1
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03667-7. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Pei S, Wang N, Mei Z, Zhangsun D, Craik DJ, McIntosh JM, Zhu X, Luo S. Conotoxins Targeting Voltage-Gated Sodium Ion Channels. Pharmacol Rev 2024; 76:828-845. [PMID: 38914468 PMCID: PMC11331937 DOI: 10.1124/pharmrev.123.000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Voltage-gated sodium (NaV) channels are intimately involved in the generation and transmission of action potentials, and dysfunction of these channels may contribute to nervous system diseases, such as epilepsy, neuropathic pain, psychosis, autism, and cardiac arrhythmia. Many venom peptides selectively act on NaV channels. These include conotoxins, which are neurotoxins secreted by cone snails for prey capture or self-defense but which are also valuable pharmacological tools for the identification and/or treatment of human diseases. Typically, conotoxins contain two or three disulfide bonds, and these internal crossbraces contribute to conotoxins having compact, well defined structures and high stability. Of the conotoxins containing three disulfide bonds, some selectively target mammalian NaV channels and can block, stimulate, or modulate these channels. Such conotoxins have great potential to serve as pharmacological tools for studying the functions and characteristics of NaV channels or as drug leads for neurologic diseases related to NaV channels. Accordingly, discovering or designing conotoxins targeting NaV channels with high potency and selectivity is important. The amino acid sequences, disulfide bond connectivity, and three-dimensional structures are key factors that affect the biological activity of conotoxins, and targeted synthetic modifications of conotoxins can greatly improve their activity and selectivity. This review examines NaV channel-targeted conotoxins, focusing on their structures, activities, and designed modifications, with a view toward expanding their applications. SIGNIFICANCE STATEMENT: NaV channels are crucial in various neurologic diseases. Some conotoxins selectively target NaV channels, causing either blockade or activation, thus enabling their use as pharmacological tools for studying the channels' characteristics and functions. Conotoxins also have promising potential to be developed as drug leads. The disulfide bonds in these peptides are important for stabilizing their structures, thus leading to enhanced specificity and potency. Together, conotoxins targeting NaV channels have both immediate research value and promising future application prospects.
Collapse
Affiliation(s)
- Shengrong Pei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Nan Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Zaoli Mei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - David J Craik
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - J Michael McIntosh
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Xiaopeng Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| |
Collapse
|
3
|
Wang D, Herzig V, Dekan Z, Rosengren KJ, Payne CD, Hasan MM, Zhuang J, Bourinet E, Ragnarsson L, Alewood PF, Lewis RJ. Novel Scorpion Toxin ω-Buthitoxin-Hf1a Selectively Inhibits Calcium Influx via Ca V3.3 and Ca V3.2 and Alleviates Allodynia in a Mouse Model of Acute Postsurgical Pain. Int J Mol Sci 2024; 25:4745. [PMID: 38731963 PMCID: PMC11084959 DOI: 10.3390/ijms25094745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 μM) and CaV3.3 (IC50 = 0.49 μM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.
Collapse
Affiliation(s)
- Dan Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Zoltan Dekan
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - K. Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (K.J.R.); (C.D.P.)
| | - Colton D. Payne
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (K.J.R.); (C.D.P.)
| | - Md. Mahadhi Hasan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh;
| | - Jiajie Zhuang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, 34090 Montpellier, France;
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - Paul F. Alewood
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| | - Richard J. Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia (L.R.); (P.F.A.)
| |
Collapse
|
4
|
Becker G, Atuati SF, Oliveira SM. G Protein-Coupled Receptors and Ion Channels Involvement in Cisplatin-Induced Peripheral Neuropathy: A Review of Preclinical Studies. Cancers (Basel) 2024; 16:580. [PMID: 38339331 PMCID: PMC10854671 DOI: 10.3390/cancers16030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cisplatin is a platinum-based chemotherapy drug widely used to treat various solid tumours. Although it is effective in anti-cancer therapy, many patients develop peripheral neuropathy during and after cisplatin treatment. Peripheral neuropathy results from lesions or diseases in the peripheral somatosensory nervous system and is a significant cause of debilitation and suffering in patients. In recent years, preclinical studies have been conducted to elucidate the mechanisms involved in chemotherapy-induced peripheral neuropathic pain, as well as to promote new therapeutic targets since current treatments are ineffective and are associated with adverse effects. G-protein coupled receptors and ion channels play a significant role in pain processing and may represent promising targets for improving the management of cisplatin-induced neuropathic pain. This review describes the role of G protein-coupled receptors and ion channels in cisplatin-induced pain, analysing preclinical experimental studies that investigated the role of each receptor subtype in the modulation of cisplatin-induced pain.
Collapse
|
5
|
Pereira AFM, Cavalcante JS, Angstmam DG, Almeida C, Soares GS, Pucca MB, Ferreira Junior RS. Unveiling the Pain Relief Potential: Harnessing Analgesic Peptides from Animal Venoms. Pharmaceutics 2023; 15:2766. [PMID: 38140106 PMCID: PMC10748172 DOI: 10.3390/pharmaceutics15122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The concept of pain encompasses a complex interplay of sensory and emotional experiences associated with actual or potential tissue damage. Accurately describing and localizing pain, whether acute or chronic, mild or severe, poses a challenge due to its diverse manifestations. Understanding the underlying origins and mechanisms of these pain variations is crucial for effective management and pharmacological interventions. Derived from a wide spectrum of species, including snakes, arthropods, mollusks, and vertebrates, animal venoms have emerged as abundant repositories of potential biomolecules exhibiting analgesic properties across a broad spectrum of pain models. This review focuses on highlighting the most promising venom-derived toxins investigated as potential prototypes for analgesic drugs. The discussion further encompasses research prospects, challenges in advancing analgesics, and the practical application of venom-derived toxins. As the field continues its evolution, tapping into the latent potential of these natural bioactive compounds holds the key to pioneering approaches in pain management and treatment. Therefore, animal toxins present countless possibilities for treating pain caused by different diseases. The development of new analgesic drugs from toxins is one of the directions that therapy must follow, and it seems to be moving forward by recommending the composition of multimodal therapy to combat pain.
Collapse
Affiliation(s)
- Ana Flávia Marques Pereira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil;
| | - Joeliton S. Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
| | - Davi Gomes Angstmam
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, Santo André 09280-560, SP, Brazil;
| | - Gean S. Soares
- Delphina Rinaldi Abdel Azil Hospital and Emergency Room (HPSDRAA), Manaus 69093-415, AM, Brazil;
| | - Manuela B. Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14801-320, SP, Brazil;
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil;
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP, São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil
| |
Collapse
|
6
|
Zhou Y, Harvey PJ, Koehbach J, Chan LY, Jones A, Andersson Å, Vetter I, Durek T, Craik DJ. A Chemoenzymatic Approach To Produce a Cyclic Analogue of the Analgesic Drug MVIIA (Ziconotide). Angew Chem Int Ed Engl 2023; 62:e202302812. [PMID: 37148162 PMCID: PMC10952433 DOI: 10.1002/anie.202302812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/07/2023]
Abstract
Ziconotide (ω-conotoxin MVIIA) is an approved analgesic for the treatment of chronic pain. However, the need for intrathecal administration and adverse effects have limited its widespread application. Backbone cyclization is one way to improve the pharmaceutical properties of conopeptides, but so far chemical synthesis alone has been unable to produce correctly folded and backbone cyclic analogues of MVIIA. In this study, an asparaginyl endopeptidase (AEP)-mediated cyclization was used to generate backbone cyclic analogues of MVIIA for the first time. Cyclization using six- to nine-residue linkers did not perturb the overall structure of MVIIA, and the cyclic analogues of MVIIA showed inhibition of voltage-gated calcium channels (CaV 2.2) and substantially improved stability in human serum and stimulated intestinal fluid. Our study reveals that AEP transpeptidases are capable of cyclizing structurally complex peptides that chemical synthesis cannot achieve and paves the way for further improving the therapeutic value of conotoxins.
Collapse
Affiliation(s)
- Yan Zhou
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Peta J. Harvey
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Johannes Koehbach
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Lai Yue Chan
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Alun Jones
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Åsa Andersson
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Irina Vetter
- School of PharmacyInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Thomas Durek
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - David J. Craik
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
7
|
Antunes FTT, Campos MM, Carvalho VDPR, da Silva Junior CA, Magno LAV, de Souza AH, Gomez MV. Current Drug Development Overview: Targeting Voltage-Gated Calcium Channels for the Treatment of Pain. Int J Mol Sci 2023; 24:ijms24119223. [PMID: 37298174 DOI: 10.3390/ijms24119223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/12/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are targeted to treat pain conditions. Since the discovery of their relation to pain processing control, they are investigated to find new strategies for better pain control. This review provides an overview of naturally based and synthetic VGCC blockers, highlighting new evidence on the development of drugs focusing on the VGCC subtypes as well as mixed targets with pre-clinical and clinical analgesic effects.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maria Martha Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | | | | | - Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | - Alessandra Hubner de Souza
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | | |
Collapse
|
8
|
Zhou M, Yang M, Wen H, Xu S, Han C, Wu Y. O1-conotoxin Tx6.7 cloned from the genomic DNA of Conus textile that inhibits calcium currents. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220085. [PMID: 37283723 PMCID: PMC10241523 DOI: 10.1590/1678-9199-jvatitd-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 06/08/2023] Open
Abstract
Background Conotoxins exhibit great potential as neuropharmacology tools and therapeutic candidates due to their high affinity and specificity for ion channels, neurotransmitter receptors or transporters. The traditional methods to discover new conotoxins are peptide purification from the crude venom or gene amplification from the venom duct. Methods In this study, a novel O1 superfamily conotoxin Tx6.7 was directly cloned from the genomic DNA of Conus textile using primers corresponding to the conserved intronic sequence and 3' UTR elements. The mature peptide of Tx6.7 (DCHERWDWCPASLLGVIYCCEGLICFIAFCI) was synthesized by solid-phase chemical synthesis and confirmed by mass spectrometry. Results Patch clamp experiments on rat DRG neurons showed that Tx6.7 inhibited peak calcium currents by 59.29 ± 2.34% and peak potassium currents by 22.33 ± 7.81%. In addition, patch clamp on the ion channel subtypes showed that 10 μM Tx6.7 inhibited 56.61 ± 3.20% of the hCaV1.2 currents, 24.67 ± 0.91% of the hCaV2.2 currents and 7.30 ± 3.38% of the hNaV1.8 currents. Tx6.7 had no significant toxicity to ND7/23 cells and increased the pain threshold from 0.5 to 4 hours in the mouse hot plate assay. Conclusion Our results suggested that direct cloning of conotoxin sequences from the genomic DNA of cone snails would be an alternative approach to obtaining novel conotoxins. Tx6.7 could be used as a probe tool for ion channel research or a therapeutic candidate for novel drug development.
Collapse
Affiliation(s)
- Maojun Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics,
State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key
Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University,
Changsha, Hunan, China
| | - Huiling Wen
- School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi,
China
| | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Molecular
Diagnostics, Guangdong Medical University, Dongguan, China
| | - Cuifang Han
- Guangdong Provincial Key Laboratory of Medical Molecular
Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular
Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
9
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
10
|
Su D, Gong Y, Li S, Yang J, Nian Y. Cyclovirobuxine D, a cardiovascular drug from traditional Chinese medicine, alleviates inflammatory and neuropathic pain mainly via inhibition of voltage-gated Ca v3.2 channels. Front Pharmacol 2022; 13:1081697. [PMID: 36618940 PMCID: PMC9811679 DOI: 10.3389/fphar.2022.1081697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cyclovirobuxine D (CVB-D), the main active constituent of traditional Chinese medicine Buxus microphylla, was developed as a safe and effective cardiovascular drug in China. B. microphylla has also been used to relieve various pain symptoms for centuries. In this study, we examined and uncovered strong and persistent analgesic effects of cyclovirobuxine D against several mouse models of pain, including carrageenan- and CFA-induced inflammatory pain and paclitaxel-mediated neuropathic hypersensitivity. Cyclovirobuxine D shows comparable analgesic effects by intraplantar or intraperitoneal administration. Cyclovirobuxine D potently inhibits voltage-gated Cav2.2 and Cav3.2 channels but has negligible effects on a diverse group of nociceptive ion channels distributed in primary afferent neurons, including Nav1.7, Nav1.8, TRPV1, TPRA1, TRPM8, ASIC3, P2X2 and P2X4. Moreover, inhibition of Cav3.2, rather than Cav2.2, plays a dominant role in attenuating the excitability of isolated dorsal root ganglion neurons and pain relieving effects of cyclovirobuxine D. Our work reveals that a currently in-use cardiovascular drug has strong analgesic effects mainly via blockade of Cav3.2 and provides a compelling rationale and foundation for conducting clinical studies to repurpose cyclovirobuxine D in pain management.
Collapse
Affiliation(s)
- Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms/Key Laboratory of Bioactive Peptides of Yunnan Province, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Gong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Songyu Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
11
|
Stables J, Green EK, Sehgal A, Patkar OL, Keshvari S, Taylor I, Ashcroft ME, Grabert K, Wollscheid-Lengeling E, Szymkowiak S, McColl BW, Adamson A, Humphreys NE, Mueller W, Starobova H, Vetter I, Shabestari SK, Blurton-Jones MM, Summers KM, Irvine KM, Pridans C, Hume DA. A kinase-dead Csf1r mutation associated with adult-onset leukoencephalopathy has a dominant inhibitory impact on CSF1R signalling. Development 2022; 149:274819. [PMID: 35333324 PMCID: PMC9002114 DOI: 10.1242/dev.200237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022]
Abstract
Amino acid substitutions in the kinase domain of the human CSF1R gene are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (pGlu631Lys; E631K) in the mouse Csf1r locus. Homozygous mutation (Csf1rE631K/E631K) phenocopied the Csf1r knockout, with prenatal mortality or severe postnatal growth retardation and hydrocephalus. Heterozygous mutation delayed the postnatal expansion of tissue macrophage populations in most organs. Bone marrow cells from Csf1rE631K/+mice were resistant to CSF1 stimulation in vitro, and Csf1rE631K/+ mice were unresponsive to administration of a CSF1-Fc fusion protein, which expanded tissue macrophage populations in controls. In the brain, microglial cell numbers and dendritic arborisation were reduced in Csf1rE631K/+ mice, as in patients with ALSP. The microglial phenotype is the opposite of microgliosis observed in Csf1r+/- mice. However, we found no evidence of brain pathology or impacts on motor function in aged Csf1rE631K/+ mice. We conclude that heterozygous disease-associated CSF1R mutations compromise CSF1R signalling. We speculate that leukoencephalopathy associated with dominant human CSF1R mutations requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles.
Collapse
Affiliation(s)
- Jennifer Stables
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Emma K Green
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Isis Taylor
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Maisie E Ashcroft
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kathleen Grabert
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Evi Wollscheid-Lengeling
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Belvaux, L-4401, Luxembourg
| | - Stefan Szymkowiak
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Barry W McColl
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Neil E Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Werner Mueller
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hana Starobova
- Institute for Molecular Biosciences & School of Pharmacy, University of Queensland, Brisbane, Qld 4072, Australia
| | - Irina Vetter
- Institute for Molecular Biosciences & School of Pharmacy, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Clare Pridans
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| |
Collapse
|
12
|
Holzer AK, Suciu I, Karreman C, Goj T, Leist M. Specific Attenuation of Purinergic Signaling during Bortezomib-Induced Peripheral Neuropathy In Vitro. Int J Mol Sci 2022; 23:ijms23073734. [PMID: 35409095 PMCID: PMC8998302 DOI: 10.3390/ijms23073734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Human peripheral neuropathies are poorly understood, and the availability of experimental models limits further research. The PeriTox test uses immature dorsal root ganglia (DRG)-like neurons, derived from induced pluripotent stem cells (iPSC), to assess cell death and neurite damage. Here, we explored the suitability of matured peripheral neuron cultures for the detection of sub-cytotoxic endpoints, such as altered responses of pain-related P2X receptors. A two-step differentiation protocol, involving the transient expression of ectopic neurogenin-1 (NGN1) allowed for the generation of homogeneous cultures of sensory neurons. After >38 days of differentiation, they showed a robust response (Ca2+-signaling) to the P2X3 ligand α,β-methylene ATP. The clinical proteasome inhibitor bortezomib abolished the P2X3 signal at ≥5 nM, while 50−200 nM was required in the PeriTox test to identify neurite damage and cell death. A 24 h treatment with low nM concentrations of bortezomib led to moderate increases in resting cell intracellular Ca2+ concentration but signaling through transient receptor potential V1 (TRPV1) receptors or depolarization-triggered Ca2+ influx remained unaffected. We interpreted the specific attenuation of purinergic signaling as a functional cell stress response. A reorganization of tubulin to form dense structures around the cell somata confirmed a mild, non-cytotoxic stress triggered by low concentrations of bortezomib. The proteasome inhibitors carfilzomib, delanzomib, epoxomicin, and MG-132 showed similar stress responses. Thus, the model presented here may be used for the profiling of new proteasome inhibitors in regard to their side effect (neuropathy) potential, or for pharmacological studies on the attenuation of their neurotoxicity. P2X3 signaling proved useful as endpoint to assess potential neurotoxicants in peripheral neurons.
Collapse
Affiliation(s)
- Anna-Katharina Holzer
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Christiaan Karreman
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Thomas Goj
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
- CAAT-Europe, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: ; Tel.: +49-(0)-7531-88-5037
| |
Collapse
|