1
|
Ma Y, Li P, Zhang Y, Guo X, Song Y, Yake Zhang, Guo Q, Li H, Wang Y, Wan J. Characteristics and performance of algal-bacterial granular sludge in photo-sequencing batch reactors under various substrate loading rates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122216. [PMID: 39153323 DOI: 10.1016/j.jenvman.2024.122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The algae-bacterial granular sludge (ABGS) technology has garnered significant attention due to its remarkable attributes of low carbon emissions. To investigate the performance of the ABGS system under various substrate loading rates, the parallel photo-sequencing batch reactors (P1 and P2) were set up. The results indicated that chlorophyll-a content and extracellular polymeric substance content were measured at 10.7 ± 0.3 mg/L and 61.4 ± 0.7 mg/g SS in P1 under relatively low substrate loading rate (0.9 kg COD/m3/d and 0.09 kg N/m3/d). Moreover, kinetic study revealed that the maximal specific P uptake rate for P1 reached 0.21 mg P/g SS/h under light conditions, and it achieved 0.078 mg P/g SS/h under dark conditions, highlighting the significant role on phosphorus removal played by algae in the ABGS system. The microbial analysis and scanning electron microscopy confirmed that filamentous algae predominantly colonize the surface in P1, whereas spherical bacteria dominate the surface of granular sludge in P2. Additionally, a diverse array of microorganisms including bacteria, algae, and metazoa such as Rotifers and Nematodes were observed in both systems, providing evidence for the establishment of a symbiotic system. This study not only confirmed the ability of ABGS for efficient N and P removal under different substrate loading conditions but also highlighted its potential to enhance the ecological diversity of the reaction system.
Collapse
Affiliation(s)
- Yifei Ma
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Pei Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yabin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiaoying Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yifan Song
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yake Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Qiong Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Haisong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
2
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
3
|
Li M, Li Z, Chen F, Shi B, Li Y, Zhu Z, Wang L, Jin Y. Effects of different oxidants on the behaviour of microplastic hetero-aggregates. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134286. [PMID: 38615649 DOI: 10.1016/j.jhazmat.2024.134286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Microplastic hetero-aggregates are stable forms of microplastics in the aqueous environment. However, when disinfecting water containing microplastic hetero-aggregates, the response of them in water to different oxidizing agents and the effect on water quality have not been reported. Our results showed that Ca(ClO)2, K2S2O8, and sodium percarbonate (SPC) treatment could lead to the disaggregation of microplastic hetero-aggregates as well as a rise in cell membrane permeability, which caused a large amount of organic matter to be released. When the amount of oxidant dosing is insufficient, the oxidant cannot completely degrade the released organic matter, resulting in DOC, DTN, DTP and other indicators being higher than before oxidation, thus causing secondary pollution of the water body. In comparison, K2FeO4 can purify the water body stably without destroying the microplastic hetero-aggregates, but it only weakly inhibits the toxic cyanobacteria Microcystis and Pseudanabaena, which may cause cyanobacterial bloom as well as algal toxin and odorant contamination in practical application. Compared with the other oxidizers, K2S2O8 provides better inhibition of toxic cyanobacteria and has better ecological safety. Therefore, when treating microplastic-containing water bodies, we should consider both water purification and ecological safety, and select appropriate oxidant types and dosages to optimize the water treatment.
Collapse
Affiliation(s)
- Minghui Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Zheng Li
- Shandong Academy for Environmental Planning, PR China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, PR China
| | - Feiyong Chen
- Resources and Environmental Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Bingfang Shi
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise 533000, PR China
| | - Yonggang Li
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise 533000, PR China
| | - Zhaoliang Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise 533000, PR China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environmental Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environmental Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China.
| |
Collapse
|
4
|
Tyagi S, Singh RK, Kumar A. Lipophilic bioactive compounds from thermophilic cyanobacterium Leptolyngbya sp. HNBGU-004: Implications for countering VRSA resistance. Heliyon 2024; 10:e29754. [PMID: 38681559 PMCID: PMC11046194 DOI: 10.1016/j.heliyon.2024.e29754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Extremophiles thrive in extreme conditions, showcasing rich and unexplored diversity. This resilience hints at the existence of novel biochemical pathways and unique bioactive compounds. In contrast, the issue of drug resistance and excessive misuse of antibiotics in various settings, such as healthcare, agriculture, and veterinary medicine, has contributed to the emergence and spread of drug-resistant microorganisms. In the present research, Leptolyngbya sp. HNBGU-004, was obtained from an extreme location, a hot water spring in the Garhwal Himalayan region of India. The lipophilic fraction derived from Leptolyngbya sp. HNBGU-004 exhibited significant inhibitory effects against vancomycin-resistant Staphylococcus aureus (VRSA), displaying a bactericidal concentration of 0.5 mg mL-1. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis of the lipophilic extract unveiled the major constituents. Leptolyngbya sp. HNBGU-004 holds significant promise as a primary source of potent anti-vancomycin-resistant S. aureus components. These findings emphasize the importance of Leptolyngbya sp. HNBGU-004 as a foundational source for use as both a synergistic and alternative agent against VRSA.
Collapse
Affiliation(s)
- Sachin Tyagi
- Department of Microbiology, School of Life Sciences and Technology, IIMT University, Meerut, UP, 250001, India
| | - Rahul Kunwar Singh
- Department of Microbiology, H.N.B Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Ashok Kumar
- Department of Biotechnology, School of Life Sciences and Technology, IIMT University, Meerut, UP, 250001, India
| |
Collapse
|
5
|
Huang W, Li S, Li S, Laanbroek HJ, Zhang Q. Pro- and eukaryotic keystone taxa as potential bio-indicators for the water quality of subtropical Lake Dongqian. Front Microbiol 2023; 14:1151768. [PMID: 37180236 PMCID: PMC10169824 DOI: 10.3389/fmicb.2023.1151768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
The microbial community plays an important role in the biogeochemical cycles in water aquatic ecosystems, and it is regulated by environmental variables. However, the relationships between microbial keystone taxa and water variables, which play a pivotal role in aquatic ecosystems, has not been clarified in detail. We analyzed the seasonal variation in microbial communities and co-occurrence network in the representative areas taking Lake Dongqian as an example. Both pro- and eukaryotic community compositions were more affected by seasons than by sites, and the prokaryotes were more strongly impacted by seasons than the eukaryotes. Total nitrogen, pH, temperature, chemical oxygen demand, dissolved oxygen and chlorophyll a significantly affected the prokaryotic community, while the eukaryotic community was significantly influenced by total nitrogen, ammonia, pH, temperature and dissolved oxygen. The eukaryotic network was more complex than that of prokaryotes, whereas the number of eukaryotic keystone taxa was less than that of prokaryotes. The prokaryotic keystone taxa belonged mainly to Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacteroidetes. It is noteworthy that some of the keystone taxa involved in nitrogen cycling are significantly related to total nitrogen, ammonia, temperature and chlorophyll a, including Polaromonas, Albidiferax, SM1A02 and Leptolyngbya so on. And the eukaryotic keystone taxa were found in Ascomycota, Choanoflagellida and Heterophryidae. The mutualistic pattern between pro- and eukaryotes was more evident than the competitive pattern. Therefore, it suggests that keystone taxa could be as bio-indicators of aquatic ecosystems.
Collapse
Affiliation(s)
- Weihong Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Shuantong Li
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Saisai Li
- Zhejiang Wanli University, Ningbo, China
| | - Hendrikus J. Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Qiufang Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
6
|
Čačković A, Kajan K, Selak L, Marković T, Brozičević A, Pjevac P, Orlić S. Hydrochemical and Seasonally Conditioned Changes of Microbial Communities in the Tufa-Forming Freshwater Network Ecosystem. mSphere 2023:e0060222. [PMID: 37097185 DOI: 10.1128/msphere.00602-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Freshwater network ecosystems consist of interconnected lotic and lentic environments within the same catchment area. Using Plitvice Lakes as an example, we studied the changes in environmental conditions and microbial communities (bacteria and fungi) that occur with downstream flow. Water samples from tributaries, interlake streams, connections of the cascading lakes, and the Korana River, the main outflow of the system, were characterized using amplicon sequencing of bacterial 16S rRNA and fungal ITS2 genes. Our results show that different environmental conditions and bacterial and fungal communities prevail among the three stream types within the freshwater network ecosystem during multiple sampling seasons. Microbial community differences were also confirmed along the longitudinal gradient between the most distant sampling sites. The higher impact of "mass effect" was evident during spring and winter, while "species sorting" and "environmental selection" was more pronounced during summer. Prokaryotic community assembly was majorly influenced by deterministic processes, while fungal community assembly was highly dominated by stochastic processes, more precisely by the undominated fraction, which is not dominated by any process. Despite the differences between stream types, the microbial community of Plitvice Lakes is shown to be very stable by the core microbiome that makes up the majority of stream communities. Our results suggest microbial community succession along the river-lake continuum of microbial communities in small freshwater network ecosystems with developed tufa barriers. IMPORTANCE Plitvice Lakes represent a rare freshwater ecosystem consisting of a complex network of lakes and waterfalls connecting them, as well as rivers and streams supplying water to the lake basin. The unique geomorphological, hydrological, biogeochemical, and biological phenomenon of Plitvice Lakes lies in the biodynamic process of forming tufa barriers. In addition to microbial communities, abiotic water factors also have a major influence on the formation of tufa. Therefore, it is important to understand how changes in environmental conditions and microbial community assembly affect the functioning of the ecosystem of a freshwater network with developed tufa barriers.
Collapse
Affiliation(s)
- Andrea Čačković
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Kajan
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Zagreb, Croatia
| | - Lorena Selak
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Andrijana Brozičević
- Scientific Research Center "Dr. Ivo Pevalek," Plitvice Lakes National Park, Plitvička Jezera, Croatia
| | - Petra Pjevac
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna, Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Zagreb, Croatia
| |
Collapse
|
7
|
Kulisch Á, Mándó Z, Sándor E, Lengyel Z, Illés A, Kósa J, Árvai K, Lakatos P, Tóbiás B, Papp M, Bender T. Evaluation of the effects of Lake Hévíz sulfur thermal water on skin microbiome in plaque psoriasis: An open label, pilot study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:661-673. [PMID: 36864227 DOI: 10.1007/s00484-023-02443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease. It is associated with changes in skin microbiome. The aim of this study was to evaluate how Lake Hévíz sulfur thermal water influences the composition of microbial communities that colonizes skin in patients with psoriasis. Our secondary objective was to investigate the effects of balneotherapy on disease activity. In this open label study, participants with plaque psoriasis underwent 30-min therapy sessions in Lake Hévíz, at a temperature of 36 °C, five times a week for 3 weeks. The skin microbiome samples were collected by swabbing method from two different areas (lesional skin-psoriatic plaque and non-lesional skin). From 16 patients, 64 samples were processed for a 16S rRNA sequence-based microbiome analysis. Outcome measures were alpha-diversity (Shannon, Simpson, and Chao1 indexes), beta-diversity (Bray-Curtis metric), differences in genus level abundances, and Psoriasis Area and Severity Index (PASI). Skin microbiome samples were collected at baseline, and immediately after treatment. Based on the visual examination of the employed alpha- and beta-diversity measures, no systematic difference based on sampling timepoint or sample location could be revealed in these regards. Balneotherapy in the unaffected area significantly increased the level of Leptolyngbya genus, and significantly decreased the level of Flavobacterium genus. A similar trend was revealed by the results of the psoriasis samples, but the differences were not statistically significant. In patients with mild psoriasis, a significant improvement was observed in PASI scores.
Collapse
Affiliation(s)
- Ágota Kulisch
- St. Andrew Hospital for Rheumatic Diseases, Schulhof Vilmos sétány 1., Hévíz, 8380, Hungary
| | - Zsuzsanna Mándó
- St. Andrew Hospital for Rheumatic Diseases, Schulhof Vilmos sétány 1., Hévíz, 8380, Hungary
| | - Enikő Sándor
- St. Andrew Hospital for Rheumatic Diseases, Schulhof Vilmos sétány 1., Hévíz, 8380, Hungary
| | - Zsuzsanna Lengyel
- Department of Dermatology, Venerology and Oncodermatology, Medical School, Clinical Center, University of Pécs, Akác utca 1., Pécs, 7632, Hungary
| | - Anett Illés
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, Korányi Sándor utca 2/a, Budapest, 1083, Hungary
| | - János Kósa
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, Korányi Sándor utca 2/a, Budapest, 1083, Hungary
- Endocrine Molecular Pathology Research Group, Eötvös Lóránd Research Network, Korányi Sándor utca 2/a, Budapest, 1083, Hungary
- Vascular Diagnostics Kft., Lechner Ödön fasor 3. C. Lház. 3. Em. 1., Budapest, 1095, Hungary
| | - Kristóf Árvai
- Vascular Diagnostics Kft., Lechner Ödön fasor 3. C. Lház. 3. Em. 1., Budapest, 1095, Hungary
| | - Péter Lakatos
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, Korányi Sándor utca 2/a, Budapest, 1083, Hungary
- Endocrine Molecular Pathology Research Group, Eötvös Lóránd Research Network, Korányi Sándor utca 2/a, Budapest, 1083, Hungary
- Vascular Diagnostics Kft., Lechner Ödön fasor 3. C. Lház. 3. Em. 1., Budapest, 1095, Hungary
| | - Bálint Tóbiás
- Endocrine Molecular Pathology Research Group, Eötvös Lóránd Research Network, Korányi Sándor utca 2/a, Budapest, 1083, Hungary
- Vascular Diagnostics Kft., Lechner Ödön fasor 3. C. Lház. 3. Em. 1., Budapest, 1095, Hungary
| | - Márton Papp
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, István utca 2., Budapest, 1078, Hungary
| | - Tamás Bender
- Polyclinic of the Hospitaller Brothers of St John of God, Árpád fejedelem útja 7., Budapest, 1023, Hungary.
| |
Collapse
|
8
|
Parsaeimehr A, Ahmed II, Deumaga MLK, Hankoua B, Ozbay G. Enhancement in phycobiliprotein accumulation in Aphanothece sp. using different carbon sources and flashing frequency. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
Kaluzhnaya OV, Itskovich VB. Features of Diversity of Polyketide Synthase Genes in the Community of Freshwater Sponge Baikalospongia fungiformis. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Gara-Ali M, Zili F, Hosni K, Ben Ouada H, Ben-Mahrez K. Lipophilic extracts of the thermophilic cyanobacterium Leptolyngbya sp. and chlorophyte Graesiella sp. and their potential use as food and anticancer agents. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria. Mar Drugs 2021; 19:md19010020. [PMID: 33418911 PMCID: PMC7825088 DOI: 10.3390/md19010020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/29/2022] Open
Abstract
Microbial natural products are important for the understanding of microbial interactions, chemical defense and communication, and have also served as an inspirational source for numerous pharmaceutical drugs. Tropical marine cyanobacteria have been highlighted as a great source of new natural products, however, few reports have appeared wherein a multi-omics approach has been used to study their natural products potential (i.e., reports are often focused on an individual natural product and its biosynthesis). This study focuses on describing the natural product genetic potential as well as the expressed natural product molecules in benthic tropical cyanobacteria. We collected from several sites around the world and sequenced the genomes of 24 tropical filamentous marine cyanobacteria. The informatics program antiSMASH was used to annotate the major classes of gene clusters. BiG-SCAPE phylum-wide analysis revealed the most promising strains for natural product discovery among these cyanobacteria. LCMS/MS-based metabolomics highlighted the most abundant molecules and molecular classes among 10 of these marine cyanobacterial samples. We observed that despite many genes encoding for peptidic natural products, peptides were not as abundant as lipids and lipopeptides in the chemical extracts. Our results highlight a number of highly interesting biosynthetic gene clusters for genome mining among these cyanobacterial samples.
Collapse
|