1
|
Weiss MB, Borges RM, Sullivan P, Domingues JPB, da Silva FHS, Trindade VGS, Luo S, Orjala J, Crnkovic CM. Chemical diversity of cyanobacterial natural products. Nat Prod Rep 2024. [PMID: 39540765 DOI: 10.1039/d4np00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Covering: 2010 to 2023Cyanobacterial natural products are a diverse group of molecules with promising biotechnological applications. This review examines the chemical diversity of 995 cyanobacterial metabolites reported from 2010 to 2023. A computational analysis using similarity networking was applied to visualize the chemical space and to compare the diversity of cyanobacterial metabolites among taxonomic orders and environmental sources. Key examples are highlighted, detailing their sources, biological activities, and discovery processes.
Collapse
Affiliation(s)
- Márcio B Weiss
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Ricardo M Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Peter Sullivan
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123, Saarbrücken, Germany
| | - João P B Domingues
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Francisco H S da Silva
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Victória G S Trindade
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, 60612, Chicago, IL, USA
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Ryu B, Glukhov E, Teixeira TR, Caffrey CR, Madiyan S, Joseph V, Avalon NE, Leber CA, Naman CB, Gerwick WH. The Kavaratamides: Discovery of Linear Lipodepsipeptides from the Marine Cyanobacterium Moorena bouillonii Using a Comparative Chemogeographic Analysis. JOURNAL OF NATURAL PRODUCTS 2024; 87:1601-1610. [PMID: 38832890 PMCID: PMC11217931 DOI: 10.1021/acs.jnatprod.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Kavaratamide A (1), a new linear lipodepsipeptide possessing an unusual isopropyl-O-methylpyrrolinone moiety, was discovered from the tropical marine filamentous cyanobacterium Moorena bouillonii collected from Kavaratti, India. A comparative chemogeographic analysis of M. bouillonii collected from six different geographical regions led to the prioritized isolation of this metabolite from India as distinctive among our data sets. AI-based structure annotation tools, including SMART 2.1 and DeepSAT, accelerated the structure elucidation by providing useful structural clues, and the full planar structure was elucidated based on comprehensive HRMS, MS/MS fragmentation, and NMR data interpretation. Subsequently, the absolute configuration of 1 was determined using advanced Marfey's analysis, modified Mosher's ester derivatization, and chiral-phase HPLC. The structures of kavaratamides B (2) and C (3) are proposed based on a detailed analysis of their MS/MS fragmentations. The biological activity of kavaratamide A was also investigated and found to show moderate cytotoxicity to the D283-medullablastoma cell line.
Collapse
Affiliation(s)
- Byeol Ryu
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Evgenia Glukhov
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Thaiz R. Teixeira
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Conor R. Caffrey
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Saranya Madiyan
- National
Centre for Aquatic Animal Health, Cochin
University of Science and Technology, Kochi, Kerala 682016, India
| | - Valsamma Joseph
- National
Centre for Aquatic Animal Health, Cochin
University of Science and Technology, Kochi, Kerala 682016, India
| | - Nicole E. Avalon
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Christopher A. Leber
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - C. Benjamin Naman
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department
of Science and Conservation, San Diego Botanic
Garden, 300 Quail Gardens
Drive, Encinitas, California 92024, United States
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
3
|
He Y, Suyama TL, Kim H, Glukhov E, Gerwick WH. Discovery of Novel Tyrosinase Inhibitors From Marine Cyanobacteria. Front Microbiol 2022; 13:912621. [PMID: 35910604 PMCID: PMC9329053 DOI: 10.3389/fmicb.2022.912621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Tyrosinase, an important oxidase involved in the primary immune response in humans, can sometimes become problematic as it can catalyze undesirable oxidation reactions. Therefore, for decades there has been a strong pharmaceutical interest in the discovery of novel inhibitors of this enzyme. Recent studies have also indicated that tyrosinase inhibitors can potentially be used in the treatment of melanoma cancer. Over the years, many new tyrosinase inhibitors have been discovered from various natural sources; however, marine natural products (MNPs) have contributed only a small number of promising candidates. Therefore, in this study we focused on the discovery of new MNP tyrosinase inhibitors of marine cyanobacterial and algal origins. A colorimetric tyrosinase inhibitory assay was used to screen over 4,500 marine extracts against mushroom tyrosinase (A. bisporus). Our results revealed that scytonemin monomer (ScyM), a pure compound from our compound library and also the monomeric last-step precursor in the biosynthesis of the well-known cyanobacterial sunscreen pigment “scytonemin,” consistently showed the highest tyrosinase inhibitory score. Determination of the half maximal inhibitory concentration (IC50) further indicated that ScyM is more potent than the commonly used commercial inhibitor standard “kojic acid” (KA; IC50 of ScyM: 4.90 μM vs. IC50 of KA: 11.31 μM). After a scaled-up chemical synthesis of ScyM as well as its O-methyl analog (ScyM-OMe), we conducted a series of follow-up studies on their structures, inhibitory properties, and mode of inhibition. Our results supported ScyM as the second case ever of a novel tyrosinase inhibitory compound based on a marine cyanobacterial natural product. The excellent in vitro performance of ScyM makes it a promising candidate for applications such as a skin-whitening agent or an adjuvant therapy for melanoma cancer treatment.
Collapse
Affiliation(s)
- Yifan He
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Yifan He,
| | - Takashi L. Suyama
- Department of Chemistry and Forensic Science, Waynesburg University, Waynesburg, PA, United States
- Takashi L. Suyama,
| | - Hyunwoo Kim
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
- College of Pharmacy, Dongguk University, Goyang, South Korea
| | - Evgenia Glukhov
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- William H. Gerwick,
| |
Collapse
|
4
|
Li T, Xi C, Yu Y, Wang N, Wang X, Iwasaki A, Fang F, Ding L, Li S, Zhang W, Yuan Y, Wang T, Yan X, He S, Cao Z, Naman CB. Targeted Discovery of Amantamide B, an Ion Channel Modulating Nonapeptide from a South China Sea Oscillatoria Cyanobacterium. JOURNAL OF NATURAL PRODUCTS 2022; 85:493-500. [PMID: 34986303 DOI: 10.1021/acs.jnatprod.1c00983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amantamide B (1) is a new linear nonapeptide analogue of the cyanobacterial natural product amantamide A (2), and both have methyl ester and butanamide termini. These compounds were discovered in this study from the organic extract of a tropical marine filamentous cyanobacterium, Oscillatoria sp., collected around the Paracel Islands in the South China Sea. The use of LC-MS/MS molecular networking for sample prioritization and as an analytical dereplication tool facilitated the targeted isolation of 1 and 2. These molecules were characterized by spectroscopy and spectrometry, and configurational assignments were determined using chemical degradation and chiral-phase HPLC analysis. Compounds 1 and 2 modulated spontaneous calcium oscillations without notable cytotoxicity at 10 μM in short duration in vitro testing on primary cultured neocortical neurons, a model system that evaluates neuronal excitability and/or the potential activity on Ca2+ signaling. Both molecules were also found to be moderately cytotoxic in longer duration bioassays, with in vitro IC50 values of 1-10 μM against CCRF-CEM human T lymphoblastoid cells and U937 human histiocytic lymphoma cells. These formerly undiscovered bioactivities of known compound 2 expand upon its previously reported function as a selective CXCR7 agonist among 168 GPCR targets.
Collapse
Affiliation(s)
- Te Li
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Chuchu Xi
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| | - Yiyi Yu
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Xiao Wang
- Department of Pathology and Pathogen Biology, College of Medicine, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Arihiro Iwasaki
- Department of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fang Fang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Shuang Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Weiyan Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Ye Yuan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| |
Collapse
|
5
|
Advances in Biosynthesis of Natural Products from Marine Microorganisms. Microorganisms 2021; 9:microorganisms9122551. [PMID: 34946152 PMCID: PMC8706298 DOI: 10.3390/microorganisms9122551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.
Collapse
|
6
|
Liu X, Dong Y, Alizade V, Khutsishvili M, Atha D, Borris RP, Clark BR. Molecular networking-driven isolation of 8'-Glycosylated biscoumarins from Cruciata articulata. PHYTOCHEMISTRY 2021; 190:112856. [PMID: 34233243 DOI: 10.1016/j.phytochem.2021.112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
A molecular networking-guided phytochemical investigation of Cruciata articulata led to the isolation of five unreported biscoumarins, four of which were characterized by a shared 6-methoxy-7,8'-dihydroxy-3,7'-biscoumarin aglycone. These were isolated alongside two known coumarin glycosides, daphnetin-8-O-β-D-glucoside and 6'-acetoxy-daphnetin-8-O-β-D-glucoside. Their structures were elucidated by extensive 1D and 2D NMR experiments, in combination with chemical transformation and MS/MS fragmentation analysis. Four of the biscoumarins were glycosylated at the 8' position: these are the first examples of this substitution pattern to be described in nature. All compounds were tested for cytotoxic, antimicrobial, anti-inflammatory, and α-glucosidase inhibitory properties, but did not display significant activity.
Collapse
Affiliation(s)
- Xueling Liu
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Yuyu Dong
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Valida Alizade
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, AZ1102, Azerbaijan
| | - Manana Khutsishvili
- National Herbarium of Georgia, Ilia State University, Tbilisi, 100995, Georgia
| | | | - Robert P Borris
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Ding L, Bar-Shalom R, Aharonovich D, Kurisawa N, Patial G, Li S, He S, Yan X, Iwasaki A, Suenaga K, Zhu C, Luo H, Tian F, Fares F, Naman CB, Luzzatto-Knaan T. Metabolomic Characterization of a cf. Neolyngbya Cyanobacterium from the South China Sea Reveals Wenchangamide A, a Lipopeptide with In Vitro Apoptotic Potential in Colon Cancer Cells. Mar Drugs 2021; 19:md19070397. [PMID: 34356822 PMCID: PMC8307421 DOI: 10.3390/md19070397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolomics can be used to study complex mixtures of natural products, or secondary metabolites, for many different purposes. One productive application of metabolomics that has emerged in recent years is the guiding direction for isolating molecules with structural novelty through analysis of untargeted LC-MS/MS data. The metabolomics-driven investigation and bioassay-guided fractionation of a biomass assemblage from the South China Sea dominated by a marine filamentous cyanobacteria, cf. Neolyngbya sp., has led to the discovery of a natural product in this study, wenchangamide A (1). Wenchangamide A was found to concentration-dependently cause fast-onset apoptosis in HCT116 human colon cancer cells in vitro (24 h IC50 = 38 μM). Untargeted metabolomics, by way of MS/MS molecular networking, was used further to generate a structural proposal for a new natural product analogue of 1, here coined wenchangamide B, which was present in the organic extract and bioactive sub-fractions of the biomass examined. The wenchangamides are of interest for anticancer drug discovery, and the characterization of these molecules will facilitate the future discovery of related natural products and development of synthetic analogues.
Collapse
Affiliation(s)
- Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (L.D.); (G.P.); (S.L.); (S.H.); (X.Y.)
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel;
| | - Rinat Bar-Shalom
- Department of Human Biology, Faculty of Life Sciences, University of Haifa, Haifa 31905, Israel; (R.B.-S.); (F.F.)
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel;
| | - Naoaki Kurisawa
- Department of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan; (N.K.); (A.I.); (K.S.)
| | - Gaurav Patial
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (L.D.); (G.P.); (S.L.); (S.H.); (X.Y.)
| | - Shuang Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (L.D.); (G.P.); (S.L.); (S.H.); (X.Y.)
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (L.D.); (G.P.); (S.L.); (S.H.); (X.Y.)
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (L.D.); (G.P.); (S.L.); (S.H.); (X.Y.)
| | - Arihiro Iwasaki
- Department of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan; (N.K.); (A.I.); (K.S.)
- Key Laboratory of Medicinal and Edible Plant Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571126, China; (C.Z.); (H.L.); (F.T.)
| | - Kiyotake Suenaga
- Department of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan; (N.K.); (A.I.); (K.S.)
- Key Laboratory of Medicinal and Edible Plant Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571126, China; (C.Z.); (H.L.); (F.T.)
| | - Chengcong Zhu
- Key Laboratory of Medicinal and Edible Plant Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571126, China; (C.Z.); (H.L.); (F.T.)
| | - Haixi Luo
- Key Laboratory of Medicinal and Edible Plant Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571126, China; (C.Z.); (H.L.); (F.T.)
| | - Fuli Tian
- Key Laboratory of Medicinal and Edible Plant Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571126, China; (C.Z.); (H.L.); (F.T.)
| | - Fuad Fares
- Department of Human Biology, Faculty of Life Sciences, University of Haifa, Haifa 31905, Israel; (R.B.-S.); (F.F.)
| | - C. Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (L.D.); (G.P.); (S.L.); (S.H.); (X.Y.)
- Key Laboratory of Medicinal and Edible Plant Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571126, China; (C.Z.); (H.L.); (F.T.)
- Correspondence: (C.B.N.); (T.L.-K.)
| | - Tal Luzzatto-Knaan
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel;
- Correspondence: (C.B.N.); (T.L.-K.)
| |
Collapse
|
8
|
Liang X, Chen QY, Seabra GM, Matthew S, Kwan JC, Li C, Paul VJ, Luesch H. Bifunctional Doscadenamides Activate Quorum Sensing in Gram-Negative Bacteria and Synergize with TRAIL to Induce Apoptosis in Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:779-789. [PMID: 33480689 PMCID: PMC8209783 DOI: 10.1021/acs.jnatprod.0c01003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
New cyanobacteria-derived bifunctional analogues of doscadenamide A, a LasR-dependent quorum sensing (QS) activator in Pseudomonas aeruginosa, characterized by dual acylation of the pyrrolinone core structure and the pendant side chain primary amine to form an imide/amide hybrid are reported. The identities of doscadenamides B-J were confirmed through total synthesis and a strategic focused library with different acylation and unsaturation patterns was created. Key molecular interactions for binding with LasR and a functional response through mutation studies coupled with molecular docking were identified. The structure-activity relationships (SARs) were probed in various Gram-negative bacteria, including P. aeruginosa and Vibrio harveyi, indicating that the pyrrolinone-N acyl chain is critical for full agonist activity, while the other acyl chain is dispensable or can result in antagonist activity, depending on the bacterial system. Since homoserine lactone (HSL) quorum sensing activators have been shown to act in synergy with TRAIL to induce apoptosis in cancer cells, selected doscadenamides were tested in orthogonal eukaryotic screening systems. The most potent QS agonists, doscadenamides S10-S12, along with doscadenamides F and S4 with partial or complete saturation of the acyl side chains, exhibited the most pronounced synergistic effects with TRAIL in triple negative MDA-MB-231 breast cancer cells. The overall correlation of the SAR with respect to prokaryotic and eukaryotic targets may hint at coevolutionary processes and intriguing host-bacteria relationships. The doscadenamide scaffold represents a non-HSL template for combination therapy with TRAIL pathway stimulators.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Gustavo M. Seabra
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Susan Matthew
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Jason C. Kwan
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|