatory cytokine secretion of IL-6 and IL-8. In addition, it decreased the expression of IL-6 and IL-8 in RT-PCR. LPS and TNF-α reduced the expression of CD59 in Western blot, this reduction was lost under FV fucoidan treatment. Also, LPS and TNF-α reduced the expression of visual cycle protein RPE65, this reduction was again lost under FV fucoidan treatment. Furthermore, the significant reduction of barrier function after Poly I:C stimulation is ameliorated by FV fucoidan. Concerning phagocytosis, however, the inflammation-induced reduction was not improved by FV fucoidan. FV and proinflammatory milieu did not relevantly influence phagocytosis relevant gene expression either. In conclusion, we show that fucoidan from FV can reduce proinflammatory stimulation in RPE induced by toll-like receptor 3 (TLR-3) activation and is of high interest as a potential compound for early AMD treatment.
Collapse
|
8
|
Jayawardhana H, Lee HG, Liyanage N, Nagahawatta D, Ryu B, Jeon YJ. Structural characterization and anti-inflammatory potential of sulfated polysaccharides from Scytosiphon lomentaria; attenuate inflammatory signaling pathways. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
9
|
Hsieh CY, Lin JN, Kang TY, Wen YH, Yu SH, Wu CC, Wu HP. Otoprotective Effects of Fucoidan Reduce Cisplatin-Induced Ototoxicity in Mouse Cochlear UB/OC-2 Cells. Int J Mol Sci 2023; 24:ijms24043561. [PMID: 36834972 PMCID: PMC9959567 DOI: 10.3390/ijms24043561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Cisplatin is a widely used standard chemotherapy for various cancers. However, cisplatin treatment is associated with severe ototoxicity. Fucoidan is a complex sulfated polysaccharide mainly derived from brown seaweeds, and it shows multiple bioactivities such as antimicrobial, anti-inflammatory, anticancer, and antioxidant activities. Despite evidence of the antioxidant effects of fucoidan, research on its otoprotective effects remains limited. Therefore, the present study investigated the otoprotective effects of fucoidan in vitro using the mouse cochlear cell line UB/OC-2 to develop new strategies to attenuate cisplatin-induced ototoxicity. We quantified the cell membrane potential and analyzed regulators and cascade proteins in the apoptotic pathway. Mouse cochlear UB/OC-2 cells were pre-treated with fucoidan before cisplatin exposure. The effects on cochlear hair cell viability, mitochondrial function, and apoptosis-related proteins were determined via flow cytometry, Western blot analysis, and fluorescence staining. Fucoidan treatment reduced cisplatin-induced intracellular reactive oxygen species production, stabilized mitochondrial membrane potential, inhibited mitochondrial dysfunction, and successfully protected hair cells from apoptosis. Furthermore, fucoidan exerted antioxidant effects against oxidative stress by regulating the Nrf2 pathway. Therefore, we suggest that fucoidan may represent a potential therapeutic agent for developing a new otoprotective strategy.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Jia-Ni Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Ting-Ya Kang
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Yu-Hsuan Wen
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Department of Otolaryngology, Head and Neck Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970473, Taiwan
| | - Szu-Hui Yu
- Department of Music, Tainan University of Technology, Tainan 710302, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300195, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Dörschmann P, Kopplin G, Roider J, Klettner A. Interaction of High-Molecular Weight Fucoidan from Laminaria hyperborea with Natural Functions of the Retinal Pigment Epithelium. Int J Mol Sci 2023; 24:2232. [PMID: 36768552 PMCID: PMC9917243 DOI: 10.3390/ijms24032232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Fucoidans are polysaccharides and constituents of cell walls of brown algae such as Laminaria hyperborea (LH). They exhibit promising effects regarding age-related macular degeneration (AMD). However, the safety of this compound needs to be assured. The focus of this study lies on influences of an LH fucoidan on the retinal pigment epithelium (RPE). The high-molecular weight LH fucoidan Fuc1 was applied to primary porcine RPE cells, and a tetrazolium (MTT) cell viability assay was conducted. Further tests included a scratch assay to measure wound healing, Western blotting to measure expression of retinal pigment epithelium-specific 65 kDa protein (RPE65), as well as immunofluorescence to measure uptake of opsonized fluorescence beads into RPE cells. Lipopolysaccharide was used to proinflammatorily activate the RPE, and interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion was measured. RPE/choroid cultures were used to assess vascular endothelial growth factor (VEGF) secretion. Real-time polymerase chain reaction (real-time PCR) was performed to detect the gene expression of 91 different genes in a specific porcine RPE gene array. Fuc1 slightly reduced wound healing, but did not influence cell viability, phagocytosis or RPE65 expression. Fuc1 lowered IL-6, IL-8 and VEGF secretion. Furthermore, Fuc1 did not change tested RPE genes. In conclusion, Fuc1 does not impair RPE cellular functions and shows antiangiogenic and anti-inflammatory activities, which indicates its safety and strengthens its suitability concerning ocular diseases.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Georg Kopplin
- Alginor ASA, Haraldsgata 162, 5525 Haugesund, Norway
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| |
Collapse
|
11
|
Liu WS, Liu Y, Gao J, Zheng H, Lu ZM, Li M. Biomembrane-Based Nanostructure- and Microstructure-Loaded Hydrogels for Promoting Chronic Wound Healing. Int J Nanomedicine 2023; 18:385-411. [PMID: 36703725 PMCID: PMC9871051 DOI: 10.2147/ijn.s387382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Wound healing is a complex and dynamic process, and metabolic disturbances in the microenvironment of chronic wounds and the severe symptoms they cause remain major challenges to be addressed. The inherent properties of hydrogels make them promising wound dressings. In addition, biomembrane-based nanostructures and microstructures (such as liposomes, exosomes, membrane-coated nanostructures, bacteria and algae) have significant advantages in the promotion of wound healing, including special biological activities, flexible drug loading and targeting. Therefore, biomembrane-based nanostructure- and microstructure-loaded hydrogels can compensate for their respective disadvantages and combine the advantages of both to significantly promote chronic wound healing. In this review, we outline the loading strategies, mechanisms of action and applications of different types of biomembrane-based nanostructure- and microstructure-loaded hydrogels in chronic wound healing.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zheng-Mao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China,Zheng-Mao Lu, Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China, Tel +086-13651688596, Fax +086-021-31161589, Email
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China,Correspondence: Meng Li, Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China, Tel +086-15000879978, Fax +086-021-23271699, Email
| |
Collapse
|
12
|
Sulfated Polysaccharides from Macroalgae-A Simple Roadmap for Chemical Characterization. Polymers (Basel) 2023; 15:polym15020399. [PMID: 36679279 PMCID: PMC9861475 DOI: 10.3390/polym15020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The marine environment presents itself as a treasure chest, full of a vast diversity of organisms yet to be explored. Among these organisms, macroalgae stand out as a major source of natural products due to their nature as primary producers and relevance in the sustainability of marine ecosystems. Sulfated polysaccharides (SPs) are a group of polymers biosynthesized by macroalgae, making up part of their cell wall composition. Such compounds are characterized by the presence of sulfate groups and a great structural diversity among the different classes of macroalgae, providing interesting biotechnological and therapeutical applications. However, due to the high complexity of these macromolecules, their chemical characterization is a huge challenge, driving the use of complementary physicochemical techniques to achieve an accurate structural elucidation. This review compiles the reports (2016-2021) of state-of-the-art methodologies used in the chemical characterization of macroalgae SPs aiming to provide, in a simple way, a key tool for researchers focused on the structural elucidation of these important marine macromolecules.
Collapse
|
13
|
Wagner N, Safaei A, Vogt PA, Gammel MR, Dick HB, Schnichels S, Joachim SC. Coculture of ARPE-19 Cells and Porcine Neural Retina as an Ex Vivo Retinal Model. Altern Lab Anim 2022; 50:27-44. [PMID: 35302924 DOI: 10.1177/02611929221082662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neural retinal organ cultures are used to investigate ocular pathomechanisms. However, these cultures lack the essential retinal pigment epithelium (RPE) cells, which are part of the actual in vivo retina. To simulate a more realistic ex vivo model, porcine neural retina explants were cocultured with ARPE-19 cells (ARPE-19 group), which are derived from human RPE. To identify whether the entire cells or just the cell factors are necessary, in a second experimental group, porcine neural retina explants were cultured with medium derived from ARPE-19 cells (medium group). Individually cultured neural retina explants served as controls (control group). After 8 days, all neural retinas were analysed to evaluate retinal thickness, photoreceptors, microglia, complement factors and synapses (n = 6-8 per group). The neural retina thickness in the ARPE-19 group was significantly better preserved than in the control group (p = 0.031). Also, the number of L-cones was higher in the ARPE-19 group, as compared to the control group (p < 0.001). Furthermore, the ARPE-19 group displayed an increased presynaptic glutamate uptake (determined via vGluT1 labelling) and enhanced post-synaptic density (determined via PSD-95 labelling). Combined Iba1 and iNOS detection revealed only minor effects of ARPE-19 cells on microglial activity, with a slight downregulation of total microglia activity apparent in the medium group. Likewise, only minor beneficial effects on photoreceptors and synaptic structure were found in the medium group. This novel system offers the opportunity to investigate interactions between the neural retina and RPE cells, and suggests that the inclusion of a RPE feeder layer has beneficial effects on the ex vivo maintenance of neural retina. By modifying the culture conditions, this coculture model allows a better understanding of photoreceptor death and photoreceptor-RPE cell interactions in retinal diseases.
Collapse
Affiliation(s)
- Natalie Wagner
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| | - Armin Safaei
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| | - Pia A Vogt
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| | - Maurice R Gammel
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| | - Sven Schnichels
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, 9142Ruhr-University Bochum, Germany
| |
Collapse
|
14
|
Discovering the Potential of Natural Antioxidants in Age-Related Macular Degeneration: A Review. Pharmaceuticals (Basel) 2022; 15:ph15010101. [PMID: 35056157 PMCID: PMC8777838 DOI: 10.3390/ph15010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease associated with anatomical changes in the inner retina. Despite tremendous advances in clinical care, there is currently no cure for AMD. This review aims to evaluate the published literature on the therapeutic roles of natural antioxidants in AMD. A literature search of PubMed, Web of Science and Google Scholar for peer-reviewed articles published between 1 January 2011 and 31 October 2021 was undertaken. A total of 82 preclinical and 18 clinical studies were eligible for inclusion in this review. We identified active compounds, carotenoids, extracts and polysaccharides, flavonoids, formulations, vitamins and whole foods with potential therapeutic roles in AMD. We evaluated the integral cellular signaling pathways including the activation of antioxidant pathways and angiogenesis pathways orchestrating their mode of action. In conclusion, we examined the therapeutic roles of natural antioxidants in AMD which warrant further study for application in clinical practice. Our current understanding is that natural antioxidants have the potential to improve or halt the progression of AMD, and tailoring therapeutics to the specific disease stages may be the key to preventing irreversible vision loss.
Collapse
|
15
|
Ma WP, Li HH, Liu M, Liu HB. Effects of simulated digestion in vitro on the structure and macrophages activation of fucoidan from Sargassum fusiforme. Carbohydr Polym 2021; 272:118484. [PMID: 34420743 DOI: 10.1016/j.carbpol.2021.118484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/11/2023]
Abstract
Molecular size and spatial structure affect the bioactivities of polysaccharides. SFF is a fucoidan extracted from Sargassum fusiforme. The possible changes of SFF affected by gastrointestinal tract and subsequently changes of its physicochemical property or its bioactivity have yet to be systematically investigated. Our results showed that DSFF, the gastrointestinal digestion product of SFF, has increased reducing sugar content, increased proportion of low molecular weight components, and a more clustered island-like morphology. Both SFF and DSFF activate RAW 264.7 macrophages evidenced by the increasing level of NO, intracellular ROS, and macrophages cytokines. Further investigation showed that DSFF induced M1 phenotype polarization in RAW 264.7 cells. DSFF also showed stronger macrophage activation and phenotype polarization than SFF. Our present work showed that SFF could be digested by simulated gastrointestinal environment in vitro and the digested product DSFF showed higher efficiency in macrophages activation and phenotype polarization.
Collapse
Affiliation(s)
- Wei-Ping Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hai-Hua Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Ming Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong-Bing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Dörschmann P, Apitz S, Hellige I, Neupane S, Alban S, Kopplin G, Ptak S, Fretté X, Roider J, Zille M, Klettner A. Evaluation of the Effects of Fucoidans from Fucus Species and Laminaria hyperborea against Oxidative Stress and Iron-Dependent Cell Death. Mar Drugs 2021; 19:557. [PMID: 34677456 PMCID: PMC8538076 DOI: 10.3390/md19100557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Fucoidans are algal polysaccharides that exhibit protective properties against oxidative stress. The aim of this study was to investigate different fucoidans from brown seaweeds for their ability to protect against iron-dependent oxidative stress (ferroptosis), a main hallmark of retinal and brain diseases, including hemorrhage. We investigated five new high-molecular weight fucoidan extracts from Fucus vesiculosus, F. serratus, and F. distichus subsp. evanescens, a previously published Laminaria hyperborean extract, and commercially available extracts from F. vesiculosus and Undaria pinnatifida. We induced oxidative stress by glutathione depletion (erastin) and H2O2 in four retinal and neuronal cell lines as well as primary cortical neurons. Only extracts from F. serratus, F. distichus subsp. evanescens, and Laminaria hyperborea were partially protective against erastin-induced cell death in ARPE-19 and OMM-1 cells, while none of the extracts showed beneficial effects in neuronal cells. Protective fucoidans also attenuated the decrease in protein levels of the antioxidant enzyme GPX4, a key regulator of ferroptosis. This comprehensive analysis demonstrates that the antioxidant abilities of fucoidans may be cell type-specific, besides depending on the algal species and extraction method. Future studies are needed to further characterize the health-benefiting effects of fucoidans and to determine the exact mechanism underlying their antioxidative abilities.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (P.D.); (S.A.); (J.R.)
| | - Sarah Apitz
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (P.D.); (S.A.); (J.R.)
| | - Inga Hellige
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Mönkhofer Weg 239a, 23562 Lübeck, Germany; (I.H.); (M.Z.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, Mönkhofer Weg 239a, 23562 Lübeck, Germany
| | - Sandesh Neupane
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany; (S.N.); (S.A.)
| | - Susanne Alban
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany; (S.N.); (S.A.)
| | - Georg Kopplin
- Alginor ASA, Haraldsgata 162, 5525 Haugesund, Norway;
| | - Signe Ptak
- Department of Chemical Engineering, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (S.P.); (X.F.)
| | - Xavier Fretté
- Department of Chemical Engineering, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (S.P.); (X.F.)
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (P.D.); (S.A.); (J.R.)
| | - Marietta Zille
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Mönkhofer Weg 239a, 23562 Lübeck, Germany; (I.H.); (M.Z.)
- Institute for Medical and Marine Biotechnology, University of Lübeck, Mönkhofer Weg 239a, 23562 Lübeck, Germany
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, UZA II, Althanstraße 14, 1090 Vienna, Austria
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (P.D.); (S.A.); (J.R.)
| |
Collapse
|
17
|
Krueger K, Boehme E, Klettner AK, Zille M. The potential of marine resources for retinal diseases: a systematic review of the molecular mechanisms. Crit Rev Food Sci Nutr 2021; 62:7518-7560. [PMID: 33970706 DOI: 10.1080/10408398.2021.1915242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We rely on vision more than on any other sense to obtain information about our environment. Hence, the loss or even impairment of vision profoundly affects our quality of life. Diet or food components have already demonstrated beneficial effects on the development of retinal diseases. Recently, there has been a growing interest in resources from marine animals and plants for the prevention of retinal diseases through nutrition. Especially fish intake and omega-3 fatty acids have already led to promising results, including associations with a reduced incidence of retinal diseases. However, the underlying molecular mechanisms are insufficiently explained. The aim of this review was to summarize the known mechanistic effects of marine resources on the pathophysiological processes in retinal diseases. We performed a systematic literature review following the PRISMA guidelines and identified 107 studies investigating marine resources in the context of retinal diseases. Of these, 46 studies described the underlying mechanisms including anti-inflammatory, antioxidant, antiangiogenic/vasoprotective, cytoprotective, metabolic, and retinal function effects, which we critically summarize. We further discuss perspectives on the use of marine resources for human nutrition to prevent retinal diseases with a particular focus on regulatory aspects, health claims, safety, and bioavailability.
Collapse
Affiliation(s)
- Kristin Krueger
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Elke Boehme
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Alexa Karina Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Quincke Research Center, Kiel, Germany
| | - Marietta Zille
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Sichert A, Le Gall S, Klau LJ, Laillet B, Rogniaux H, Aachmann FL, Hehemann JH. Ion-exchange purification and structural characterization of five sulfated fucoidans from brown algae. Glycobiology 2021; 31:352-357. [PMID: 32651947 PMCID: PMC8091464 DOI: 10.1093/glycob/cwaa064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Fucoidans are a diverse class of sulfated polysaccharides integral to the cell wall of brown algae, and due to their various bioactivities, they are potential drugs. Standardized work with fucoidans is required for structure-function studies, but remains challenging since available fucoidan preparations are often contaminated with other algal compounds. Additionally, fucoidans are structurally diverse depending on species and season, urging the need for standardized purification protocols. Here, we use ion-exchange chromatography to purify different fucoidans and found a high structural diversity between fucoidans. Ion-exchange chromatography efficiently removes the polysaccharides alginate and laminarin and other contaminants such as proteins and phlorotannins across a broad range of fucoidans from major brown algal orders including Ectocarpales, Laminariales and Fucales. By monomer composition, linkage analysis and NMR characterization, we identified galacturonic acid, glucuronic acid and O-acetylation as new structural features of certain fucoidans and provided a novel structure of fucoidan from Durvillaea potatorum with α-1,3-linked fucose backbone and β-1,6 and β-1,3 galactose branches. This study emphasizes the use of standardized ion-exchange chromatography to obtain defined fucoidans for subsequent molecular studies.
Collapse
Affiliation(s)
- Andreas Sichert
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359 Bremen, Germany
| | - Sophie Le Gall
- INRAE, UR BIA (Biopolymers Interactions Assemblies), F-44316 Nantes, France
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Leesa Jane Klau
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Brigitte Laillet
- INRAE, UR BIA (Biopolymers Interactions Assemblies), F-44316 Nantes, France
| | - Hélène Rogniaux
- INRAE, UR BIA (Biopolymers Interactions Assemblies), F-44316 Nantes, France
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Finn Lillelund Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- University of Bremen, Center for Marine Environmental Sciences, MARUM, 28359 Bremen, Germany
| |
Collapse
|
19
|
Dörschmann P, Schmitt C, Bittkau KS, Neupane S, Synowitz M, Roider J, Alban S, Held-Feindt J, Klettner A. Evaluation of a Brown Seaweed Extract from Dictyosiphon foeniculaceus as a Potential Therapeutic Agent for the Treatment of Glioblastoma and Uveal Melanoma. Mar Drugs 2020; 18:E625. [PMID: 33302412 PMCID: PMC7762554 DOI: 10.3390/md18120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Ingredients of brown seaweed like fucoidans are often described for their beneficial biological effects, that might be interesting for a medical application. In this study, we tested an extract from Dictyosiphon foeniculaceus (DF) to evaluate the effects in glioblastoma and uveal melanoma, looking for a possible anti-cancer treatment. We investigated toxicity, VEGF (vascular endothelial growth factor) secretion and gene expression of tumor and non-tumor cells. SVGA (human fetal astrocytes), the human RPE (retinal pigment epithelium) cell line ARPE-19, the tumor cell line OMM-1 (human uveal melanoma), and two different human primary glioblastoma cultures (116-14 and 118-14) were used. Tests for cell viability were conducted with MTS-Assay (3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), and the proliferation rate was determined with cell counting. VEGF secretion was assessed with ELISA (enzyme-linked immunosorbent assay). The gene expression of VEGF receptor 1 (VEGFR1), VEGF receptor 2 (VEGFR2) and VEGF-A was determined with real-time qPCR (quantitative polymerase chain reaction). DF lowered the cell viability of OMM-1. Proliferation rates of ARPE-19 and OMM-1 were decreased. The VEGF secretion was inhibited in ARPE-19 and OMM-1, whereas it was increased in SVGA and 116-14. The expression of VEGFR1 was absent and not influenced in OMM-1 and ARPE-19. VEGFR2 expression was lowered in 116-14 after 24 h, whereas VEGF-A was increased in 118-14 after 72 h. The extract lowered cell viability slightly and was anti-proliferative depending on the cell type investigated. VEGF was heterogeneously affected. The results in glioblastoma were not promising, but the anti-tumor properties in OMM-1 could make them interesting for further research concerning cancer diseases in the human eye.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (J.R.); (A.K.)
| | | | - Kaya Saskia Bittkau
- Pharmaceutical Institute, Kiel University, D-24118 Kiel, Germany; (K.S.B.); (S.N.); (S.A.)
| | - Sandesh Neupane
- Pharmaceutical Institute, Kiel University, D-24118 Kiel, Germany; (K.S.B.); (S.N.); (S.A.)
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (M.S.); (J.H.-F.)
| | - Johann Roider
- Department of Ophthalmology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (J.R.); (A.K.)
| | - Susanne Alban
- Pharmaceutical Institute, Kiel University, D-24118 Kiel, Germany; (K.S.B.); (S.N.); (S.A.)
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (M.S.); (J.H.-F.)
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (J.R.); (A.K.)
| |
Collapse
|
20
|
Dörschmann P, Klettner A. Fucoidans as Potential Therapeutics for Age-Related Macular Degeneration-Current Evidence from In Vitro Research. Int J Mol Sci 2020; 21:E9272. [PMID: 33291752 PMCID: PMC7729934 DOI: 10.3390/ijms21239272] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is the major reason for blindness in the industrialized world with limited treatment options. Important pathogenic pathways in AMD include oxidative stress and vascular endothelial growth factor (VEGF) secretion. Due to their bioactivities, fucoidans have recently been suggested as potential therapeutics. This review gives an overview of the recent developments in this field. Recent studies have characterized several fucoidans from different species, with different molecular characteristics and different extraction methods, in regard to their ability to reduce oxidative stress and inhibit VEGF in AMD-relevant in vitro systems. As shown in these studies, fucoidans exhibit a species dependency in their bioactivity. Additionally, molecular properties such as molecular weight and fucose content are important issues. Fucoidans from Saccharina latissima and Laminaria hyperborea were identified as the most promising candidates for further development. Further research is warranted to establish fucoidans as potential therapeutics for AMD.
Collapse
Affiliation(s)
| | - Alexa Klettner
- Department of Ophthalmology, Campus Kiel, University Medical Center Schleswig-Holstein UKSH, 24105 Kiel, Germany;
| |
Collapse
|
21
|
Co-creating Science Commercialization Opportunities for Blue Biotechnologies: The FucoSan Project. SUSTAINABILITY 2020. [DOI: 10.3390/su12145578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the experience of the FucoSan InterReg project that had the ambition to generate commercialization opportunities for biotechnology research in a marine environment. Fucoidan, a promising biomarine polysaccharide extracted from seaweed, offers a broad array of potential applications; however, the supporting innovation value chain is still under development. We explore how the use of business modelling tools can contribute to building a shared understanding of commercialization opportunities across a diverse range of research and development actors. We analyze data (interviews, workshops, and surveys) from a German-Danish network of actors involved in the FucoSan InterReg project to identify how the tools contribute to setting up a base to support future activities across a potential innovation value chain. The results point towards the direct and indirect positive effects of engaging in the co-creation of a shared understanding of the functionality and possibilities of promising biomarine products. The findings support the idea that interdisciplinary and multilateral interactions help actors to identify the necessary connections and interdependencies to build a sustainability-driven innovation value chain.
Collapse
|
22
|
Dörschmann P, Mikkelsen MD, Thi TN, Roider J, Meyer AS, Klettner A. Effects of a Newly Developed Enzyme-Assisted Extraction Method on the Biological Activities of Fucoidans in Ocular Cells. Mar Drugs 2020; 18:E282. [PMID: 32466624 PMCID: PMC7344579 DOI: 10.3390/md18060282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Fucoidans from brown seaweeds are promising substances as potential drugs against age-related macular degeneration (AMD). The heterogeneity of fucoidans requires intensive research in order to find suitable species and extraction methods. Ten different fucoidan samples extracted enzymatically from Laminaria digitata (LD), Saccharina latissima (SL) and Fucus distichus subsp. evanescens (FE) were tested for toxicity, oxidative stress protection and VEGF (vascular endothelial growth factor) inhibition. For this study crude fucoidans were extracted from seaweeds using different enzymes and SL fucoidans were further separated into three fractions (SL_F1-F3) by ion-exchange chromatography (IEX). Fucoidan composition was analyzed by high performance anion exchange chromatography (HPAEC) after acid hydrolysis. The crude extracts contained alginate, while two of the fractionated SL fucoidans SL_F2 and SL_F3 were highly pure. Cell viability was assessed with an 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay in OMM-1 and ARPE-19. Protective effects were investigated after 24 h of stress insult in OMM-1 and ARPE-19. Secreted VEGF was analyzed via ELISA (enzyme-linked immunosorbent assay) in ARPE-19 cells. Fucoidans showed no toxic effects. In OMM-1 SL_F2 and several FE fucoidans were protective. LD_SiAT2 (Cellic®CTec2 + Sigma-Aldrich alginate lyase), FE_SiAT3 (Cellic® CTec3 + Sigma-Aldrich alginate lyase), SL_F2 and SL_F3 inhibited VEGF with the latter two as the most effective. We could show that enzyme treated fucoidans in general and the fractionated SL fucoidans SL_F2 and SL_F3 are very promising for beneficial AMD relevant biological activities.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (J.R.); (A.K.)
| | - Maria Dalgaard Mikkelsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (M.D.M.); (T.N.T.); (A.S.M.)
| | - Thuan Nguyen Thi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (M.D.M.); (T.N.T.); (A.S.M.)
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (J.R.); (A.K.)
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark; (M.D.M.); (T.N.T.); (A.S.M.)
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany; (J.R.); (A.K.)
| |
Collapse
|