1
|
Prioritization of Microorganisms Isolated from the Indian Ocean Sponge Scopalina hapalia Based on Metabolomic Diversity and Biological Activity for the Discovery of Natural Products. Microorganisms 2023; 11:microorganisms11030697. [PMID: 36985270 PMCID: PMC10057949 DOI: 10.3390/microorganisms11030697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Despite considerable advances in medicine and technology, humanity still faces many deadly diseases such as cancer and malaria. In order to find appropriate treatments, the discovery of new bioactive substances is essential. Therefore, research is now turning to less frequently explored habitats with exceptional biodiversity such as the marine environment. Many studies have demonstrated the therapeutic potential of bioactive compounds from marine macro- and microorganisms. In this study, nine microbial strains isolated from an Indian Ocean sponge, Scopalina hapalia, were screened for their chemical potential. The isolates belong to different phyla, some of which are already known for their production of secondary metabolites, such as the actinobacteria. This article aims at describing the selection method used to identify the most promising microorganisms in the field of active metabolites production. The method is based on the combination of their biological and chemical screening, coupled with the use of bioinformatic tools. The dereplication of microbial extracts and the creation of a molecular network revealed the presence of known bioactive molecules such as staurosporin, erythromycin and chaetoglobosins. Molecular network exploration indicated the possible presence of novel compounds in clusters of interest. The biological activities targeted in the study were cytotoxicity against the HCT-116 and MDA-MB-231 cell lines and antiplasmodial activity against Plasmodium falciparum 3D7. Chaetomium globosum SH-123 and Salinispora arenicola SH-78 strains actually showed remarkable cytotoxic and antiplasmodial activities, while Micromonospora fluostatini SH-82 demonstrated promising antiplasmodial effects. The ranking of the microorganisms as a result of the different screening steps allowed the selection of a promising strain, Micromonospora fluostatini SH-82, as a premium candidate for the discovery of new drugs.
Collapse
|
2
|
The Genus Chrysosporium: A Potential Producer of Natural Products. FERMENTATION 2023. [DOI: 10.3390/fermentation9010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chrysosporium, a genus of ascomycete fungi in the family Onygenaceae, has the ability to produce abundant new bioactive natural products, providing a structural foundation in drug development. This review includes the sources, distribution, biological activities and structural characteristics of the compounds isolated from Chrysosporium from 1984 to 2021. The results show that 66% of the compounds isolated from Chrysosporium are new natural products. More than half of the Chrysosporium-isolated compounds are from marine-derived Chrysosporium. The chemical structures of Chrysosporium-derived compounds have different skeletons, which are concentrated in alkaloids, polyketides, and lactones. Eighty percent of the natural products isolated from Chrysosporium have been found to have various biological activities, including cytotoxic, antibacterial, antifungal and enzyme-inhibitory activities. These results demonstrate the potential of Chrysosporium for producing new bioactive secondary metabolites, which can be used as the structural basis for developing new drugs.
Collapse
|
3
|
Ibrahim SRM, Bagalagel AA, Diri RM, Noor AO, Bakhsh HT, Muhammad YA, Mohamed GA, Omar AM. Exploring the Activity of Fungal Phenalenone Derivatives as Potential CK2 Inhibitors Using Computational Methods. J Fungi (Basel) 2022; 8:jof8050443. [PMID: 35628699 PMCID: PMC9143076 DOI: 10.3390/jof8050443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer represents one of the most prevalent causes of global death. CK2 (casein kinase 2) activation boosted cancer proliferation and progression. Therefore, CK2 inhibition can have a crucial role in prohibiting cancer progression and enhancing apoptosis. Fungi have gained vast interest as a wealthy pool of anticancer metabolites that could particularly target various cancer progression-linked signaling pathways. Phenalenones are a unique class of secondary metabolites that possess diverse bioactivities. In the current work, the CK2 inhibitory capacity of 33 fungal phenalenones was explored using computational studies. After evaluating the usefulness of the compounds as enzyme inhibitors by ADMET prediction, the compounds were prepared for molecular docking in the CK2-α1 crystal structure (PDB: 7BU4). Molecular dynamic simulation was performed on the top two scoring compounds to evaluate their binding affinity and protein stability through a simulated physiological environment. Compound 19 had a superior binding affinity to the co-crystallized ligand (Y49). The improved affinity can be attributed to the fact that the aliphatic chain makes additional contact with Asp120 in a pocket distant from the active site.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: ; Tel.: +966-581183034
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Hussain T. Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Yosra A. Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.M.); (A.M.O.)
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.M.); (A.M.O.)
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
4
|
Ben-Dor Cohen E, Ilan M, Yarden O. The Culturable Mycobiome of Mesophotic Agelas oroides: Constituents and Changes Following Sponge Transplantation to Shallow Water. J Fungi (Basel) 2021; 7:jof7070567. [PMID: 34356947 PMCID: PMC8307482 DOI: 10.3390/jof7070567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Marine sponges harbor a diverse array of microorganisms and the composition of the microbial community has been suggested to be linked to holo-biont health. Most of the attention concerning sponge mycobiomes has been given to sponges present in shallow depths. Here, we describe the presence of 146 culturable mycobiome taxa isolated from mesophotic niche (100 m depth)-inhabiting samples of Agelas oroides, in the Mediterranean Sea. We identify some potential in vitro interactions between several A. oroides-associated fungi and show that sponge meso-hyl extract, but not its predominantly collagen-rich part, is sufficient to support hyphal growth. We demonstrate that changes in the diversity of culturable mycobiome constituents occur following sponge transplantation from its original mesophotic habitat to shallow (10 m) waters, where historically (60 years ago) this species was found. We conclude that among the 30 fungal genera identified as associated with A. oroides, Aspergillus, Penicillium and Trichoderma constitute the core mycobiome of A. oroides, and that they persist even when the sponge is transplanted to a suboptimal environment, indicative of the presence of constant, as well as dynamic, components of the sponge mycobiome. Other genera seemed more depth-related and appeared or disappeared upon host's transfer from 100 to 10 m.
Collapse
Affiliation(s)
- Eyal Ben-Dor Cohen
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.B.-D.C.); (M.I.)
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Micha Ilan
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.B.-D.C.); (M.I.)
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Correspondence:
| |
Collapse
|
5
|
Mai PY, Le Goff G, Poupon E, Lopes P, Moppert X, Costa B, Beniddir MA, Ouazzani J. Solid-Phase Extraction Embedded Dialysis (SPEED), an Innovative Procedure for the Investigation of Microbial Specialized Metabolites. Mar Drugs 2021; 19:md19070371. [PMID: 34206861 PMCID: PMC8304039 DOI: 10.3390/md19070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Solid-phase extraction embedded dialysis (SPEED technology) is an innovative procedure developed to physically separate in-situ, during the cultivation, the mycelium of filament forming microorganisms, such as actinomycetes and fungi, and the XAD-16 resin used to trap the secreted specialized metabolites. SPEED consists of an external nylon cloth and an internal dialysis tube containing the XAD resin. The dialysis barrier selects the molecular weight of the trapped compounds, and prevents the aggregation of biomass or macromolecules on the XAD beads. The external nylon promotes the formation of a microbial biofilm, making SPEED a biofilm supported cultivation process. SPEED technology was applied to the marine Streptomyces albidoflavus 19-S21, isolated from a core of a submerged Kopara sampled at 20 m from the border of a saltwater pond. The chemical space of this strain was investigated effectively using a dereplication strategy based on molecular networking and in-depth chemical analysis. The results highlight the impact of culture support on the molecular profile of Streptomyces albidoflavus 19-S21 secondary metabolites.
Collapse
Affiliation(s)
- Phuong-Y. Mai
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Géraldine Le Goff
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
| | - Erwan Poupon
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Philippe Lopes
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
| | - Xavier Moppert
- PACIFIC BIOTECH SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia; (X.M.); (B.C.)
| | - Bernard Costa
- PACIFIC BIOTECH SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia; (X.M.); (B.C.)
| | - Mehdi A. Beniddir
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Jamal Ouazzani
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
- Correspondence: ; Tel.: +33-6-82-81-65-90
| |
Collapse
|
6
|
Wang T, Zhou J, Zou J, Shi Y, Zhou W, Shao P, Yu T, Cui W, Li X, Wu X, Ye J, Yan X, Naman CB, Lazaro JEH, He S. Discovery of Cymopolyphenols A-F From a Marine Mesophotic Zone Aaptos Sponge-Associated Fungus Cymostachys sp. NBUF082. Front Microbiol 2021; 12:638610. [PMID: 33692772 PMCID: PMC7937805 DOI: 10.3389/fmicb.2021.638610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Mesophotic coral ecosystems (MCEs) have complex but understudied biodiversity, especially for natural products discovery. Untargeted metabolomics research on 80 extracts prepared from marine sponge-associated fungi, half from shallow reefs (<30 m) and half from MCEs (30–150 m), facilitated prioritization for further study a Cymostachys fungus from a 103 m deep Aaptos sponge. LC-MS target-directed isolation yielded a series of new compounds, cymopolyphenols A−F (1–6), and two known phenylspirodrimanes, F1839-I (7) and stachybotrylactone (8). This is the first report of natural products from the recently described genus, Cymostachys. Compounds 1–6 and 8 contain a dihydroisobenzofuran moiety, and 4–6 are low-order polymers of 1 with novel scaffolds. The structures of the compounds were established by spectroscopic and spectrometric data interpretation, with further support from X-ray crystallography studies of 3 and 4. Compound 3 undergoes facile racemization in solution and was found to crystalize as a racemic mixture. Compound 5 was also obtained in racemic form, and after chiral chromatography, both separated enantiomers racemized in solution by a presumed keto-enol tautomerization. Compounds 1 and 3–6 were found to be weakly antimicrobial (MIC 16–64 μg/ml) in vitro against several Gram-positive and Gram-negative human or aquatic pathogens, compound 5 was shown to chelate iron in vitro at 10 μM, and 8 activated plant disease resistance in vivo in a transgenic model organism.
Collapse
Affiliation(s)
- Tingting Wang
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jing Zhou
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jiabin Zou
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yutong Shi
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Wenli Zhou
- College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Peng Shao
- College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Tianze Yu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaohui Li
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaojun Yan
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - C Benjamin Naman
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - J Enrico H Lazaro
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon, Philippines
| | - Shan He
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|