1
|
Martelli F, Bernini V, Neviani E, Vasconcelos V, Urbatzka R. Lactic acid fermented microalgae and cyanobacteria as a new source of lipid reducing compounds: assessment through zebrafish Nile red fat metabolism assay and untargeted metabolomics. Food Funct 2024; 15:5554-5565. [PMID: 38712867 DOI: 10.1039/d4fo00699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Obesity is one of the most important threats to human health. Besides existing pharmacological or clinical interventions, novel effective and largely available solutions are still necessary. Among diverse natural resources, microalgae are well known for their complexity in the production of novel secondary metabolites. At the same time, lactic acid bacteria (LAB) are known for their capacity to metabolize, through fermentation, different matrices, and consequently to modify or produce new compounds with potential bioactivity. This work aimed to study the production of fermented microalgae and cyanobacteria, and to analyse their extracts in the zebrafish Nile red fat metabolism assay. Three microalgal species (Chlorella vulgaris, Chlorococcum sp. and Arthrospira platensis) were fermented with seven strains of LAB from 4 species (Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, Lactobacillus delbrueckii bulgaricus and Lacticaseibacillus paracasei), derived from the UPCCO - University of Parma Culture Collection, Parma, Italy). All the selected strains were able to ferment the selected species of microalgae, and the most suitable substrate for LAB growth was Arthrospira platensis. Extracts from fermented Chlorella vulgaris and Chlorococcum sp. reduced significantly the neutral lipid reservoirs, which was not observed without fermentations. The strongest lipid reducing effect was obtained with Arthrospira platensis fermented with Lactobacillus delbrueckii bulgaricus 1932. Untargeted metabolomics identified some compound families, which could be related to the observed bioactivity, namely fatty acids, fatty amides, triterpene saponins, chlorophyll derivatives and purine nucleotides. This work opens up the possibility of developing novel functional foods or food supplements based on microalgae, since lactic acid fermentation enhanced the production of bioactive compounds with lipid reducing activities.
Collapse
Affiliation(s)
- Francesco Martelli
- Department of Food and Drug, University of Parma, Viale delle scienze 49/A, Parma, 43124, Italy
| | - Valentina Bernini
- Department of Food and Drug, University of Parma, Viale delle scienze 49/A, Parma, 43124, Italy
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Viale delle scienze 49/A, Parma, 43124, Italy
| | - Vitor Vasconcelos
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
2
|
Carrasco Del Amor A, Bautista RH, Ussar S, Cristobal S, Urbatzka R. Insights into the mechanism of action of the chlorophyll derivative 13- 2-hydroxypheophytine a on reducing neutral lipid reserves in zebrafish larvae and mice adipocytes. Eur J Pharmacol 2023; 960:176158. [PMID: 37898286 DOI: 10.1016/j.ejphar.2023.176158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Obesity is a worldwide epidemic and natural products may hold promise in its treatment. The chlorophyll derivative 13-2-hydroxypheophytine (hpa) was isolated in a screen with zebrafish larvae to identify lipid reducing molecules from cyanobacteria. However, the mechanisms underlying the lipid-reducing effects of hpa in zebrafish larvae remain poorly understood. Thus, investigating the mechanism of action of hpa and validation in other model organisms such as mice represents important initial steps. In this study, we identified 14 protein targets of hpa in zebrafish larvae by thermal proteome profiling, and selected two targets (malate dehydrogenase and pyruvate kinase) involved in cellular metabolism for further validation by enzymatic measurements. Our findings revealed a dose-dependent inhibition of pyruvate kinase by hpa exposure using protein extracts of zebrafish larvae in vitro, and in exposure experiments from 3 to 5 days post fertilization in vivo. Analysis of untargeted metabolomics of zebrafish larvae detected 940 mass peaks (66 increased, 129 decreased) and revealed that hpa induced the formation of various phospholipid species (phosphoinositol, phosphoethanolamine, phosphatidic acid). Inter-species validation showed that brown adipocytes exposed to hpa significantly reduced the size of lipid droplets, increased maximal mitochondrial respiratory capacity, and the expression of PPARy during adipocyte differentiation. In line with our data, previous work described that reduced pyruvate kinase activity lowered hepatic lipid content via reduced pyruvate and citrate, and improved mitochondrial function via phospholipids. Thus, our data provide new insights into the molecular mechanism underlying the lipid reducing activities of hpa in zebrafish larvae, and species overlapping functions in reduction of lipids.
Collapse
Affiliation(s)
- Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, SE-58185, Linköping, Sweden.
| | - Rene Hernandez Bautista
- RG Adipocyte and Metabolism, Institute for Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany.
| | - Siegfried Ussar
- RG Adipocyte and Metabolism, Institute for Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany.
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, SE-58185, Linköping, Sweden; Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country UPV/EHU, Spain.
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
3
|
Sagada G, Wang L, Xu B, Sun Y, Shao Q. Interactive Effect of Dietary Heat-Killed Lactobacillus Plantarum L-137 and Berberine Supplementation on Intestinal Mucosa and Microbiota of Juvenile Black Sea Bream (Acanthopagrus Schlegelii). Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10153-8. [PMID: 37740880 DOI: 10.1007/s12602-023-10153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
To compare the synergistic impact of dietary heat-killed Lactobacillus plantarum and berberine supplementation on intestinal health of juvenile black sea bream, the test fish (5.67 ± 0.05 g) were fed three diets: a basal control diet designated as Con; basal diet supplemented with 400 mg/kg L. plantarum, labelled LP; and basal diet supplemented with 400 mg/kg L. plantarum + 50 mg/k berberine, labelled LPBB. After 56 days of feeding, the control fish had significantly lower intestinal villus height (VH), villus surface area (VSA), and muscularis mucosae (MS) thickness than the rest of the groups (P < 0.05). The LPBB fish had significantly higher VH than the control fish, and wider MS and VSA than the rest of the groups (P < 0.05). Occludin was significantly upregulated in the LPBB fish, and heat shock protein 90 was upregulated in the control fish (P < 0.05). The abundance of Proteobacteria family was significantly higher in the intestinal microbiome of the control and LP fish, the LPBB fish had higher abundance of Cyanobacteria and Spirochaetes, and the LP group had higher Bacteroidetes abundance (P < 0.05). Potentially beneficial Delftia and Brevinema were the significantly abundant genera in the LP and LPBB fish, respectively; potentially pathogenic Elizabethkingia was abundant in the LP fish; and the control fish had higher abundance of potentially pathogenic Burkholderia-Caballeronia-Paraburkholderia (P < 0.05). According to these results, there is possible synergy between L. plantarum and berberine as dietary supplements in fostering healthy intestine for black sea bream than L. plantarum alone.
Collapse
Affiliation(s)
- Gladstone Sagada
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lei Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China
| | - Bingying Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingjun Shao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ocean Academy, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
4
|
Ribeiro T, Jónsdóttir K, Hernandez-Bautista R, Silva NG, Sánchez-Astráin B, Samadi A, Eiriksson FF, Thorsteinsdóttir M, Ussar S, Urbatzka R. Metabolite Profile Characterization of Cyanobacterial Strains with Bioactivity on Lipid Metabolism Using In Vivo and In Vitro Approaches. Mar Drugs 2023; 21:498. [PMID: 37755111 PMCID: PMC10533020 DOI: 10.3390/md21090498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Cyanobacteria have demonstrated their therapeutic potential for many human diseases. In this work, cyanobacterial extracts were screened for lipid reducing activity in zebrafish larvae and in fatty-acid-overloaded human hepatocytes, as well as for glucose uptake in human hepatocytes and ucp1 mRNA induction in murine brown adipocytes. A total of 39 cyanobacteria strains were grown and their biomass fractionated, resulting in 117 chemical fractions. Reduction of neutral lipids in zebrafish larvae was observed for 12 fractions and in the human hepatocyte steatosis cell model for five fractions. The induction of ucp1 expression in murine brown adipocytes was observed in six fractions, resulting in a total of 23 bioactive non-toxic fractions. All extracts were analyzed by untargeted UPLC-Q-TOF-MS mass spectrometry followed by multivariate statistical analysis to prioritize bioactive strains. The metabolite profiling led to the identification of two markers with lipid reducing activity in zebrafish larvae. Putative compound identification using mass spectrometry databases identified them as phosphatidic acid and aromatic polyketides derivatives-two compound classes, which were previously associated with effects on metabolic disorders. In summary, we have identified cyanobacterial strains with promising lipid reducing activity, whose bioactive compounds needs to be identified in the future.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (T.R.); (N.G.S.); (B.S.-A.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
| | - Kristín Jónsdóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.J.); (A.S.); (F.F.E.); (M.T.)
| | - Rene Hernandez-Bautista
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; (R.H.-B.); (S.U.)
| | - Natália Gonçalves Silva
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (T.R.); (N.G.S.); (B.S.-A.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
| | - Begoña Sánchez-Astráin
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (T.R.); (N.G.S.); (B.S.-A.)
| | - Afshin Samadi
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.J.); (A.S.); (F.F.E.); (M.T.)
- Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe (KIST EU), Campus E7.1, 66123 Saarbrucken, Germany
| | - Finnur F. Eiriksson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.J.); (A.S.); (F.F.E.); (M.T.)
- ArcticMass, Sturlugata 8, 102 Reykjavik, Iceland
| | - Margrét Thorsteinsdóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.J.); (A.S.); (F.F.E.); (M.T.)
- ArcticMass, Sturlugata 8, 102 Reykjavik, Iceland
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; (R.H.-B.); (S.U.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (T.R.); (N.G.S.); (B.S.-A.)
| |
Collapse
|
5
|
Perera RMTD, Herath KHINM, Sanjeewa KKA, Jayawardena TU. Recent Reports on Bioactive Compounds from Marine Cyanobacteria in Relation to Human Health Applications. Life (Basel) 2023; 13:1411. [PMID: 37374193 DOI: 10.3390/life13061411] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The ocean is a valuable natural resource that contains numerous biologically active compounds with various bioactivities. The marine environment comprises unexplored sources that can be utilized to isolate novel compounds with bioactive properties. Marine cyanobacteria are an excellent source of bioactive compounds that have applications in human health, biofuel, cosmetics, and bioremediation. These cyanobacteria exhibit bioactive properties such as anti-inflammatory, anti-cancer, anti-bacterial, anti-parasitic, anti-diabetic, anti-viral, antioxidant, anti-aging, and anti-obesity effects, making them promising candidates for drug development. In recent decades, researchers have focused on isolating novel bioactive compounds from different marine cyanobacteria species for the development of therapeutics for various diseases that affect human health. This review provides an update on recent studies that explore the bioactive properties of marine cyanobacteria, with a particular focus on their potential use in human health applications.
Collapse
Affiliation(s)
- R M T D Perera
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - K H I N M Herath
- Department of Bio-Systems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura 60170, Sri Lanka
| | - K K Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| |
Collapse
|
6
|
Martínez-García M, Garduño-Solórzano G, Lopes G, Sanchez BA, Urbatzka R, Hentschke GS, Campos JE, Vasconcelos VMO. Antioxidant, Anti-Inflammatory and Anti-Obesity Potential of Extracts Containing Phenols, Chlorophyll and Carotenoids from Mexican Wild Populations of Bacopa monnieri (L.) Wettst. BIOLOGY 2023; 12:biology12040620. [PMID: 37106820 PMCID: PMC10135869 DOI: 10.3390/biology12040620] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Some of the species of the genus Bacopa have been used in Pharmacopoeia worldwide. However, in Mexico, Bacopa monnieri has neither been extensively cultivated nor studied, nor has their use in traditional medicine been reported. The aim of this work was to assess the taxonomic verification of the four wild populations of B. monnieri, the chemical content of their pigments and phenols and to provide an analysis of their potential bioactivity. B. monnieri wild populations from Mexico were validated using molecular markers. Chromatographic profiling using HPLC-PDA revealed 21 compounds comprising 12 chlorophylls and nine carotenoids; of the latter, the major ones were lutein (0.921 ± 0.031 μg/mg of dry extract) and β-carotene (0.095 ± 0.003 μg/mg of dry extract). The total phenolic content, determined using the Folin-Ciocalteu assay, ranged from 54.8 ± 5.8 to 70.3 ± 2.2 µg of gallic acid equivalents (GAE)/mg. Plant extracts scavenged from the free radical DPPH in IC50 ranged from 130.6 ± 3.0 to 249.9 ± 12.1 µg dry extract/mL. In terms of the anti-inflammatory potential, the most effective extract was from a soil-based plant from Jalisco (BS), reduced from nitric oxide in a RAW 264.7 culture medium, with an IC50 value of 134 µg of dry extract/mL. The BS extract showed a significant neutral lipid-reducing activity in the zebrafish model, ranging from 3.13 μg/mL p < 0.05 to 100 μg/mL p < 0.0001. Overall, the extracts analyzed here for the first time seem promising for future use because of their antioxidant, anti-inflammatory and anti-obesity potential.
Collapse
Affiliation(s)
- Martha Martínez-García
- Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios No. 1, Col. Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Gloria Garduño-Solórzano
- IZTA Herbarium, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios No. 1, Col. Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Graciliana Lopes
- Interdisciplinary Centre of Marine and Environmental Research, (CIIMAR/CIMAR), Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Begoña Astrain Sanchez
- Interdisciplinary Centre of Marine and Environmental Research, (CIIMAR/CIMAR), Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research, (CIIMAR/CIMAR), Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Guilherme Scotta Hentschke
- Interdisciplinary Centre of Marine and Environmental Research, (CIIMAR/CIMAR), Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Jorge E Campos
- Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios No. 1, Col. Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Vitor Manuel Oliveira Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, (CIIMAR/CIMAR), Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Regueiras A, Huguet Á, Conde T, Couto D, Domingues P, Domingues MR, Costa AM, da Silva JL, Vasconcelos V, Urbatzka R. Potential Anti-Obesity, Anti-Steatosis, and Anti-Inflammatory Properties of Extracts from the Microalgae Chlorella vulgaris and Chlorococcum amblystomatis under Different Growth Conditions. Mar Drugs 2021; 20:md20010009. [PMID: 35049863 PMCID: PMC8781425 DOI: 10.3390/md20010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known as a producer of proteins and lipids, but also of valuable compounds for human health benefits (e.g., polyunsaturated fatty acids (PUFAs); minerals, vitamins, or other compounds). The overall objective of this research was to prospect novel products, such as nutraceuticals from microalgae, for application in human health, particularly for metabolic diseases. Chlorella vulgaris and Chlorococcum amblystomatis were grown autotrophically, and C. vulgaris was additionally grown heterotrophically. Microalgae biomass was extracted using organic solvents (dichloromethane, ethanol, ethanol with ultrasound-assisted extraction). Those extracts were evaluated for their bioactivities, toxicity, and metabolite profile. Some of the extracts reduced the neutral lipid content using the zebrafish larvae fat metabolism assay, reduced lipid accumulation in fatty-acid-overloaded HepG2 liver cells, or decreased the LPS-induced inflammation reaction in RAW264.7 macrophages. Toxicity was not observed in the MTT assay in vitro or by the appearance of lethality or malformations in zebrafish larvae in vivo. Differences in metabolite profiles of microalgae extracts obtained by UPLC-LC-MS/MS and GNPS analyses revealed unique compounds in the active extracts, whose majority did not have a match in mass spectrometry databases and could be potentially novel compounds. In conclusion, microalgae extracts demonstrated anti-obesity, anti-steatosis, and anti-inflammatory activities and could be valuable resources for developing future nutraceuticals. In particular, the ultrasound-assisted ethanolic extract of the heterotrophic C. vulgaris significantly enhanced the anti-obesity activity and demonstrated that the alteration of culture conditions is a valuable approach to increase the production of high-value compounds.
Collapse
Affiliation(s)
- Ana Regueiras
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Álvaro Huguet
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana Margarida Costa
- Allmicroalgae, R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal; (A.M.C.); (J.L.d.S.)
| | | | - Vitor Vasconcelos
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Ralph Urbatzka
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
- Correspondence:
| |
Collapse
|