1
|
Yong Y, Wang S, Li L, Li R, Ahmad HN, Munawar N, Zhu J. A curcumin-crosslinked bilayer film of soy protein isolate and chitosan with enhanced antibacterial property for beef preservation and freshness monitoring. Int J Biol Macromol 2023; 247:125778. [PMID: 37437680 DOI: 10.1016/j.ijbiomac.2023.125778] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
In this study, antibacterial and antioxidant bilayer films were prepared by using curcumin (Cur) crosslinked soy rotein isolate (SPI) and chitosan (CS). Molecular docking simulations and multispectral analysis revealed that hydrogen bonding and hydrophobic interactions were the primary driving forces that promoted the self-assembly of the bilayer films. The tensile strength, the UV-blocking properties and the hydrophobicity was greatly improved of the bilayer antimicrobial films. Moreover, water vapor permeability, thermal shrinkage and opacity were all reduced significantly. In addition, the composite films with curcumin demonstrated effective antioxidant activity and a slow release characteristic. Morphology observation of the bacteria by AFM revealed that the antibacterial bilayer film had a significant damaging effect on the cell structures of S. aureus and E. coli due to the dual antibacterial effect of curcumin and chitosan. SPI + Cur-CS antimicrobial bilayer film effectively inhibited the growth of bacteria and extended the shelf life of beef. According to the findings, SPI + Cur-CS antimicrobial bilayer film can be used as an active package material for beef preservation and freshness monitoring.
Collapse
Affiliation(s)
- Yueyuan Yong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| | - Rui Li
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| |
Collapse
|
2
|
Dai H, Peng L, Wang H, Feng X, Ma L, Chen H, Yu Y, Zhu H, Zhang Y. Improved properties of gelatin films involving transglutaminase cross-linking and ethanol dehydration: The self-assembly role of chitosan and montmorillonite. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Concórdio-Reis P, Pereira JR, Alves VD, Nabais AR, Neves LA, Marques AC, Fortunato E, Moppert X, Guézennec J, Reis MA, Freitas F. Characterisation of Films Based on Exopolysaccharides from Alteromonas Strains Isolated from French Polynesia Marine Environments. Polymers (Basel) 2022; 14:4442. [PMID: 36298020 PMCID: PMC9611721 DOI: 10.3390/polym14204442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 08/24/2023] Open
Abstract
This work assessed the film-forming capacity of exopolysaccharides (EPS) produced by six Alteromonas strains recently isolated from different marine environments in French Polynesia atolls. The films were transparent and resulted in small colour alterations when applied over a coloured surface (ΔEab below 12.6 in the five different colours tested). Moreover, scanning electron microscopy showed that the EPS films were dense and compact, with a smooth surface. High water vapour permeabilities were observed (2.7-6.1 × 10-11 mol m-1 s-1 Pa-1), which are characteristic of hydrophilic polysaccharide films. The films were also characterised in terms of barrier properties to oxygen and carbon dioxide. Interestingly, different behaviours in terms of their mechanical properties under tensile tests were observed: three of the EPS films were ductile with high elongation at break (ε) (35.6-47.0%), low tensile strength at break (Ꞇ) (4.55-11.7 MPa) and low Young's modulus (εm) (10-93 MPa), whereas the other three were stiffer and more resistant with a higher Ꞇ (16.6-23.6 MPa), lower ε (2.80-5.58%), and higher εm (597-1100 MPa). These properties demonstrate the potential of Alteromonas sp. EPS films to be applied in different areas such as biomedicine, pharmaceuticals, or food packaging.
Collapse
Grants
- UIDP/04378/2020, UIDB/04378/2020, LA/P/0140/202019, UID/AGR/04129/2020, SFRH/BD/131947/2017, SFRH/BD/147518/2019, LA/P/0037/2020, UIDP/50025/2020, UIDB/50025/2020, UIDB/50006/2020, UIDP/50006/2020 Fundação para a Ciência e Tecnologia
Collapse
Affiliation(s)
- Patrícia Concórdio-Reis
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - João R. Pereira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Ana R. Nabais
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Luísa A. Neves
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana C. Marques
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Xavier Moppert
- Pacific Biotech BP 140 289, Arue Tahiti 98 701, French Polynesia
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d’Ouessant, 29280 Plouzané, France
| | - Maria A.M. Reis
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Oliveira VDS, da Cruz MM, Bezerra GS, Silva NESE, Nogueira FHA, Chaves GM, Sobrinho JLS, Mendonça-Junior FJB, Damasceno BPGDL, Converti A, de Lima ÁAN. Chitosan-Based Films with 2-Aminothiophene Derivative: Formulation, Characterization and Potential Antifungal Activity. Mar Drugs 2022; 20:103. [PMID: 35200633 PMCID: PMC8878255 DOI: 10.3390/md20020103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, films of chitosan and 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (6CN), a 2-aminothiophene derivative with great pharmacological potential, were prepared as a system for a topical formulation. 6CN-chitosan films were characterized by physicochemical analyses, such as Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electronic microscopy (SEM). Additionally, the antifungal potential of the films was evaluated in vitro against three species of Candida (C. albicans, C. tropicalis, and C. parapsilosis). The results of the FTIR and thermal analysis showed the incorporation of 6CN in the polymer matrix. In the diffractogram, the 6CN-chitosan films exhibited diffraction halos that were characteristic of amorphous structures, while the micrographs showed that 6CN particles were dispersed in the chitosan matrix, exhibiting pores and cracks on the film surface. In addition, the results of antifungal investigation demonstrated that 6CN-chitosan films were effective against Candida species showing potential for application as a new antifungal drug.
Collapse
Affiliation(s)
- Verônica da Silva Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | - Meriângela Miranda da Cruz
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | - Gabriela Suassuna Bezerra
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | - Natan Emanuell Sobral e Silva
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | - Fernando Henrique Andrade Nogueira
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | - Guilherme Maranhão Chaves
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | | | | | | | - Attilio Converti
- Department of Civil, Chemical and Environment Engineering, Pole of Chemical Engineering, University of Genoa, I-16145 Genoa, Italy
| | - Ádley Antonini Neves de Lima
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| |
Collapse
|
5
|
Zarandona I, Bengoechea C, Álvarez-Castillo E, de la Caba K, Guerrero A, Guerrero P. 3D Printed Chitosan-Pectin Hydrogels: From Rheological Characterization to Scaffold Development and Assessment. Gels 2021; 7:175. [PMID: 34698192 PMCID: PMC8544460 DOI: 10.3390/gels7040175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Chitosan-pectin hydrogels were prepared, and their rheological properties were assessed in order to select the best system to develop scaffolds by 3D printing. Hydrogels showed a weak gel behavior with shear thinning flow properties, caused by the physical interactions formed between both polysaccharides, as observed by FTIR analysis. Since systems with high concentration of pectin showed aggregations, the system composed of 2 wt% chitosan and 2 wt% pectin (CHI2PEC2) was selected for 3D printing. 3D printed scaffolds showed good shape accuracy, and SEM and XRD analyses revealed a homogeneous and amorphous structure. Moreover, scaffolds were stable and kept their shape and size after a cycle of compression sweeps. Their integrity was also maintained after immersion in PBS at 37 °C, showing a high swelling capacity, suitable for exudate absorption in wound healing applications.
Collapse
Affiliation(s)
- Iratxe Zarandona
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Carlos Bengoechea
- Departamento de Ingeniería Química, Universidad de Sevilla, Escuela Politécnica Superior, Calle Virgen de África, 7, 41011 Sevilla, Spain; (C.B.); (E.Á.-C.); (A.G.)
| | - Estefanía Álvarez-Castillo
- Departamento de Ingeniería Química, Universidad de Sevilla, Escuela Politécnica Superior, Calle Virgen de África, 7, 41011 Sevilla, Spain; (C.B.); (E.Á.-C.); (A.G.)
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Universidad de Sevilla, Escuela Politécnica Superior, Calle Virgen de África, 7, 41011 Sevilla, Spain; (C.B.); (E.Á.-C.); (A.G.)
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
6
|
Concórdio-Reis P, Alves VD, Moppert X, Guézennec J, Freitas F, Reis MAM. Characterization and Biotechnological Potential of Extracellular Polysaccharides Synthesized by Alteromonas Strains Isolated from French Polynesia Marine Environments. Mar Drugs 2021; 19:522. [PMID: 34564184 PMCID: PMC8470090 DOI: 10.3390/md19090522] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023] Open
Abstract
Marine environments comprise almost three quarters of Earth's surface, representing the largest ecosystem of our planet. The vast ecological and metabolic diversity found in marine microorganisms suggest that these marine resources have a huge potential as sources of novel commercially appealing biomolecules, such as exopolysaccharides (EPS). Six Alteromonas strains from different marine environments in French Polynesia atolls were selected for EPS extraction. All the EPS were heteropolysaccharides composed of different monomers, including neutral monosaccharides (glucose, galactose, and mannose, rhamnose and fucose), and uronic acids (glucuronic acid and galacturonic acid), which accounted for up to 45.5 mol% of the EPS compositions. Non-carbohydrate substituents, such as acetyl (0.5-2.1 wt%), pyruvyl (0.2-4.9 wt%), succinyl (1-1.8 wt%), and sulfate (1.98-3.43 wt%); and few peptides (1.72-6.77 wt%) were also detected. Thermal analysis demonstrated that the EPS had a degradation temperature above 260 °C, and high char yields (32-53%). Studies on EPS functional properties revealed that they produce viscous aqueous solutions with a shear thinning behavior and could form strong gels in two distinct ways: by the addition of Fe2+, or in the presence of Mg2+, Cu2+, or Ca2+ under alkaline conditions. Thus, these EPS could be versatile materials for different applications.
Collapse
Affiliation(s)
- Patrícia Concórdio-Reis
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| | - Xavier Moppert
- Pacific Biotech SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia;
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d’Ouessant, 29280 Plouzané, France;
| | - Filomena Freitas
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria A. M. Reis
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Isolation, Phylogenetic and Gephyromycin Metabolites Characterization of New Exopolysaccharides-Bearing Antarctic Actinobacterium from Feces of Emperor Penguin. Mar Drugs 2021; 19:md19080458. [PMID: 34436297 PMCID: PMC8400323 DOI: 10.3390/md19080458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
A new versatile actinobacterium designated as strain NJES-13 was isolated from the feces of the Antarctic emperor penguin. This new isolate was found to produce two active gephyromycin analogues and bioflocculanting exopolysaccharides (EPS) metabolites. Phylogenetic analysis based on pairwise comparison of 16S rRNA gene sequences showed that strain NJES-13 was closely related to Mobilicoccus pelagius Aji5-31T with a gene similarity of 95.9%, which was lower than the threshold value (98.65%) for novel species delineation. Additional phylogenomic calculations of the average nucleotide identity (ANI, 75.9–79.1%), average amino acid identity (AAI, 52.4–66.9%) and digital DNA–DNA hybridization (dDDH, 18.6–21.9%), along with the constructed phylogenomic tree based on the up-to-date bacterial core gene (UBCG) set from the bacterial genomes, unequivocally separated strain NJES-13 from its close relatives within the family Dermatophilaceae. Hence, it clearly indicated that strain NJES-13 represented a putative new actinobacterial species isolated from the gut microbiota of mammals inhabiting the Antarctic. The obtained complete genome of strain NJES-13 consisted of a circular 3.45 Mb chromosome with a DNA G+C content of 67.0 mol%. Furthering genome mining of strain NJES-13 showed the presence of five biosynthetic gene clusters (BGCs) including one type III PKS responsible for the biosynthesis of the core of gephyromycins, and a series of genes encoding for bacterial EPS biosynthesis. Thus, based on the combined phylogenetic and active metabolites characterization presented in this study, we confidently conclude that strain NJES-13 is a novel, fresh actinobacterial candidate to produce active gephyromycins and microbial bioflocculanting EPS, with potential pharmaceutical, environmental and biotechnological implications.
Collapse
|
8
|
Ren X, Xie X, Chen B, Liu L, Jiang C, Qian Q. Marine Natural Products: A Potential Source of Anti-hepatocellular Carcinoma Drugs. J Med Chem 2021; 64:7879-7899. [PMID: 34128674 DOI: 10.1021/acs.jmedchem.0c02026] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) has high associated morbidity and mortality rates. Although chemical medication represents a primary HCC treatment strategy, low response rates and therapeutic resistance serve to reduce its efficacy. Hence, identifying novel effective drugs is urgently needed, and many researchers have sought to identify new anti-cancer drugs from marine organisms. The marine population is considered a "blue drug bank" of unique anti-cancer compounds with diverse groups of chemical structures. Here, we discuss marine-derived compounds, including PM060184 and bryostatin-1, with demonstrated anti-cancer activity in vitro or in vivo. Based on the marine source (sponges, algae, coral, bacteria, and fungi), we introduce pharmacological parameters, compound-induced cytotoxicity, effects on apoptosis and metastasis, and potential molecular mechanisms. Cumulatively, this review provides insights into anti-HCC research conducted to date in the field of marine natural products and marine-derived compounds, as well as the potential pharmacological mechanisms of these compounds and their status in drug development.
Collapse
Affiliation(s)
- Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| |
Collapse
|