1
|
Ghouri I, Demir M, Khan SA, Mansoor MA, Iqbal M. Unveiling the Potential of Protein-Based Sustainable Antibacterial Materials. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10381-6. [PMID: 39422822 DOI: 10.1007/s12602-024-10381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
The surge in bacterial growth and the escalating resistance against a multitude of antibiotic drugs have burgeoned into an alarming global threat, necessitating urgent and innovative interventions. In response to this peril, scientists have embarked on the development of advanced biocompatible antibacterial materials, aiming to counteract not only bacterial infections but also the pervasive issue of food spoilage resulting from microbial proliferation. Protein-based biopolymers and their meticulously engineered composites are at the forefront of this endeavor. Their potential in combating this severe global concern presents an approach that intersects the domains of biomedicine and environmental science. The present review article delves into the intricate extraction processes employed to derive various proteins from their natural sources, unraveling the complex biochemical pathways that underpin their antibacterial properties. Expanding on the foundational knowledge, the review also provides a comprehensive synthesis of functionalized proteins modified to enhance their antibacterial efficacy, unveiling a realm of possibilities for tailoring solutions to specific biomedical and environmental applications. The present review navigates through their antibacterial applications; from wound dressings to packaging materials with inherent antibacterial properties, the potential applications underscore the versatility and adaptability of these materials. Moreover, this comprehensive review serves as a valuable roadmap, guiding future research endeavors in reshaping the landscape of natural antibacterial materials on a global scale.
Collapse
Affiliation(s)
- Iqra Ghouri
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- Materials Institute, TUBITAK Marmara Research Center, 41470, Gebze, Turkey
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Adil Mansoor
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
2
|
Barzkar N, Attaran-Fariman G, Taheri A, Venmathi Maran BA. Extraction and characterization of collagen and gelatin from body wall of sea cucumbers Stichopus horrens and Holothuria arenicola. PeerJ 2024; 12:e18149. [PMID: 39399433 PMCID: PMC11471148 DOI: 10.7717/peerj.18149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024] Open
Abstract
Background Marine invertebrates, including sponges, molluscs, jellyfish, mussels, and sea cucumbers, are abundant sources of high-quality collagen and offer advantages such as availability, ease of processing, lower inflammatory response, and good metabolic compatibility. Approximately 70% of the total protein in the body wall of sea cucumbers is collagen. Gelatin is a water-soluble protein produced from heat-denatured collagen and has various industrial applications. Methods Pepsin-solubilized collagen was extracted from the body wall of two sea cucumber Stichopus horrens and Holothuria arenicola, species found in the Oman Sea and characterized with SDS-PAGE and amino acid composition. Then gelatin was extracted from pepsin-solubilized collagen of S. horrens and some rheological properties were measured. Results Amino acid composition and SDS-PAGE analysis showed that the collagen from both species was type I, with one α1 chain and β chains, with molecular weights of 125 and 250 kDa, respectively. Glycine was the most abundant amino acid in the collagen from both sea cucumber species. The pepsin-soluble collagens from both species had high levels of glycine, proline, alanine, glutamic acid, and hydroxyproline. The gelatin from S. horrens had a melting point of 30 °C and displayed exceptional thermal stability, surpassing that of mammalian gelatin. Its gelling point was 5 °C, like that of cold-water fish gelatin, with a viscosity of 2.065 cp-lower than mammal gelatins. These findings suggested that collagen and gelatin from sea cucumbers could be useful in nutraceutical, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Noora Barzkar
- Higher Institution Centre of Excellence, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Department of Marine Biology, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
| | - Gilan Attaran-Fariman
- Department of Marine Biology, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
| | - Ali Taheri
- Fisheries Department, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
| | | |
Collapse
|
3
|
Salim NV, Madhan B, Glattauer V, Ramshaw JAM. Comprehensive review on collagen extraction from food by-products and waste as a value-added material. Int J Biol Macromol 2024; 278:134374. [PMID: 39098671 DOI: 10.1016/j.ijbiomac.2024.134374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.
Collapse
Affiliation(s)
- Nisa V Salim
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600 020, India
| | | | - John A M Ramshaw
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia
| |
Collapse
|
4
|
Rajabimashhadi Z, Gallo N, Russo F, Ghiyami S, Mele C, Giordano ME, Lionetto MG, Salvatore L, Lionetto F. Production and physico-chemical characterization of nano-sized collagen from equine tendon. Int J Biol Macromol 2024; 277:134220. [PMID: 39069054 DOI: 10.1016/j.ijbiomac.2024.134220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
In recent years, significant academic and commercial interest has focused on collagen derived from horse tendons, with potential applications across diverse sectors such as medicine, pharmaceuticals, and cosmetics. Nano collagen, with its enhanced wound penetration, improved cell contact, and heightened cellular regeneration and repair capabilities due to its high surface area, holds promise for a wide range of applications. In this study, we present a novel method for producing nano collagen from the equine tendon. Our approach is characterized by its speed, affordability, simplicity and environmentally friendly nature, with precise temperature-control to prevent collagen denaturation. We conducted a comprehensive characterization of the obtained samples, including assessments of morphology, chemical and thermal properties, particle size distribution and biocompatibility. Importantly, our results indicate improvements in thermal stability, and surface roughness of nano collagen, while preserving its molecular weight. These advancements expand the potential applications of nano collagen in various fields.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy; Typeone Biomaterials S.r.l., Via Europa 167, 73021 Calimera, Lecce, Italy
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Sajjad Ghiyami
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Maria Elena Giordano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via per Monteroni, Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via per Monteroni, Lecce, Italy
| | - Luca Salvatore
- Typeone Biomaterials S.r.l., Via Europa 167, 73021 Calimera, Lecce, Italy
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy.
| |
Collapse
|
5
|
Carvalho DN, Gonçalves C, Sousa RO, Reis RL, Oliveira JM, Silva TH. Extraction and Purification of Biopolymers from Marine Origin Sources Envisaging Their Use for Biotechnological Applications. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024:10.1007/s10126-024-10361-5. [PMID: 39254780 DOI: 10.1007/s10126-024-10361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Biopolymers are a versatile and diverse class of materials that has won high interest due to their potential application in several sectors of the economy, such as cosmetics, medical materials/devices, and food additives. In the last years, the search for these compounds has explored a wider range of marine organisms that have proven to be a great alternative to mammal sources for these applications and benefit from their biological properties, such as low antigenicity, biocompatibility, and biodegradability, among others. Furthermore, to ensure the sustainable exploitation of natural marine resources and address the challenges of 3R's policies, there is a current necessity to valorize the residues and by-products obtained from food processing to benefit both economic and environmental interests. Many extraction methodologies have received significant attention for the obtention of diverse polysaccharides, proteins, and glycosaminoglycans to accomplish the increasing demands for these products. The present review gives emphasis to the ones that can be obtained from marine biological resources, as agar/agarose, alginate and sulfated polysaccharides from seaweeds, chitin/chitosan from crustaceans from crustaceans, collagen, and some glycosaminoglycans such as chondroitin sulfate and hyaluronic acids from fish. It is offered, in a summarized and easy-to-interpret arrangement, the most well-established extraction and purification methodologies used for obtaining the referred marine biopolymers, their chemical structure, as well as the characterization tools that are required to validate the extracted material and respective features. As supplementary material, a practical guide with the step-by-step isolation protocol, together with the various materials, reagents, and equipment, needed for each extraction is also delivered is also delivered. Finally, some remarks are made on the needs still observed, despite all the past efforts, to improve the current extraction and purification procedures to achieve more efficient and green methodologies with higher yields, less time-consuming, and decreased batch-to-batch variability.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita O Sousa
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Joy JM, Padmaprakashan A, Pradeep A, Paul PT, Mannuthy RJ, Mathew S. A Review on Fish Skin-Derived Gelatin: Elucidating the Gelatin Peptides-Preparation, Bioactivity, Mechanistic Insights, and Strategies for Stability Improvement. Foods 2024; 13:2793. [PMID: 39272559 PMCID: PMC11394984 DOI: 10.3390/foods13172793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Fish skin-derived gelatin has garnered significant attention recently due to its abundant availability and promising bioactive properties. This comprehensive review elucidates various intricacies concerning fish skin-derived gelatin peptides, including their preparation techniques, bioactive profiles, underlying mechanisms, and methods for stability enhancement. The review investigates diverse extraction methods and processing approaches for acquiring gelatin peptides from fish skin, emphasizing their impact on the peptide composition and functional characteristics. Furthermore, the review examines the manifold bioactivities demonstrated by fish skin-derived gelatin peptides, encompassing antioxidant, antimicrobial, anti-inflammatory, and anticancer properties, elucidating their potential roles in functional food products, pharmaceuticals, and nutraceuticals. Further, mechanistic insights into the functioning of gelatin peptides are explored, shedding light on their interactions with biological targets and pathways. Additionally, strategies aimed at improving the stability of gelatin peptides, such as encapsulation, modification, and integration into delivery systems, are discussed to extend the shelf life and preserve the bioactivity. Overall, this comprehensive review offers valuable insights into using fish skin-derived gelatin peptides as functional ingredients, providing perspectives for future research endeavors and industrial applications within food science, health, and biotechnology.
Collapse
Affiliation(s)
- Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
- Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
- Department of Zoology, St. Teresa's College (Autonomous), Ernakulam 682011, Kerala, India
| | - Amruth Padmaprakashan
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
- Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
- Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Akshay Pradeep
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
- Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Preethy Treesa Paul
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
- Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Rosemol Jacob Mannuthy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
- Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| |
Collapse
|
7
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
8
|
Ahmad K, Meng Y, Fan C, Din ASU, Jia Q, Ashraf A, Zhang Y, Hou H. Collagen/gelatin and polysaccharide complexes enhance gastric retention and mucoadhesive properties. Int J Biol Macromol 2024; 266:131034. [PMID: 38518948 DOI: 10.1016/j.ijbiomac.2024.131034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This article has focused on collagen-gelatin, the gelation process, as well as blend interaction between collagen/gelatin with various polysaccharides to boost mucoadhesion and gastric retention. The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged time in the gastrointestinal tract. This paper reviews the current advancement and mucoadhesive properties of collagen/gelatin and different polysaccharide complexes concerning the mucin layer and interactions are briefly highlighted. Collagen/gelatin and polysaccharide blends biocompatible and biodegradable, the complex biomolecules have shown encouraging mucoadhesive properties due to their cationic nature and ability to form hydrogen bonds with mucin glycoproteins. The mucoadhesion mechanism was attributed to the electrostatic interactions between the positively charged amino (NH2) groups of blend biopolymers and the negatively charged sialic acid residues present in mucin glycoprotein. At the end of this article, the encouraging prospect of collagen/polysaccharide complex and mucin glycoprotein is highlighted.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yuqian Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Chaozhong Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Aiman Salah Ud Din
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Qiannan Jia
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
9
|
Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA. Advances in guided bone regeneration membranes: a comprehensive review of materials and techniques. Biomed Phys Eng Express 2024; 10:032003. [PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Collapse
Affiliation(s)
- Mohammed Ali
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Hasmaliza Mohamad
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Faheem Ullah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
- Department of Biological Sciences, Biopolymer Research Centre (BRC), National University of Medical Sciences, 46000, Rawalpindi, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Butto Women University Peshawar, Charsadda Road Laramma, 25000, Peshawar, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
10
|
Khiari Z. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting. Mar Drugs 2024; 22:134. [PMID: 38535475 PMCID: PMC10971850 DOI: 10.3390/md22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
3D bioprinting is a disruptive, computer-aided, and additive manufacturing technology that allows the obtention, layer-by-layer, of 3D complex structures. This technology is believed to offer tremendous opportunities in several fields including biomedical, pharmaceutical, and food industries. Several bioprinting processes and bio-ink materials have emerged recently. However, there is still a pressing need to develop low-cost sustainable bio-ink materials with superior qualities (excellent mechanical, viscoelastic and thermal properties, biocompatibility, and biodegradability). Marine-derived biomaterials, including polysaccharides and proteins, represent a viable and renewable source for bio-ink formulations. Therefore, the focus of this review centers around the use of marine-derived biomaterials in the formulations of bio-ink. It starts with a general overview of 3D bioprinting processes followed by a description of the most commonly used marine-derived biomaterials for 3D bioprinting, with a special attention paid to chitosan, glycosaminoglycans, alginate, carrageenan, collagen, and gelatin. The challenges facing the application of marine-derived biomaterials in 3D bioprinting within the biomedical and pharmaceutical fields along with future directions are also discussed.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
11
|
Shaik MI, Kadir ANA, Sarbon NM. Physicochemical and thermal properties of pepsin- and acid-soluble collagen isolated from the body wall of sea cucumbers (Stichopus hermanni). J Food Sci 2024; 89:320-329. [PMID: 38051010 DOI: 10.1111/1750-3841.16858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
The main objective of this work was to characterize the acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the body wall of the sea cucumber scientifically called, Stichopus hermanni. For the extraction of ASC and PSC, the pre-treated sea cucumber body walls were subjected to 0.5 M acetic acid and 5 g L-1 pepsin, respectively. The yield of ASC (7.30% ± 0.30%) was found to be lower than the PSC (23.66% ± 0.15%), despite both ASC and PSC having similar chemical compositions except for the quantity of protein. The collagens produced from ASC and PSC show maximum peaks on ultraviolet-visible spectroscopic profiles at wavelengths of 230 and 235 nm, respectively, with no significant difference in the maximum temperature (Tmax ) of the extracted ASC and PSC. The ASC's coloration was whiter than that of the PSC. As a result, the collagen obtained from the body wall of the sea cucumber showed promise for usage as a substitute for collagen derived from marine sources. PRACTICAL APPLICATION: The two most popular methods of collagen extraction were acid hydrolysis and enzymatic hydrolysis. To determine whether the extracted collagen is a suitable substitute for animal collagen in different industries, it is required to characterize its physicochemical qualities. This study discovered a new application for marine collagen in the food industry: The sea cucumber has collagen with a greater yield in pepsin extraction with good physicochemical qualities.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Asmaa Nuha Abdul Kadir
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
12
|
Udduttula A, Jakubovics N, Khan I, Pontiroli L, Rankin KS, Gentile P, Ferreira AM. Layer-by-Layer Coatings of Collagen-Hyaluronic acid Loaded with an Antibacterial Manuka Honey Bioactive Compound to Fight Metallic Implant Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58119-58135. [PMID: 38055248 PMCID: PMC10739588 DOI: 10.1021/acsami.3c11910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Implant-associated severe infections can result in catastrophic implant failures; thus, advanced antibacterial coatings are needed to combat infections. This study focuses on harnessing nature-inspired self-assembly of extracellular matrix (ECM)-like coatings on Ti alloy with a combination of jellyfish-derived collagen (J-COLL) and hyaluronic acid (HA) using our customized automated hybrid layer-by-layer apparatus. To improve the anti-infection efficacy of coatings, we have incorporated a natural antibacterial agent methylglyoxal (MGO, a Manuka honey compound) in optimized multilayer coatings. The obtainment of MGO-loaded multilayer coatings was successfully assessed by profilometry, contact angle, attenuated total reflectance (ATR)-Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. In vitro degradation confirmed the controlled release activity of MGO with a range of concentrations from 0.90 to 2.38 mM up to 21 days. A bacterial cell culture study using Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis) confirmed that the MGO incorporated within layers 7 and 9 had a favorable effect on preventing bacterial growth and colonization on their surfaces. An in vitro cytocompatibility study confirmed that MGO agents included in the layers did not affect or reduce the cellular functionalities of L929 fibroblasts. In addition, MGO-loaded layers with Immortalized Mesenchymal Stem Cells (Y201 TERT-hMSCs) were found to favor the growth and differentiation of Y201 cells and promote calcium nodule formation. Overall, these surface coatings are promising candidates for delivering antimicrobial activity with bone-inducing functions for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Anjaneyulu Udduttula
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
- Centre
of Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, TN 632014, India
| | - Nicholas Jakubovics
- School
of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle
Upon Tyne NE1 7RU, U.K.
| | - Imran Khan
- Biomet
UK Healthcare Ltd, Stella Building, Windmill Hill Business Park, Swindon SN5 6NX, U.K.
| | - Lucia Pontiroli
- Biomet
UK Healthcare Ltd, Stella Building, Windmill Hill Business Park, Swindon SN5 6NX, U.K.
| | - Kenneth S. Rankin
- Translational
and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K.
| | - Piergiorgio Gentile
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| | - Ana M. Ferreira
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| |
Collapse
|
13
|
Amyoony J, Gorman M, Dabas T, Moss R, McSweeney MB. Consumer perception of collagen from different sources: An investigation using hedonic scale and check all that apply. J Food Sci 2023; 88:5236-5247. [PMID: 37921549 DOI: 10.1111/1750-3841.16822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Consumers are adding collagen powder to their diets for its health benefits. However, few studies have investigated consumer perception of collagens produced from different sources. As such, the objective of this study was to evaluate the acceptability and sensory properties of commercially available collagen powders (bovine, marine, and mixed). Two different sensory trials were conducted. First, six different collagen powders were mixed with water and evaluated for their sensory properties and acceptability (n = 98; referred to as collagen-in-water). In the second trial, the collagen powders were mixed into strawberry smoothies and their sensory properties were assessed (n = 92; referred to as collagen-in-smoothie). Both studies used the 9-point hedonic scale and check all that apply to evaluate the collagen powders. The results indicated that the collagens could be grouped based on their source when evaluated in water and in a smoothie. Also, the aroma and taste of the marine collagens impacted their acceptability and were associated with fishy, sour, bitter, and salty attributes. Overall, collagen that was low in flavor was more acceptable to the participants in this study. PRACTICAL APPLICATION: Recently, consumers have begun to purchase collagen powder for its health benefits, specifically its positive effects on skin appearance. Understanding the sensory properties of the different collagens can allow for the ingredients to be incorporated into different food products and help promote consumer purchases. Collagen should be mixed into beverages rather than be consumed in water alone to increase acceptability. Also, marine collagen incorporation into foods should be avoided unless off-aromas and flavors can be masked by other properties.
Collapse
Affiliation(s)
- Jamal Amyoony
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Mackenzie Gorman
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Tanvi Dabas
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Rachael Moss
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Matthew B McSweeney
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
14
|
Sisican KM, Torreno VPM, Yu ET, Conato MT. Physicochemical and Biochemical Characterization of Collagen from Stichopus cf. horrens Tissues for Use as Stimuli-Responsive Thin Films. ACS OMEGA 2023; 8:35791-35799. [PMID: 37810720 PMCID: PMC10551906 DOI: 10.1021/acsomega.3c03299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
The mutable collagenous tissue (MCT) of sea cucumber, with its ability to rapidly change its stiffness and extensibility in response to different environmental stress conditions, serves as inspiration for the design of new smart functional biomaterials. Collagen, extracted from the body wall of Stichopus cf. horrens, a species commonly found in the Philippines, was characterized for its suitability as stimuli-responsive films. Protein BLAST search showed the presence of sequences commonly found in type VII and IX collagen, suggesting that Stichopus horrens collagen is heterotypic. The maximum transition temperature recorded was 56.0 ± 2 °C, which is higher than those of other known sources of marine collagen. This suggests that S. horrens collagen has better thermal stability and durability. Collagen-based thin films were then prepared, and atomic force microscopy (AFM) imaging showed the visible collagen network comprising the films. The thin films were subjected to thermomechanical analysis with degradation starting at >175 °C. At 100-150 °C, the collagen-based films apparently lose their translucency due to the removal of moisture. Upon exposure to ambient temperature, instead of degrading, the films were able to revert to the original state due to the readsorption of moisture. This study is a demonstration of a smart biomaterial developed from S. cf. horrens collagen with potential applications in food, pharmaceutical, biomedical, and other collagen-based research.
Collapse
Affiliation(s)
- Kim Marie
D. Sisican
- Institute
of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- The
Marine Science Institute, University of
the Philippines, Diliman, Quezon
City 1101, Philippines
| | - Vicenzo Paolo M. Torreno
- The
Marine Science Institute, University of
the Philippines, Diliman, Quezon
City 1101, Philippines
| | - Eizadora T. Yu
- The
Marine Science Institute, University of
the Philippines, Diliman, Quezon
City 1101, Philippines
| | - Marlon T. Conato
- Institute
of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
15
|
Jeżowski P, Kowalczewski PŁ. Isinglass as an Alternative Biopolymer Membrane for Green Electrochemical Devices: Initial Studies of Application in Electric Double-Layer Capacitors and Future Perspectives. Polymers (Basel) 2023; 15:3557. [PMID: 37688181 PMCID: PMC10490271 DOI: 10.3390/polym15173557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The presented work discusses in detail the preparation of a cheap and environmentally friendly biopolymer membrane from isinglass and its physicochemical characterisation. One of the possible uses of the obtained membrane can be as a separator between electrodes in novel green electrochemical devices as in, for example, electric double-layer capacitors (EDLCs). The functionality of the mentioned membrane was investigated and demonstrated by classical electrochemical techniques such as cyclic voltammetry (CV), galvanostatic cycling with potential limitation (GCPL), and electrochemical impedance spectroscopy (EIS). The obtained values of capacitance (approximately 30 F g-1) and resistance (approximately. 3 Ohms), as well as the longevity of the EDLC during electrochemical floating at a voltage of 1.6 V (more than 200 h), show that the proposed biopolymer membrane could be an interesting alternative among the more environmentally friendly energy storage devices, while additionally it could be more economically justified.
Collapse
Affiliation(s)
- Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo St., 60-965 Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| |
Collapse
|
16
|
Xie W, Wu Q, Kuang Z, Cong J, Zhang Q, Huang Y, Su Z, Xiang Q. Temperature-Controlled Expression of a Recombinant Human-like Collagen I Peptide in Escherichia coli. Bioengineering (Basel) 2023; 10:926. [PMID: 37627811 PMCID: PMC10451535 DOI: 10.3390/bioengineering10080926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Collagen is the functional protein of the skin, tendons, ligaments, cartilage, bone, and connective tissue. Due to its extraordinary properties, collagen has a wide range of applications in biomedicine, tissue engineering, food, and cosmetics. In this study, we designed a functional fragment of human type I collagen (rhLCOL-I) and expressed it in Escherichia coli (E. coli) BL21(DE3) PlysS containing a thermal-induced plasmid, pBV-rhLCOL-I. The results indicated that the optimal expression level of the rhLCOL-I reached 36.3% of the total protein at 42 °C, and expressed in soluble form. In a 7 L fermentation, the yield of purified rhLCOL-I was 1.88 g/L. Interestingly, the plasmid, pBV220-rhLCOL-I, was excellently stable during the fermentation process, even in the absence of antibiotics. Functional analyses indicated that rhLCOL-I had the capacity to promote skin cell migration and adhesion in vitro and in vivo. Taken together, we developed a high-level and low-cost approach to produce collagen fragments suitable for medical applications in E. coli.
Collapse
Affiliation(s)
- Wenjie Xie
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (W.X.); (Q.W.); (Z.K.); (J.C.); (Y.H.)
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China;
| | - Qiqi Wu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (W.X.); (Q.W.); (Z.K.); (J.C.); (Y.H.)
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China;
| | - Zhanpeng Kuang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (W.X.); (Q.W.); (Z.K.); (J.C.); (Y.H.)
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China;
| | - Jianhang Cong
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (W.X.); (Q.W.); (Z.K.); (J.C.); (Y.H.)
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China;
| | - Qirong Zhang
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China;
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (W.X.); (Q.W.); (Z.K.); (J.C.); (Y.H.)
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China;
| | - Zhijian Su
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (W.X.); (Q.W.); (Z.K.); (J.C.); (Y.H.)
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China;
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; (W.X.); (Q.W.); (Z.K.); (J.C.); (Y.H.)
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
17
|
Piri-Gharaghie T, Ghajari G, Hassanpoor M, Jegargoshe-Shirin N, Mona Soosanirad, Khayati S, Farhadi-Biregani A, Mirzaei A. Investigation of antibacterial and anticancer effects of novel niosomal formulated Persian Gulf Sea cucumber extracts. Heliyon 2023; 9:e14149. [PMID: 36938478 PMCID: PMC10018472 DOI: 10.1016/j.heliyon.2023.e14149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Pharmaceutical companies worldwide are scrambling to develop new ways to combat cancer and microbiological pathogens. The goal of this research was to investigate the antibacterial, anticancer, and apoptosis effects of novel niosomal formulated Persian Gulf Sea cucumber extracts (SCEs). Sea cucumber methanolic extracts were prepared and encapsulated in niosome nanoparticles using thin-film hydration. The compound was made up of Span 60 and Tween 60 blended with cholesterol in a 3:3:4 M ratios. Characterization of niosome-encapsulated SCE evaluated by scanning electron microscopy and transmission electron microscopy. The disk diffusion method and microtiter plates were used to investigate the antimicrobial activity. The effect of niosome-encapsulated SCE on cell proliferation and apoptosis induction was studied using MTT and Annexin V, respectively. The expression of apoptosis-related genes, including Bax, Fas, Bax, Bak, and Bcl2, was studied using quantitative real-time PCR. Niosome-encapsulated SCE with a size of 80.46 ± 1.31 and an encapsulation efficiency of 79.18 ± 0.23 was formulated. At a concentration of 100 μg/ml, the greatest antimicrobial effect of the niosome-encapsulated SCE was correlated to Staphylococcus aureus, with an inhibition zone of 13.16 mm. The findings of the study revealed that all strains were unable to produce biofilms at a concentration of 100 μg/ml niosome-encapsulated SCE (p < 0.001). The survival rate of cancer cells after 72 h of exposure to niosome-encapsulated SCE was 40 ± 3.0%. Encapsulated SCE in niosomes inhibited cell progression in MCF-7 cells by increasing G0/G1 and decreasing S phase relative to G2/M phase; as a result, it activated the apoptosis signaling pathway and led to the induction of apoptosis in 69.12 ± 1.2% of tumor cells by increasing the expression of proapoptotic genes (p < 0.001). The results indicate that sea cucumber species from the Persian Gulf are a promising source of natural chemicals with antibacterial and anticancer properties, paving the path for novel marine natural products to be discovered. This is the first demonstration that niosome-encapsulated SCE contains antibacterial and anticancer chemicals that, according to their specific characteristics, boost antitumor activity.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Biotechnology Research Center, Faculty of Biotechnology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Biotechnology Research Center, East-Tehran Branch, Islamic Azad University, Tehran, Iran
- Corresponding author. Biotechnology Research Center, East-Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Ghazal Ghajari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Hassanpoor
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Neda Jegargoshe-Shirin
- Department of Biotechnology, Faculty of Basic Sciences, Damghan Branch, Islamic Azad University, Semnan, Iran
| | - Mona Soosanirad
- Department of Cell and Molecular Biology, Factuly of Biological Sciences, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Shahr-e-Rey, Iran
| | - Shahoo Khayati
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Farhadi-Biregani
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mirzaei
- Department of Biology, Faculty of Basic Sciences, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
18
|
Xie J, Sun Y, Li Y, Zhang X, Hao P, Han L, Cao Y, Ding B, Chang Y, Yin D, Ding J. TMT-based proteomics analysis of growth advantage of triploid Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101043. [PMID: 36493631 DOI: 10.1016/j.cbd.2022.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Polyploid breeding can produce new species with a faster growth rate, higher disease resistance, and higher survival rate, and has achieved significant economic benefits. This study investigated the protein differences in the body wall of triploid Apostichopus japonicus and diploid A. japonicus using isotope-labeled relative and absolute quantitative Tandem Mass Tag technology. A total of 21,096 independent peptides and 4621 proteins were identified. Among them, there were 723 proteins with significant expression differences, including 413 up-regulated proteins and 310 down-regulated proteins. The differentially expressed proteins (DEPs) were enriched in 4519 Gene Ontology enrichment pathways and 320 Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Twenty-two key DEPs related to important functions such as growth and immunity of triploid A. japonicus were screened from the results, among which 20 were up-regulated, such as cathepsin L2 cysteine protease and fibrinogen-like protein A. Arylsulfatase A and zonadhesin were down-regulated. The up-regulated proteins were mainly involved in oxidative stress response, innate immune response, and collagen synthesis in triploid A. japonicus, and the down-regulated proteins were mainly associated with the sterility of triploid A. japonicus. In addition, the transcriptome and proteome were analyzed jointly to support proteome data. In this study, the differences in protein composition between triploid and diploid A. japonicus were analyzed for the first time, and the results revealed the underlying reasons for the growth advantage of triploid A. japonicus.
Collapse
Affiliation(s)
- Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yi Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Lingshu Han
- Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yue Cao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Beichen Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
19
|
Huang YZ, Xie YS, Li YX, Zhao MY, Sun N, Qi H, Dong XP. Quality assessment of variable collagen tissues of sea cucumber (Stichopus japonicus) body wall under different heat treatment durations by label-Free proteomics analysis. Food Res Int 2023; 165:112540. [PMID: 36869547 DOI: 10.1016/j.foodres.2023.112540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The microstructure of the body wall, body wall composition, and collagen fibers of sea cucumber (Stichopus japonicus) under different heating times (1 h, 4 h, 12 h, and 24 h) was investigated based on heat treatment at 80 °C. A Label-Free proteomics technique was applied to study the proteomic changes in the body wall of sea cucumbers under 4 and 12 h of heat treatment. Compared with the fresh group, 981 proteins were found to be differentially expressed proteins (DEPs) after heat treatment at 80 °C (4 h), and 1110 DEPs were observed after heat treatment at the same temperature for 12 h. There were 69 DEPs associated with mutable collagenous tissues (MCTs) structures. The results of correlation analysis showed that 55 DEPs were correlated with sensory properties, among which A0A2G8KRV2 was significantly correlated with hardness and SEM image texture features (SEM_Energy, SEM_Correlation, SEM_Homogeneity, and SEM_Contrast). These findings could be conducive to further comprehension of the structural changes and mechanisms of quality loss in the body wall of sea cucumbers at different heat treatment times.
Collapse
Affiliation(s)
- Yi-Zhen Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Yi-Sha Xie
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Yan-Xin Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Mei-Yu Zhao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Na Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Hang Qi
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Xiu-Ping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China.
| |
Collapse
|
20
|
Functional and physiochemical properties of protein isolates from different body parts of North Atlantic sea cucumber (Cucumaria frondosa). FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
21
|
Cutting Edge Aquatic-Based Collagens in Tissue Engineering. Mar Drugs 2023; 21:md21020087. [PMID: 36827128 PMCID: PMC9959471 DOI: 10.3390/md21020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.
Collapse
|
22
|
Mazlan NB, Abd Rahman NNB, Shukhairi SSB, Nazahuddin MNAB. Sea Cucumbers: Source of Nutritional, Medicinal, and Cosmeceutical Products. MARINE BIOTECHNOLOGY: APPLICATIONS IN FOOD, DRUGS AND ENERGY 2023:171-188. [DOI: 10.1007/978-981-99-0624-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Xia Y, Wang C, Yu D, Hou H. Methods of simultaneous preparation of various active substances from Stichopus chloronotus and functional evaluation of active substances. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yu Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao, People’s Republic of China
| | - Changwei Wang
- Qingdao Institute of Marine Biomedicine, Qingdao, People’s Republic of China
| | - Dejun Yu
- Qingdao Institute of Marine Biomedicine, Qingdao, People’s Republic of China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, People’s Republic of China
| |
Collapse
|
24
|
Adhesion and Anti-Adhesion Abilities of Potentially Probiotic Lactic Acid Bacteria and Biofilm Eradication of Honeybee ( Apis mellifera L.) Pathogens. Molecules 2022; 27:molecules27248945. [PMID: 36558073 PMCID: PMC9786635 DOI: 10.3390/molecules27248945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lactic acid bacteria (LAB) naturally inhabits the organisms of honeybees and can exhibit adhesive properties that protect these insects against various pathogenic microorganisms. Thus, cell surface (auto-aggregation, co-aggregation, hydrophobicity) and adhesive properties of LAB to two abiotic (polystyrene and glass) and four biotic (collagen, gelatin, mucus, and intestinal Caco-2 cells) surfaces were investigated. Additionally, anti-adhesion activity and the eradication of honeybee pathogen biofilms by LAB metabolites (culture supernatants) were determined. The highest hydrophobicity was demonstrated by Pediococcus pentosaceus 19/1 (63.16%) and auto-aggregation by Lactiplantibacillus plantarum 18/1 (71.91%). All LAB showed a broad spectrum of adhesion to the tested surfaces. The strongest adhesion was noted for glass. The ability to co-aggregate with pathogens was tested for the three most potently adherent LAB strains. All showed various levels of co-aggregation depending on the pathogen. The eradication of mature pathogen biofilms by LAB metabolites appeared to be weaker than their anti-adhesive properties against pathogens. The most potent anti-adhesion activity was observed for L. plantarum 18/1 (98.80%) against Paenibacillus apiarius DSM 5582, while the strongest biofilm eradication was demonstrated by the same LAB strain against Melissococcus plutonius DSM 29964 (19.87%). The adhesive and anti-adhesive activity demonstrated by LAB can contribute to increasing the viability of honeybee colonies and improving the conditions in apiaries.
Collapse
|
25
|
Gajbhiye S, Wairkar S. Collagen fabricated delivery systems for wound healing: A new roadmap. BIOMATERIALS ADVANCES 2022; 142:213152. [PMID: 36270159 DOI: 10.1016/j.bioadv.2022.213152] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Collagen is a biopolymer found in the animal body. It is one of the most abundant proteins in the extracellular matrix that provides strength to the skin, joints, and bones in the human body. It is an important source of elasticity and strength in the extracellular matrix and contributes to the structural and physiological integrity of tissues. Collagen plays an important role in regulating the wound healing process. It helps in wound healing by attracting fibroblasts and encouraging new collagen formation in the wound bed. Therefore, it can be used as a supplementary aid for wound treatment to accelerate the healing process. A prominent benefit of incorporating collagen in wound dressings is its ability to enhance the healing process for critical wounds. Not only collagen but various collagen-containing systems are being prepared to boost its efficacy in wound healing. Different strategies like nanoscale reductions, biopolymers, and incorporating anti-inflammatory and antimicrobial drugs with collagen have been reported. This review article emphasizes the use of collagen for wound healing and various collagen fabricated delivery systems such as nanofibres, nanoparticles, hydrogels, films, and sponges that aid in the healing of wounds.
Collapse
Affiliation(s)
- Shruti Gajbhiye
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
26
|
Senadheera TRL, Hossain A, Dave D, Shahidi F. In Silico Analysis of Bioactive Peptides Produced from Underutilized Sea Cucumber By-Products-A Bioinformatics Approach. Mar Drugs 2022; 20:610. [PMID: 36286434 PMCID: PMC9605078 DOI: 10.3390/md20100610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 10/15/2023] Open
Abstract
Bioinformatic tools are widely used in predicting potent bioactive peptides from food derived materials. This study was focused on utilizing sea cucumber processing by-products for generating antioxidant and ACE inhibitory peptides by application of a range of in silico techniques. Identified peptides using LC-MS/MS were virtually screened by PepRank technique followed by in silico proteolysis simulation with representative digestive enzymes using BIOPEP-UWMTM data base tool. The resultant peptides after simulated digestion were evaluated for their toxicity using ToxinPred software. All digestive resistance peptides were found to be non-toxic and displayed favorable functional properties indicating their potential for use in a wide range of food applications, including hydrophobic and hydrophilic systems. Identified peptides were further assessed for their medicinal characteristics by employing SwissADME web-based application. Our findings provide an insight on potential use of undervalued sea cucumber processing discards for functional food product development and natural pharmaceutical ingredients attributed to the oral drug discovery process.
Collapse
Affiliation(s)
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Marine Institute, Memorial University, St. John’s, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
27
|
Edrispour Z, Homaei A. Exploring in vitro effect of silver nanoparticles and Holothuria parva extracts on kinetic and stability of α- amylase. Biotechnol Appl Biochem 2022; 70:885-894. [PMID: 36126095 DOI: 10.1002/bab.2407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Diabetes is a chronic metabolic disorder characterized by elevated blood glucose levels. Major limitations of synthetic drugs, including high cost, efficacy, and adverse side effects, have prompted researchers to seek more effective and low-cost alternative therapies with fewer adverse effects. Marine life forms are considered the most important sources of biologically active natural products due to their secondary metabolites. In this research, sea cucumber Holothuria parva was collected from coastal areas of Bandar Lengeh, Hormozgan, Iran, and was then subjected to extraction. The results showed that compounds extracted from Holothuria parva had a stimulatory effect on enzyme activity, and in the presence of these compounds, the Vmax value of the enzyme was increased about two times, while the Km value was reduced. The phosphate buffer form of extracts had the greatest impact on enzyme activity. Upon an increase in the concentration of silver nanoparticles (AgNPs), the α-amylase activity was inhibited in parallel. Silver nanoparticles exhibited the highest enzyme inhibition with an IC50 of 0.86 mg/mL. Silver nanoparticles showed anti-α-amylase activity and had the ability to decrease intestinal glucose uptake in diabetic individuals when prescribed as a novel supplementary medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zeynab Edrispour
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
28
|
Hossain A, Dave D, Shahidi F. Antioxidant Potential of Sea Cucumbers and Their Beneficial Effects on Human Health. Mar Drugs 2022; 20:521. [PMID: 36005524 PMCID: PMC9410154 DOI: 10.3390/md20080521] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022] Open
Abstract
Sea cucumbers are considered a luxury food item and used locally in traditional medication due to their impressive nutritional profile and curative effects. Sea cucumbers contain a wide range of bioactive compounds, namely phenolics, polysaccharides, proteins (collagen and peptides), carotenoids, and saponins, demonstrating strong antioxidant and other activities. In particular, phenolic compounds, mainly phenolic acids and flavonoids, are abundant in this marine invertebrate and exhibit antioxidant activity. Protein hydrolysates and peptides obtained from sea cucumbers exhibit antioxidant potential, mainly dependent on the amino acid compositions and sequences as well as molecular weight, displayed for those of ≤20 kDa. Moreover, the antioxidant activity of sea cucumber polysaccharides, including fucosylated chondroitin sulfate and fucan, is a combination of numerous factors and is mostly associated with molecular weight, degree of sulfation, and type of major sugars. However, the activity of these bioactive compounds typically depends on the sea cucumber species, harvesting location, food habit, body part, and processing methods employed. This review summarizes the antioxidant activity of bioactive compounds obtained from sea cucumbers and their by-products for the first time. The mechanism of actions, chemical structures, and factors affecting the antioxidant activity are also discussed, along with the associated health benefits.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Marine Institute, Memorial University, St. John’s, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
29
|
Macêdo AAM, Figueiró SD, Ferreira JCG, Melo MRS, Freitas ALP, Sombra ASB, Batista BDS, Souza RD, Almeida RM, Mendes F, Moreira RDA. Natural film based on collagen and sulfated polysaccharide for antiplatelet effects. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Sônia Duarte Figueiró
- Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Departamento de Física, Universidade Federal do Ceará (UFC), Fortaleza, Brasil
| | - Júlio César Góes Ferreira
- Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Departamento de Física, Universidade Federal do Ceará (UFC), Fortaleza, Brasil
| | - Márcia Rúbia Silva Melo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará (UFC), Fortaleza, Brasil
| | - Ana Lúcia Ponte Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará (UFC), Fortaleza, Brasil
| | - Antônio Sérgio Bezerra Sombra
- Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Departamento de Física, Universidade Federal do Ceará (UFC), Fortaleza, Brasil
| | | | - Romicy Dermondes Souza
- Departamento de Engenharia de Alimentos, Universidade Federal do Maranhão (UFMA), Imperatriz, Brasil
| | | | | | - Renato de Azevedo Moreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará (UFC), Fortaleza, Brasil
| |
Collapse
|
30
|
Tariq U, Gupta M, Pathak S, Patil R, Dohare A, Misra SK. Role of Biomaterials in Cardiac Repair and Regeneration: Therapeutic Intervention for Myocardial Infarction. ACS Biomater Sci Eng 2022; 8:3271-3298. [PMID: 35867701 DOI: 10.1021/acsbiomaterials.2c00454] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heart failure or myocardial infarction (MI) is one of the world's leading causes of death. Post MI, the heart can develop pathological conditions such as ischemia, inflammation, fibrosis, and left ventricular dysfunction. However, current surgical approaches are sufficient for enhancing myocardial perfusion but are unable to reverse the pathological changes. Tissue engineering and regenerative medicine approaches have shown promising effects in the repair and replacement of injured cardiomyocytes. Additionally, biomaterial scaffolds with or without stem cells are established to provide an effective environment for cardiac regeneration. Excipients loaded with growth factors, cytokines, oligonucleotides, and exosomes are found to help in such cardiac eventualities by promoting angiogenesis, cardiomyocyte proliferation, and reducing fibrosis, inflammation, and apoptosis. Injectable hydrogels, nanocarriers, cardiac patches, and vascular grafts are some excipients that can help the self-renewal in the damaged heart but are not understood well yet, in the context of used biomaterials. This review focuses on the use of various biomaterial-based approaches for the regeneration and repair of cardiac tissue postoccurrence of MI. It also discusses the outlines of cardiac remodeling and current therapeutic approaches after myocardial infarction, which are translationally important with respect to used biomaterials. It provides comprehensive details of the biomaterial-based regenerative approaches, which are currently the focus of the research for cardiac repair and regeneration and can provide a broad outline for further improvements.
Collapse
Affiliation(s)
- Ubaid Tariq
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Mahima Gupta
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Subhajit Pathak
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Ruchira Patil
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Akanksha Dohare
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| |
Collapse
|
31
|
Collagen Extraction from Animal Skin. BIOLOGY 2022; 11:biology11060905. [PMID: 35741426 PMCID: PMC9219788 DOI: 10.3390/biology11060905] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Simple Summary Collagen is useful in many applications including cosmetics, medicine, yarn production and packaging. Collagen can be recovered from skins of animals raised for meat. Here, we review methods for the extraction and purification of collagen from animal skins. Abstract Collagen is the most abundant structural protein in animals. It is the major component of skin. It finds uses in cosmetics, medicine, yarn production and packaging. This paper reviews the extraction of collagen from hides of most consumed animals for meat with the focus on literature published since 2000. The different pretreatment and extraction techniques that have been investigated for producing collagen from animal skins are reviewed. Pretreatment by enzymatic, acid or alkaline methods have been used. Extraction by chemical hydrolysis, salt solubilization, enzymatic hydrolysis, ultrasound assisted extraction and other methods are described. Post-extraction purification methods are also explained. This compilation will be useful for anyone wishing to use collagen as a resource and wanting to further improve the extraction and purification methods.
Collapse
|
32
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|
33
|
Extraction and Characterization of Bioactive Fish By-Product Collagen as Promising for Potential Wound Healing Agent in Pharmaceutical Applications: Current Trend and Future Perspective. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:9437878. [PMID: 35573824 PMCID: PMC9106525 DOI: 10.1155/2022/9437878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 12/29/2022]
Abstract
Collagen is a structural protein naturally found in mammals. Vertebrates and other connective tissues comprise about 30% of an animal’s overall protein. Collagen is used in a variety of applications including cosmetics, biomedical, biomaterials, food, and pharmaceuticals. The use of marine-based collagen as a substitute source is rapidly increasing due to its unique properties, which include the absence of religious restrictions, a low molecular weight, no risk of disease transmission, biocompatibility, and ease of absorption by the body system. This review discusses recent research on collagen extraction from marine-based raw material, specifically fish by-products. Furthermore, pretreatment on various sources of fish materials, followed by extraction methods, was described. The extraction procedures for acid soluble collagen (ASC) and pepsin soluble collagen (PSC) for fish collagen isolation are specifically discussed and compared. As a result, the efficacy of collagen yield was also demonstrated. The recent trend of extracting fish collagen from marine biomaterials has been summarized, with the potential to be exploited as a wound healing agent in pharmaceutical applications. Furthermore, background information on collagen and characterization techniques primarily related to the composition, properties, and structure of fish collagen are discussed.
Collapse
|
34
|
Timorshina S, Popova E, Osmolovskiy A. Sustainable Applications of Animal Waste Proteins. Polymers (Basel) 2022; 14:polym14081601. [PMID: 35458349 PMCID: PMC9027211 DOI: 10.3390/polym14081601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Currently, the growth of the global population leads to an increase in demand for agricultural products. Expanding the obtaining and consumption of food products results in a scale up in the amount of by-products formed, the development of processing methods for which is becoming an urgent task of modern science. Collagen and keratin make up a significant part of the animal origin protein waste, and the potential for their biotechnological application is almost inexhaustible. The specific fibrillar structure allows collagen and keratin to be in demand in bioengineering in various forms and formats, as a basis for obtaining hydrogels, nanoparticles and scaffolds for regenerative medicine and targeted drug delivery, films for the development of biodegradable packaging materials, etc. This review describes the variety of sustainable sources of collagen and keratin and the beneficial application multiformity of these proteins.
Collapse
|
35
|
Kumawat TK, Kumawat V, Sharma S, Sharma V, Pandit A, Kandwani N, Biyani M. Sustainable Green Methods for the Extraction of Biopolymers. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects. Int J Mol Sci 2021; 22:ijms222413329. [PMID: 34948124 PMCID: PMC8706311 DOI: 10.3390/ijms222413329] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Several collagen subtypes have been identified in hyaline articular cartilage. The main and most abundant collagens are type II, IX and XI collagens. The minor and less abundant collagens are type III, IV, V, VI, X, XII, XIV, XVI, XXII, and XXVII collagens. All these collagens have been found to play a key role in healthy cartilage, regardless of whether they are more or less abundant. Additionally, an exhaustive evaluation of collagen fibrils in a repaired cartilage tissue after a chondral lesion is necessary to determine the quality of the repaired tissue and even whether or not this repaired tissue is considered hyaline cartilage. Therefore, this review aims to describe in depth all the collagen types found in the normal articular cartilage structure, and based on this, establish the parameters that allow one to consider a repaired cartilage tissue as a hyaline cartilage.
Collapse
|
37
|
Li Y, Li M, Xu B, Li Z, Qi Y, Song Z, Zhao Q, Du B, Yang Y. The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers: A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
38
|
Mildenberger J, Remm M, Atanassova M. Self-assembly potential of bioactive peptides from Norwegian sea cucumber Parastichopus tremulus for development of functional hydrogels. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
|
40
|
Martín-Hernández R, Rodríguez-Canul R, Kantún-Moreno N, Olvera-Novoa MA, Medina-Contreras O, Garikoitz-Legarda C, Triviño JC, Zamora-Briseño JA, May-Solis V, Poot-Salazar A, Pérez-Vega JA, Gil-Zamorano J, Grant G, Dávalos A, Olivera-Castillo L. Comparative Transcriptomes of the Body Wall of Wild and Farmed Sea Cucumber Isostichopus badionotus. Int J Mol Sci 2021; 22:ijms22083882. [PMID: 33918680 PMCID: PMC8070510 DOI: 10.3390/ijms22083882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overfishing of sea cucumber Isostichopus badionotus from Yucatan has led to a major population decline. They are being captured as an alternative to traditional species despite a paucity of information about their health-promoting properties. The transcriptome of the body wall of wild and farmed I. badionotus has now been studied for the first time by an RNA-Seq approach. The functional profile of wild I. badionotus was comparable with data in the literature for other regularly captured species. In contrast, the metabolism of first generation farmed I. badionotus was impaired. This had multiple possible causes including a sub-optimal growth environment and impaired nutrient utilization. Several key metabolic pathways that are important in effective handling and accretion of nutrients and energy, or clearance of harmful cellular metabolites, were disrupted or dysregulated. For instance, collagen mRNAs were greatly reduced and deposition of collagen proteins impaired. Wild I. badionotus is, therefore, a suitable alternative to other widely used species but, at present, the potential of farmed I. badionotus is unclear. The environmental or nutritional factors responsible for their impaired function in culture remain unknown, but the present data gives useful pointers to the underlying problems associated with their aquaculture.
Collapse
Affiliation(s)
- Roberto Martín-Hernández
- Bioinformatics and Biostatistics Unit, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain;
| | - Rossanna Rodríguez-Canul
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Nuvia Kantún-Moreno
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Miguel A. Olvera-Novoa
- Laboratorio de Nutrición Acuícola, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (M.A.O.-N.); (V.M.-S.)
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico;
| | - Cristobal Garikoitz-Legarda
- Bioinformatics Department, Sistemas Genómicos S.L., Ronda de Guglielmo Marconi 6, 46980 Paterna, Spain; (C.G.-L.); (J.C.T.)
| | - Juan Carlos Triviño
- Bioinformatics Department, Sistemas Genómicos S.L., Ronda de Guglielmo Marconi 6, 46980 Paterna, Spain; (C.G.-L.); (J.C.T.)
| | - Jesús Alejandro Zamora-Briseño
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Víctor May-Solis
- Laboratorio de Nutrición Acuícola, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (M.A.O.-N.); (V.M.-S.)
| | - Alicia Poot-Salazar
- Centro Regional de Investigaciones Acuícola y Pesqueras en Yucalpetén, Instituto Nacional de Pesca y Acuacultura, Boulevard del Pescador S/N, Puerto de Abrigo, Progreso 97320, Yucatán, Mexico;
| | - Juan Antonio Pérez-Vega
- Laboratorio de Inmunología y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (R.R.-C.); (N.K.-M.); (J.A.Z.-B.); (J.A.P.-V.)
| | - Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain;
| | - George Grant
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Correspondence: (G.G.); (A.D.); (L.O.-C.)
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (G.G.); (A.D.); (L.O.-C.)
| | - Leticia Olivera-Castillo
- Laboratorio de Nutrición Acuícola, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico; (M.A.O.-N.); (V.M.-S.)
- Correspondence: (G.G.); (A.D.); (L.O.-C.)
| |
Collapse
|
41
|
Lo S, Fauzi MB. Current Update of Collagen Nanomaterials-Fabrication, Characterisation and Its Applications: A Review. Pharmaceutics 2021; 13:pharmaceutics13030316. [PMID: 33670973 PMCID: PMC7997363 DOI: 10.3390/pharmaceutics13030316] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
Tissue engineering technology is a promising alternative approach for improvement in health management. Biomaterials play a major role, acting as a provisional bioscaffold for tissue repair and regeneration. Collagen a widely studied natural component largely present in the extracellular matrix (ECM) of the human body. It provides mechanical stability with suitable elasticity and strength to various tissues, including skin, bone, tendon, cornea and others. Even though exogenous collagen is commonly used in bioscaffolds, largely in the medical and pharmaceutical fields, nano collagen is a relatively new material involved in nanotechnology with a plethora of unexplored potential. Nano collagen is a form of collagen reduced to a nanoparticulate size, which has its advantages over the common three-dimensional (3D) collagen design, primarily due to its nano-size contributing to a higher surface area-to-volume ratio, aiding in withstanding large loads with minimal tension. It can be produced through different approaches including the electrospinning technique to produce nano collagen fibres resembling natural ECM. Nano collagen can be applied in various medical fields involving bioscaffold insertion or fillers for wound healing improvement; skin, bone, vascular grafting, nerve tissue and articular cartilage regeneration as well as aiding in drug delivery and incorporation for cosmetic purposes.
Collapse
|
42
|
Senadheera TRL, Dave D, Shahidi F. Antioxidant potential and physicochemical properties of protein hydrolysates from body parts of North Atlantic sea cucumber (Cucumaria frondosa). FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-020-00049-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Protein hydrolysates were prepared from North Atlantic sea cucumber (Cucumaria frondosa) body wall (BW), and processing by-product flower (FL) and internal organs (IN). Sea cucumber proteins from these three tissues were hydrolysed with selected endopeptidases and exopeptidases. The enzymes used were Alcalase (A), and Corolase (C) as endopeptidases and Flavourzyme (F) with both endo- and exopeptidase functions. These were employed individually or in combination under controlled conditions. The hydrolysates so prepared were subsequently analysed for their antioxidant potential and functionalities in food systems for the first time. Hydrolysates treated with the combination of A and F exhibited the highest radical scavenging activity against DPPH and ABTS radicals. The highest metal chelation activity was observed for samples hydrolysed with the combination of enzymes (C + F and A + F). All treatments inhibited beta-carotene bleaching in an oil-in-water emulsion and TBARS production in a meat model system. In addition, sea cucumber protein hydrolysates were more than 75% soluble over a pH range of 2–12. Hydrolysed proteins were also effective in enhancing water holding capacity in a meat model system compared to their untreated counterparts. The amino acids of sea cucumber protein hydrolysates had desirable profiles with glutamic acid as the predominant component in samples analysed. These findings demonstrate the desirable functionalities of hydrolysates from North Atlantic sea cucumber and their potential for use as functional food ingredients.
Graphical abstract
Collapse
|
43
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|