1
|
Choudhury A, Ojha PK, Ray S. Hazards of antiviral contamination in water: Dissemination, fate, risk and their impact on fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135087. [PMID: 38964042 DOI: 10.1016/j.jhazmat.2024.135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.
Collapse
Affiliation(s)
- Abhigyan Choudhury
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Probir Kumar Ojha
- Drug Discovery and Development (DDD) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
2
|
Khammassi M, Polito F, Caputo L, Abidi A, Mabrouk Y, Nazzaro F, Fratianni F, Anouar EH, Snoussi M, Noumi E, Amri I, De Feo V. Antibacterial, antibiofilm, and chemical profiles of Ammi visnaga L. and Foeniculum vulgare mill. Essential oils, and ADMET, molecular docking investigation of essential oils major components. Fitoterapia 2024; 177:106047. [PMID: 38838824 DOI: 10.1016/j.fitote.2024.106047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
This study determined chemical profiles, antibacterial and antibiofilm activities of the essential oils (EOs) obtained by A. visnaga aerial parts and F. vulgare fruits. Butanoic acid, 2-methyl-, 3-methylbutyl ester (38.8%), linalyl propionate (34.7%) and limonene (8.5%) resulted as main constituents of A. visnaga EO. In F. vulgare EO trans-anethole (76.9%) and fenchone (14.1%) resulted as main components. The two EOs were active against five bacterial strains (Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus) at different degrees. The MIC values ranged from 5 ± 2 to 10 ± 2 μL/mL except for S. aureus (MIC >20 μL/mL). EOs exhibited inhibitory effect on the formation of biofilm up to 53.56 and 48.04% against E. coli and A. baumannii, respectively and activity against bacterial metabolism against A. baumannii and E. coli, with biofilm-inhibition ranging from 61.73 to 73.55%. The binding affinity of the identified components was estimated by docking them into the binding site of S. aureus gyrase (PDB code 2XCT) and S. aureus tyrosyl-tRNA synthetase (PDB code 1JIJ). trans-Anethole and butanoic acid, 2-methyl-, 3-methylbutyl ester showed relatively moderate binding interactions with the amino acid residues of S. aureus tyrosyl-tRNA synthetase. In addition, almost all predicted compounds possess good pharmacokinetic properties with no toxicity, being inactive for cytotoxicity, carcinogenicity, hepatotoxicity, mutagenicity and immunotoxicity parameters. The results encourage the use of these EOs as natural antibacterial agents in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Marwa Khammassi
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Anouar Abidi
- Laboratory of Functional Physiology and Valorization of Bio-Resources of the Higher Institute of Biotechnology of Béja, University of Jendouba, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia.
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy.
| | - Florinda Fratianni
- Institute of Food Science, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy.
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 2440, Saudi Arabia; Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia.
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 2440, Saudi Arabia; Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia.
| | - Ismail Amri
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia; Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy; Institute of Food Science, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy.
| |
Collapse
|
3
|
Zhang Y, Chen T, Chen D, Liang W, Lu X, Zhao C, Xu G. Suspect and nontarget screening of mycotoxins and their modified forms in wheat products based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2023; 1708:464370. [PMID: 37717452 DOI: 10.1016/j.chroma.2023.464370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Various forms of mycotoxins commonly exist in food and pose a significant risk to human health. Here a comprehensive suspect and nontarget screening strategy for both parent and modified mycotoxins was developed using ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLCHRMS). We constructed an in-house MS/MS database containing 82 mycotoxins in 8 categories. Then fragmentation characteristics of different classes of mycotoxins were rapidly extracted by a Python program "Fragmentation pattern screener (FPScreener)" and nontarget screening rules were determined by analyzing the frequencies and average intensities of fragmentation characteristics. Using the suspect and nontarget screening strategy, we successfully identified six parent mycotoxins and eight modified mycotoxins with different confidence levels in contaminated wheat and flour samples. This strategy enables screening of unknown parents and modified mycotoxins in food matrices with corresponding fragmentation characteristics.
Collapse
Affiliation(s)
- Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Chen
- Food Safety Research Unit of Chinese Academy of Medical Science (2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| |
Collapse
|
4
|
Rovetto EI, Luz C, La Spada F, Meca G, Riolo M, Cacciola SO. Diversity of Mycotoxins and Other Secondary Metabolites Recovered from Blood Oranges Infected by Colletotrichum, Alternaria, and Penicillium Species. Toxins (Basel) 2023; 15:407. [PMID: 37505676 PMCID: PMC10467077 DOI: 10.3390/toxins15070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
This study identified secondary metabolites produced by Alternaria alternata, Colletotrichum gloeosporioides, and Penicillium digitatum in fruits of two blood orange cultivars before harvest. Analysis was performed by UHPLC-Q-TOF-MS. Three types of fruits were selected, asymptomatic, symptomatic showing necrotic lesions caused by hail, and mummified. Extracts from peel and juice were analyzed separately. Penicillium digitatum was the prevalent species recovered from mummified and hail-injured fruits. Among 47 secondary metabolites identified, 16, 18, and 13 were of A. alternata, C. gloeosporioides, and P. digitatum, respectively. Consistently with isolations, indicating the presence of these fungi also in asymptomatic fruits, the metabolic profiles of the peel of hail-injured and asymptomatic fruits did not differ substantially. Major differences were found in the profiles of juice from hail-injured and mummified fruits, such as a significant higher presence of 5,4-dihydroxy-3,7,8-trimethoxy-6C-methylflavone and Atrovenetin, particularly in the juice of mummified fruits of the Tarocco Lempso cultivar. Moreover, the mycotoxins patulin and Rubratoxin B were detected exclusively in mummified fruits. Patulin was detected in both the juice and peel, with a higher relative abundance in the juice, while Rubratoxin B was detected only in the juice. These findings provide basic information for evaluating and preventing the risk of contamination by mycotoxins in the citrus fresh fruit supply chain and juice industry.
Collapse
Affiliation(s)
- Ermes Ivan Rovetto
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Mario Riolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| |
Collapse
|
5
|
de la Fuente B, Aspevik T, Barba FJ, Kousoulaki K, Berrada H. Mineral Bioaccessibility and Antioxidant Capacity of Protein Hydrolysates from Salmon ( Salmo salar) and Mackerel ( Scomber scombrus) Backbones and Heads. Mar Drugs 2023; 21:md21050294. [PMID: 37233488 DOI: 10.3390/md21050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Information on the bioaccessibility of minerals is essential to consider a food ingredient as a potential mineral fortifier. In this study, the mineral bioaccessibility of protein hydrolysates from salmon (Salmo salar) and mackerel (Scomber scombrus) backbones and heads was evaluated. For this purpose, the hydrolysates were submitted to simulated gastrointestinal digestion (INFOGEST method), and the mineral content was analyzed before and after the digestive process. Ca, Mg, P, Fe, Zn, and Se were then determined using an inductively coupled plasma spectrometer mass detector (ICP-MS). The highest bioaccessibility of minerals was found in salmon and mackerel head hydrolysates for Fe (≥100%), followed by Se in salmon backbone hydrolysates (95%). The antioxidant capacity of all protein hydrolysate samples, which was measured by Trolox Equivalent Antioxidant Capacity (TEAC), increased (10-46%) after in vitro digestion. The heavy metals As, Hg, Cd, and Pb were determined (ICP-MS) in the raw hydrolysates to confirm the harmlessness of these products. Except for Cd in mackerel hydrolysates, all toxic elements were below the legislation levels for fish commodities. These results suggest the possibility of using protein hydrolysates from salmon and mackerel backbones and heads for food mineral fortification, as well as the need to verify their safety.
Collapse
Affiliation(s)
- Beatriz de la Fuente
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda Vicent Andrés Estellés, 46100 València, Spain
| | - Tone Aspevik
- Department of Nutrition and Feed Technology, Nofima, 5141 Fyllingsdalen, Norway
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda Vicent Andrés Estellés, 46100 València, Spain
| | - Katerina Kousoulaki
- Department of Nutrition and Feed Technology, Nofima, 5141 Fyllingsdalen, Norway
| | - Houda Berrada
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda Vicent Andrés Estellés, 46100 València, Spain
| |
Collapse
|
6
|
Lemée P, Fessard V, Habauzit D. Prioritization of mycotoxins based on mutagenicity and carcinogenicity evaluation using combined in silico QSAR methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121284. [PMID: 36804886 DOI: 10.1016/j.envpol.2023.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Mycotoxins and their metabolites are a family of compounds that contains a great diversity of both structure and biological properties. Information on their toxicity is spread within several databases and in scientific literature. Due to the number of molecules and their structure diversity, the cost and time required for hazard evaluation of each compound is unrealistic. In that purpose, new approach methodologies (NAMs) can be applied to evaluate such large set of molecules. Among them, quantitative structure-activity relationship (QSAR) in silico models could be useful to predict the mutagenic and carcinogenic properties of mycotoxins. First, a complete list of 904 mycotoxins and metabolites was built. Then, some known mycotoxins were used to determine the best QSAR tools for mutagenicity and carcinogenicity predictions. The best tool was further applied to the whole list of 904 mycotoxins. At the end, 95 mycotoxins were identified as both mutagen and carcinogen and should be prioritized for further evaluation.
Collapse
Affiliation(s)
- Pierre Lemée
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Toxicology of Contaminants Unit, Fougères, France
| | - Valérie Fessard
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Toxicology of Contaminants Unit, Fougères, France
| | - Denis Habauzit
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Toxicology of Contaminants Unit, Fougères, France.
| |
Collapse
|
7
|
Berntssen MHG, Fjeldal PG, Gavaia PJ, Laizé V, Hamre K, Donald CE, Jakobsen JV, Omdal Å, Søderstrøm S, Lie KK. Dietary beauvericin and enniatin B exposure cause different adverse health effects in farmed Atlantic salmon. Food Chem Toxicol 2023; 174:113648. [PMID: 36736876 DOI: 10.1016/j.fct.2023.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
The extensive use of plant ingredients in novel aquafeeds have introduced mycotoxins to the farming of seafood. The emerging enniatin B (ENNB) and beauvericin (BEA) mycotoxins have been found in the novel aquafeeds and farmed fish. Little is known about the potential toxicity of ENNs and BEA in farmed fish and their feed-to-organ transfer. Atlantic salmon (Salmo salar) pre-smolt (75.3 ± 8.10 g) were fed four graded levels of spiked chemical pure ENNB or BEA feeds for three months, in triplicate tanks. Organismal adverse health end-point assessment included intestinal function (protein digestibility), disturbed hematology (red blood cell formation), bone formation (spinal deformity), overall energy use (feed utilization), and lipid oxidative status (vitamin E). Both dietary BEA and ENNB had a low (<∼0.01%) transfer to organs (kidney > liver > brain > muscle), with a higher transfer for ENNB compared to BEA. BEA caused a growth reduction combined with a decreased protein digestion and feed conversion rate- ENNB caused a stunted growth, unrelated to feed utilization capacity. In addition, ENNB caused anemia while BEA gave an oxidative stress response. Lower bench-mark dose regression assessment showed that high background levels of ENNB in commercial salmon feed could pose a risk for animal health, but not in the case of BEA.
Collapse
Affiliation(s)
| | - P G Fjeldal
- Institute of Marine Research, Bergen, Norway
| | - P J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - V Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - K Hamre
- Institute of Marine Research, Bergen, Norway
| | - C E Donald
- Institute of Marine Research, Bergen, Norway
| | - J V Jakobsen
- Cargill Aqua Nutrition Innovation Center, Dirdal, Norway
| | - Å Omdal
- Institute of Marine Research, Bergen, Norway
| | | | - K K Lie
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
8
|
Mycotoxins in Seafood: Occurrence, Recent Development of Analytical Techniques and Future Challenges. SEPARATIONS 2023. [DOI: 10.3390/separations10030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
The co-occurrence of mycotoxigenic fungi and mycotoxins in aquatic food commodities has recently become a source of severe worldwide food insecurity since these toxicants may damage human health. The consumption of aquatic food itself represents a relatively novel and non-negligible source of mycotoxins. Mycotoxins in seafood lead to important human genotoxins, carcinogens, and immunosuppressors. Consequently, it is crucial to quantify and characterize these contaminants in aquatic food products subject to extensive consumption and develop new regulations. The present paper provides an overview of recent advancements in liquid chromatography and mass spectrometry and the coupling of these techniques for identifying and characterizing mycotoxins in various fresh, comestible, and treated marine products. The disposable data display that a multiplicity of fungal species and further mycotoxins have been detected in seafood, comprising aflatoxins, ochratoxins, fumonisins, deoxynivalenol, zearalenone, and trichothecenes. In addition, a wider and up-to-date overview of global occurrence surveys of mycotoxin occurrence in seafood in 2017–2022 is explored. In this regard, the predominant occurrence of enniatins has been documented in seafood products. Likewise, special attention has been given to current EU seafood legal and existing national regulations of mycotoxins in seafood. In this way, rigorous national and international guidelines are needed for palpable and effective measures in the future. Nevertheless, controlling mycotoxins in aquatic foods is an ambitious aim for scientists and industry stakeholders to ensure sustainable global food safety.
Collapse
|
9
|
The use of machine learning modeling, virtual screening, molecular docking, and molecular dynamics simulations to identify potential VEGFR2 kinase inhibitors. Sci Rep 2022; 12:18825. [PMID: 36335233 PMCID: PMC9637137 DOI: 10.1038/s41598-022-22992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022] Open
Abstract
Targeting the signaling pathway of the Vascular endothelial growth factor receptor-2 is a promising approach that has drawn attention in the quest to develop novel anti-cancer drugs and cardiovascular disease treatments. We construct a screening pipeline using machine learning classification integrated with similarity checks of approved drugs to find new inhibitors. The statistical metrics reveal that the random forest approach has slightly better performance. By further similarity screening against several approved drugs, two candidates are selected. Analysis of absorption, distribution, metabolism, excretion, and toxicity, along with molecular docking and dynamics are performed for the two candidates with regorafenib as a reference. The binding energies of molecule1, molecule2, and regorafenib are - 89.1, - 95.3, and - 87.4 (kJ/mol), respectively which suggest candidate compounds have strong binding to the target. Meanwhile, the median lethal dose and maximum tolerated dose for regorafenib, molecule1, and molecule2 are predicted to be 800, 1600, and 393 mg/kg, and 0.257, 0.527, and 0.428 log mg/kg/day, respectively. Also, the inhibitory activity of these compounds is predicted to be 7.23 and 7.31, which is comparable with the activity of pazopanib and sorafenib drugs. In light of these findings, the two compounds could be further investigated as potential candidates for anti-angiogenesis therapy.
Collapse
|
10
|
Underreported Human Exposure to Mycotoxins: The Case of South Africa. Foods 2022; 11:foods11172714. [PMID: 36076897 PMCID: PMC9455755 DOI: 10.3390/foods11172714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
South Africa (SA) is a leading exporter of maize in Africa. The commercial maize farming sector contributes to about 85% of the overall maize produced. More than 33% of South Africa’s population live in rural settlements, and their livelihoods depend entirely on subsistence farming. The subsistence farming system promotes fungal growth and mycotoxin production. This review aims to investigate the exposure levels of the rural population of South Africa to dietary mycotoxins contrary to several reports issued concerning the safety of South African maize. A systematic search was conducted using Google Scholar. Maize is a staple food in South Africa and consumption rates in rural and urban communities are different, for instance, intake may be 1–2 kg/person/day and 400 g/person/day, respectively. Commercial and subsistence maize farming techniques are different. There exist differences influencing the composition of mycotoxins in food commodities from both sectors. Depending on the levels of contamination, dietary exposure of South Africans to mycotoxins is evident in the high levels of fumonisins (FBs) that have been detected in SA home-grown maize. Other potential sources of exposure to mycotoxins, such as carryover effects from animal products and processed foods, were reviewed. The combined effects between FBs and aflatoxins (AFs) have been reported in humans/animals and should not be ignored, as sporadic breakouts of aflatoxicosis have been reported in South Africa. These reports are not a true representation of the entire country as reports from the subsistence-farming rural communities show high incidence of maize contaminated with both AFs and FBs. While commercial farmers and exporters have all the resources needed to perform laboratory analyses of maize products, the greater challenge in combatting mycotoxin exposure is encountered in rural communities with predominantly subsistence farming systems, where conventional food surveillance is lacking.
Collapse
|
11
|
Universal screening of 200 mycotoxins and their variations in stored cereals in Shanghai, China by UHPLC-Q-TOF MS. Food Chem 2022; 387:132869. [DOI: 10.1016/j.foodchem.2022.132869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
|
12
|
Park S, Koo J, Kim B, Pushparaj K, Malaisamy A, Liu WC, Balasubramanian B. Evaluation of the Safety and Ochratoxin A Degradation Capacity of Pediococcus pentosaceus as a Dietary Probiotic with Molecular Docking Approach and Pharmacokinetic Toxicity Assessment. Int J Mol Sci 2022; 23:9062. [PMID: 36012326 PMCID: PMC9409003 DOI: 10.3390/ijms23169062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
The present study evaluated the properties and ochratoxin A (OTA) degradation capacity of the dietary probiotic Pediococcus pentosaceus BalaMMB-P3, isolated from a milk coagulant. The acidic tolerance of the isolate at pH 2-3 was checked with bile salts. No hemolytic activity was noted, which confirmed the nonpathogenicity of the strain. The isolate was tested in vitro for antibiotic susceptibility, enzymatic activity, bile salts hydrolase activity and antifungal activity against Penicillium verrucosum, Fusarium graminearum and Aspergillus ochraceus. A molecular docking-based OTA toxicity assessment was carried out for multitargeted proteins. The 16S rRNA gene-based phylogenetic assessment identified the strain as P. pentosaceus, and was authenticated in GenBank. The carboxylesterase and glutathione s-transferase enzymes showed active and strong interactions with esters and amide bonds, respectively. The compound exhibited carcinogenic and cytotoxicity effects at an LD50 value of 20 mg/kg. Furthermore, the strain showed a potent ability to reduce OTA and suggested the prospects for utilization in nutritional aspects of food.
Collapse
Affiliation(s)
- Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea
| | - Jinsu Koo
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea
| | - Bosung Kim
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India
| | - Arunkumar Malaisamy
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | | |
Collapse
|
13
|
Mirza Alizadeh A, Mousavi Khaneghah A, Hosseini H. Mycotoxins and mycotoxigenic fungi in aquaculture and seafood: a review and new perspective. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2010759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Cytoprotective Effects of Fish Protein Hydrolysates against H 2O 2-Induced Oxidative Stress and Mycotoxins in Caco-2/TC7 Cells. Antioxidants (Basel) 2021; 10:antiox10060975. [PMID: 34207334 PMCID: PMC8234493 DOI: 10.3390/antiox10060975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Many studies report the potent antioxidant capacity for fish protein hydrolysates, including radical scavenging activity and inhibition ability on lipid peroxidation (LPO). In this study, the in vitro cytotoxicity of protein hydrolysates from different salmon, mackerel, and herring side streams fractions was evaluated in the concentration range from 1 to 1:32 dilution, using cloned human colon adenocarcinoma cells TC7 (Caco-2/TC7) by MTT and PT assays. The protein hydrolysates' antioxidant capacity and oxidative stress effects were evaluated by LPO and reactive oxygen species (ROS) generation, respectively. The antioxidant capacity for pure and bioavailable hydrolysate fraction was also evaluated and compared. Additionally, mycotoxin levels were determined in the fish protein hydrolysates, and their cytoprotective effect against T-2 toxin was evaluated. Both hydrolysates and their bioavailable fraction induced similar cell viability rates. The highest cytoprotective effect was obtained for the salmon viscera protein hydrolysate (HSV), which increased the cell viability by 51.2%. ROS accumulation induced by H2O2 and LPO was suppressed by all pure hydrolysates. The cytoprotective effect of hydrolysates was observed against T-2. Moreover, the different fish fraction protein hydrolysates contain variable nutrients and unique bioactive peptide composition showing variable bioactivity, which could be a useful tool in developing dietary supplements with different target functional properties.
Collapse
|
15
|
de la Fuente B, Pallarés N, Berrada H, Barba FJ. Salmon ( Salmo salar) Side Streams as a Bioresource to Obtain Potential Antioxidant Peptides after Applying Pressurized Liquid Extraction (PLE). Mar Drugs 2021; 19:md19060323. [PMID: 34204982 PMCID: PMC8227706 DOI: 10.3390/md19060323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 01/09/2023] Open
Abstract
The pressurized liquid extraction (PLE) technique was used to obtain protein extracts with antioxidant capacity from salmon muscle remains, heads, viscera, skin, and tailfins. A protein recovery percentage ≈28% was obtained for all samples except for viscera, which was ≈92%. These values represented an increase of 1.5-4.8-fold compared to stirring extraction (control). Different SDS-PAGE profiles in control and PLE extracts revealed that extraction conditions affected the protein molecular weight distribution of the obtained extracts. Both TEAC (Trolox equivalent antioxidant capacity) and ORAC (oxygen radical antioxidant capacity) assays showed an outstanding antioxidant activity for viscera PLE extract. Through liquid chromatography coupled with electrospray ionization triple time-of-flight (nanoESI qQTOF) mass spectrometry, 137 and 67 peptides were identified in control and PLE extracts from salmon viscera, respectively None of these peptides was found among the antioxidant peptides inputted in the BIOPEP-UMP database. However, bioinformatics analysis showed several antioxidant small peptides encrypted in amino acid sequences of viscera extracts, especially GPP (glycine-proline-proline) and GAA (glycine-alanine-alanine) for PLE extracts. Further research on the relationship between antioxidant activity and specific peptides from salmon viscera PLE extracts is required. In addition, the salmon side streams studied presented non-toxic levels of As, Hg, Cd, and Pb, as well as the absence of mycotoxins or related metabolites. Overall, these results confirm the feasible use of farmed salmon processing side streams as alternative sources of protein and bioactive compounds for human consumption.
Collapse
Affiliation(s)
| | | | - Houda Berrada
- Correspondence: (H.B.); (F.J.B.); Tel.: +34-9635-44117 (H.B.); +34-9635-44972 (F.J.B.)
| | - Francisco J. Barba
- Correspondence: (H.B.); (F.J.B.); Tel.: +34-9635-44117 (H.B.); +34-9635-44972 (F.J.B.)
| |
Collapse
|
16
|
de la Fuente B, Pallarés N, Barba FJ, Berrada H. An Integrated Approach for the Valorization of Sea Bass ( Dicentrarchus labrax) Side Streams: Evaluation of Contaminants and Development of Antioxidant Protein Extracts by Pressurized Liquid Extraction. Foods 2021; 10:546. [PMID: 33800768 PMCID: PMC8000804 DOI: 10.3390/foods10030546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, the presence of As, Hg, Cd, Pb, and mycotoxins in sea bass side streams (muscle, head, viscera, skin, and tailfin) was evaluated as a preliminary step to assess the effect of an innovative extraction technique (Pressurized Liquid Extraction; PLE) to obtain antioxidant protein extracts. Then, a response surface methodology-central composite design was used to evaluate and optimize the PLE extraction factors (pH, temperature, and extraction time) in terms of total protein content and total antioxidant capacity (TEAC and ORAC). Heavy metals were found in all samples while DON mycotoxin only in viscera, both far below the safe limits established by authorities for fish muscle tissue and fish feed, respectively. The selected optimal PLE extraction conditions were pH 7, 20 °C, 5 min for muscle, pH 4, 60 °C, 15 min for heads, pH 7, 50 °C, 15 min for viscera, pH 7, 55 °C, 5 min for skin, and pH 7, 60 °C, 15 min for tailfins. Optimal PLE conditions allowed increasing protein content (1.2-4.5 fold) and antioxidant capacity (1-5 fold) of sea bass side stream extracts compared to controls (conventional extraction). The highest amount of protein was extracted from muscle while the highest protein recovery percentage was found in viscera. Muscle, head, and viscera extracts showed higher antioxidant capacity than skin and tailfin extracts. Moreover, different SDS-PAGE patterns were observed among samples and a greater quantity of protein fragments of lower molecular weight were found in optimal than control extracts.
Collapse
Affiliation(s)
| | | | - Francisco J. Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avenida. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (B.d.l.F.); (N.P.)
| | - Houda Berrada
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avenida. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (B.d.l.F.); (N.P.)
| |
Collapse
|