1
|
Zhang JM, Yuan GY, Zou Y. Enzymatic ester bond formation strategies in fungal macrolide skeletons. Nat Prod Rep 2025. [PMID: 39831437 DOI: 10.1039/d4np00050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Covering: up to August 2024Macrolides, the core skeletons of numerous marketed drugs and bioactive natural products, have garnered considerable scientific interest owing to their structural diversity and broad spectrum of pharmaceutical activities. The formation of intramolecular ester bonds is a critical biocatalytic step in constructing macrolide skeletons. Here, we summarised enzymatic ester bond formation strategies in fungal polyketide (PK)-type, nonribosomal peptide (NRP)-type, and PK-NRP hybrid-type macrolides. In PK-type macrolides, ester bond formation is commonly catalysed by a trans-acting thioesterase (TE) or a cis-acting TE domain during the product release process. In NRP-type and PK-NRP hybrid-type macrolides, the ester bond is usually introduced through condensation (C) domain-catalysed esterification during the elongation or product release step. Although the TE and C domains share similarities in their catalytic mechanism, using hydroxyl groups as nucleophiles in an intramolecular nucleophilic attack, they differ in terms of the hydroxyl origin, the timing of ester bond formation, and domain location. Furthermore, some TE domains are utilized as chemoenzymatic catalysts to construct macrolides with different ring sizes. A comparison of ester bond formation between fungi and bacteria is also discussed. Exploring the biosynthetic pathways of fungal macrolides, elucidating the diverse strategies employed in the formation of ester bonds, and understanding the application of enzymes/domains in chemoenzymatic synthesis hold promise for the discovery of new bioactive macrolides in the future.
Collapse
Affiliation(s)
- Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| | - Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| |
Collapse
|
2
|
Cheng W, Huang Y, Gao H, Bold B, Zhang T, Yang D. Marine Natural Products as Novel Treatments for Parasitic Diseases. Handb Exp Pharmacol 2025; 287:325-393. [PMID: 38554166 DOI: 10.1007/164_2024_712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Parasitic diseases including malaria, leishmaniasis, and trypanosomiasis have received significant attention due to their severe health implications, especially in developing countries. Marine natural products from a vast and diverse range of marine organisms such as sponges, corals, molluscs, and algae have been found to produce unique bioactive compounds that exhibit promising potent properties, including antiparasitic, anti-Plasmodial, anti-Leishmanial, and anti-Trypanosomal activities, providing hope for the development of effective treatments. Furthermore, various techniques and methodologies have been used to investigate the mechanisms of these antiparasitic compounds. Continued efforts in the discovery and development of marine natural products hold significant promise for the future of novel treatments against parasitic diseases.
Collapse
Affiliation(s)
- Wenbing Cheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yanbing Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Haijun Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine/The Second Clinical Medical College), Chengdu, Sichuan, China
| | - Bolor Bold
- National Center for Zoonotic Disease, Ulaanbaatar, Mongolia
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China.
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Food and Quality Engineering, Nanning University, Nanning, China
| |
Collapse
|
3
|
Obana T, Nakajima M, Nakazato K, Nakagawa H, Murata K, Tsuda M, Fuwa H. Iriomoteolide-1a and -1b: Structure Elucidation by Integrating NMR Spectroscopic Analysis, Theoretical Calculation, and Total Synthesis. J Am Chem Soc 2024; 146:29836-29846. [PMID: 39417618 DOI: 10.1021/jacs.4c11714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The structure of iriomoteolide-1a, a marine macrolide with potent cytotoxic activity against human cancer cells, has been under scrutiny for more than a decade since the first total synthesis of the proposed structure was achieved by Horne. Here we disclose the correct structure of iriomoteolide-1a. Given a huge number of possible stereoisomers, we adopted an integrated strategy toward the structure elucidation of iriomoteolide-1a: (1) NMR spectroscopic analysis/molecular mechanics-based conformational analysis for configurational reassignment of the macrolactone domain; (2) model synthesis for validating the reassigned configuration of the macrolactone domain; (3) GIAO NMR calculation/DP4+ analysis of side chain stereoisomers; and (4) total synthesis of the most likely structure. Moreover, the correct structure of iriomoteolide-1b, a natural congener, was also determined by an integration of NMR spectroscopic analysis, GIAO NMR calculation/DP4+ analysis, and total synthesis.
Collapse
Affiliation(s)
- Tomohiro Obana
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Miyu Nakajima
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuki Nakazato
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hayato Nakagawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Keisuke Murata
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masashi Tsuda
- Faculty of Agriculture and Marine Science and Marine Core Research Institute, Kochi University, Monobe-B200, Nankoku, Kochi 783-8502, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
4
|
Al-Awadhi F, Kokkaliari S, Ratnayake R, Paul VJ, Luesch H. Isolation and Characterization of the Cyanobacterial Macrolide Glycoside Moorenaside, an Anti-Inflammatory Analogue of Aurisides Targeting the Keap1/Nrf2 Pathway. JOURNAL OF NATURAL PRODUCTS 2024; 87:2355-2365. [PMID: 39315953 PMCID: PMC11519913 DOI: 10.1021/acs.jnatprod.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024]
Abstract
A new 14-membered ring brominated macrolide glycoside, named moorenaside (1), was discovered from a marine cyanobacterial sample collected from Shands Key in Florida. The structure of 1 was established by analysis of spectroscopic data including its relative configuration. The absolute configuration was inferred from optical rotation data and comparison with related compounds. The structure of 1 features an α,β-unsaturated carbonyl system, which is also found in aurisides. The presence of this motif in 1 prompted us to evaluate its effect on Keap1/Nrf2 signaling, a cytoprotective pathway culminating in the activation of antioxidant genes activated upstream by the cysteine alkylation of Keap1. Moorenaside exhibited moderate ARE luciferase activity at 32 μM. Due to the established crosstalk between Nrf2 and NF-κB pathways, we investigated the anti-inflammatory effects of 1 in LPS-induced mouse macrophages (RAW264.7 cells), a commonly used model for inflammation. Moorenaside significantly upregulated Nqo1 (Nrf2 target gene) and downregulated iNos (NF-κB target gene) at 32 μM by 5.0- and 2.5-fold, respectively, resulting in a significant reduction of nitric oxide (NO) levels. Furthermore, we performed RNA-sequencing and demonstrated the transcriptional activity of 1 on a global level and identified canonical pathways and upstream regulators involved in inflammation, immune response, and certain oxidative-stress-underlying diseases such as multiple sclerosis and chronic kidney disease.
Collapse
Affiliation(s)
- Fatma
H. Al-Awadhi
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Sofia Kokkaliari
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Ranjala Ratnayake
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian
Marine Station, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Farag MA, Saied DB, Afifi SM, Kunzmann A, Wessjohann LA, Westphal H, Kühnhold H, Stuhr M. Metabolic responses of sea anemone and jellyfish to temperature and UV bleaching: Insights into stress adaptation using LCMS-based metabolomics, molecular networking and chemometrics. J Adv Res 2024:S2090-1232(24)00461-2. [PMID: 39414229 DOI: 10.1016/j.jare.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/29/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Climate change poses various threats to marine life, particularly in shallow tropical waters. OBJECTIVE The impact of increased temperature and ultraviolet (UV) exposure on two photosymbiotic cnidarians, a common bubble-tip anemone and an upside-down jellyfish, was investigated. METHODS To illustrate the response of aquatic organisms, the metabolomes of unstressed Entacmaea quadricolor and Cassiopea andromeda were compared for detailed metabolite profiling. UHPLC-MS coupled with chemometrics and GNPS molecular networking was employed for sample classification and identification of markers unique to stress responses in each organism. RESULTS Several compounds with bioactive functions, including peptides and terpenoids, were reported for the first time in both organisms, viz. cyclic tetraglutamate, campestriene, and ceramide aminoethyl phosphonate (CEAP d18:2/16:0). Both anemone and jellyfish were subjected to either elevated UV-B light intensity up to 6.6 KJ m-2 or increased temperatures (28 °C, 30 °C, 32 °C, and 34 °C) over 4 days. Phospholipids, steroids, and ceramides emerged as chief markers of both types of stress, as revealed by the multivariate data analysis. Lysophosphatidylcholine (LPC 16:0), LPC (18:0/0:0), and echinoclasterol sulfate appeared as markers in both UV and thermal stress models of the anemone, whereas methyl/propyl cholestane-hexa-ol were discriminatory in the UV stress model only. In the case of jellyfish, nonpolar glycosyl ceramide GlcCer (d14:1/28:6) served as a marker for UV stress, whereas polar peptides were elevated in the thermal stress model. Interestingly, both models of jellyfish share a phospholipid, lysophosphatidylethanolamine (LPE 20:4), as a distinctive marker for stress, reported to be associated indirectly with the activity of innate immune response within other photosymbiotic Cnidaria such as corals and appears to be a fundamental stress response in marine organisms. CONCLUSION This study presents several bioinformatic tools for the first time in two cnidarian organisms to provide not only a broader coverage of their metabolome but also broader insights into cnidarian bleaching in response to different stressors, i.e., heat and UV light, by comparing their effects in anemone versus jellyfish.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Doaa B Saied
- Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Sherif M Afifi
- Department for Life Quality Studies, Rimini Campus, University of Bologna, Corso d'Augusto 237, Rimini 47921, Italy
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheit Str. 6, Bremen 28359, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale) 06120, Germany
| | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheit Str. 6, Bremen 28359, Germany; Department of Geosciences, University of Bremen, Bremen 28359, Germany
| | - Holger Kühnhold
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheit Str. 6, Bremen 28359, Germany
| | - Marleen Stuhr
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheit Str. 6, Bremen 28359, Germany
| |
Collapse
|
6
|
Barone ME, Murphy E, Fierli D, Campanile F, Fleming GTA, Thomas OP, Touzet N. Bioactivity of Amphidinol-Containing Extracts of Amphidinium carterae Grown Under Varying Cultivation Conditions. Curr Microbiol 2024; 81:353. [PMID: 39264405 DOI: 10.1007/s00284-024-03862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Microalgae are of great interest due to their ability to produce valuable compounds, such as pigments, omega-3 fatty acids, antioxidants, and antimicrobials. The dinoflagellate genus Amphidinium is particularly notable for its amphidinol-like compounds, which exhibit antibacterial and antifungal properties. This study utilized a two-stage cultivation method to grow Amphidinium carterae CCAP 1102/8 under varying conditions, such as blue LED light, increased salinity, and the addition of sodium carbonate or hydrogen peroxide. After cultivation, the biomass was extracted and fractionated using solid-phase extraction, yielding six fractions per treatment. These fractions were analyzed using Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS/MS) to identify their chemical components. Key amphidinol compounds (AM-B, AM-C, AM-22, and AM-A) were identified, with AM-B being the most abundant in Fraction 4, followed by AM-C. Fraction 5 also contained a significant amount of AM-C along with an unknown compound. Fraction 4 returned the highest antimicrobial activity against the pathogens Staphylococcus aureus, Enterococcus faecalis, and Candida albicans, with Minimal Biocidal Concentrations (MBCs) ranging from 1 to 512 µg/mL. Results indicate that the modulation of both amphidinol profile and fraction bioactivity can be induced by adjusting the cultivation parameters used to grow two-stage batch cultures of A. carterae.
Collapse
Affiliation(s)
- Maria Elena Barone
- Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, School of Science, Atlantic Technological University Sligo, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland.
| | - Elliot Murphy
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - David Fierli
- School of Engineering and Applied Science, George Washington University, 800 22Nd St NW, Washington, DC, 20052, USA
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, Via Santa Sofia N. 97, 95123, Catania, Italy
| | - Gerard T A Fleming
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Nicolas Touzet
- Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, School of Science, Atlantic Technological University Sligo, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| |
Collapse
|
7
|
Zhang Y, Liu W, Li G, Wu C, Yan J, Feng D, Yuan S, Zhang R, Lou H, Peng X. Novel polyketide from Fusarium verticillioide G102 as NPC1L1 inhibitors. Nat Prod Res 2024; 38:2957-2963. [PMID: 37074061 DOI: 10.1080/14786419.2023.2201885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
One novel polyketide, fusaritide A (1), was isolated from a marine fish-derived halotolerant fungal strain Fusarium verticillioide G102. The structure was determined through extensive spectroscopic analysis and high-resolution electrospray ionization mass spectrometry. Fusaritide A (1) with unprecedented structure reduced cholesterol uptake by inhibiting Niemann-Pick C1-Like 1 (NPC1L1).
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Wenjing Liu
- Cancer Institute, Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao, People's Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Changzheng Wu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Jing Yan
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Dan Feng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Shuangzhi Yuan
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Renshuai Zhang
- Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Xiaoping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
8
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
9
|
El-khayat ES, Abouelela ME, Abdelhamid RA, Alorainy MS, Shaaban KA. MACROLACTONES AND MACROLIDES FROM PLANT ENDOPHYTIC FUNGI, CHEMICAL SCAFFOLDS, BIOLOGICAL ACTIVITIES AND SPECTROSCOPY: A COMPREHENSIVE REVIEW. BULLETIN OF PHARMACEUTICAL SCIENCES 2024; 47:151-168. [PMID: 39902252 PMCID: PMC11789693 DOI: 10.21608/bfsa.2023.224497.1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Background The pandemic of COVID-19 has stressed the exaggerated demand for innovative treatments, prompting the search for new sources. Plant endophytic fungi produce a diverse array of biologically active compounds, including macrolides and macrolactones with varying activities. Aim of the Study In this review we give an updated overview of natural macrolides and macrololactones from plant endophytes addressing original studies published up to June 2023. Results Over the preceding ten years, 91 macrolides with 80 novel compounds with cytotoxic, antibacterial, antifungal, and α-glucosidase inhibitory activities. Unfortunately, the number of novel chemicals identified from marine or bacterial endophytes in the same period is substantially lower. Accordingly, further study on plant endophytes, which are critical for drug research and the development of novel medicines, including antitumors, antivirals, antibacterials, and antimalarials, should be conducted. A report of the 13C NMR data of several endophytic macrolides are reported as a supplementary according to ring sizes and based on a united numbering built on literature search.
Collapse
Affiliation(s)
- Ehab Saad El-khayat
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Reda Ahmad Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| | - Mohammad S. Alorainy
- Department of Pharmacology, College of Medicine, Qassim University, 6655 Buraidah 51542, Saudi Arabia
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
10
|
Takada K, Oku N, Peach ML, Ransom TT, Henrich CJ, Gustafson KR. Enigmazole Phosphomacrolides from the Marine Sponge Cinachyrella enigmatica. J Org Chem 2023; 88:10996-11002. [PMID: 37471139 DOI: 10.1021/acs.joc.3c00963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Enigmazole B (1) and four new analogues, cis-enigmazole B (2), dehydroenigmazole B (3), enigmimide B (4), and enigmimide A (5), were isolated from the marine sponge Cinachyrella enigmatica. Their planar structures were elucidated by detailed NMR and MS data analyses, which established 1-3 to be oxazole-substituted 18-membered phosphomacrolides, while 4 and 5 were oxazole ring-opened congeners. The relative and absolute configurations in 1 were determined by a combination of chemical transformations and spectroscopic analyses. Photooxidation of the oxazole moiety in 1 gave enigmimide B (4), thus establishing that 4 has the same absolute configuration of 1. Enigmazole B (1) along with analogues 2 and 3 showed cytotoxicity against murine IC-2 mast cells with IC50 values of 3.6-7.0 μM. The enigmimides (4 and 5) and dephosphoenigmazoles did not show cytotoxicity (IC50 > 10 μM), implying that both the oxazole moiety and the phosphate group are necessary for the cytotoxicity of the enigmazole class macrolides.
Collapse
Affiliation(s)
- Kentaro Takada
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Naoya Oku
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Megan L Peach
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Tanya T Ransom
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Curtis J Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
11
|
Kim MC, Winter JM, Cullum R, Smith AJ, Fenical W. Expanding the Utility of Bioinformatic Data for the Full Stereostructural Assignments of Marinolides A and B, 24- and 26-Membered Macrolactones Produced by a Chemically Exceptional Marine-Derived Bacterium. Mar Drugs 2023; 21:367. [PMID: 37367692 DOI: 10.3390/md21060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Marinolides A and B, two new 24- and 26-membered bacterial macrolactones, were isolated from the marine-derived actinobacterium AJS-327 and their stereostructures initially assigned by bioinformatic data analysis. Macrolactones typically possess complex stereochemistry, the assignments of which have been one of the most difficult undertakings in natural products chemistry, and in most cases, the use of X-ray diffraction methods and total synthesis have been the major methods of assigning their absolute configurations. More recently, however, it has become apparent that the integration of bioinformatic data is growing in utility to assign absolute configurations. Genome mining and bioinformatic analysis identified the 97 kb mld biosynthetic cluster harboring seven type I polyketide synthases. A detailed bioinformatic investigation of the ketoreductase and enoylreductase domains within the multimodular polyketide synthases, coupled with NMR and X-ray diffraction data, allowed for the absolute configurations of marinolides A and B to be determined. While using bioinformatics to assign the relative and absolute configurations of natural products has high potential, this method must be coupled with full NMR-based analysis to both confirm bioinformatic assignments as well as any additional modifications that occur during biosynthesis.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Alexander J Smith
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
12
|
Sang Y, Wang J, Tang S, Zhang P. A New Macrolide from Penicillium sp. SO02. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
13
|
Chen ZH, Guo YW, Li XW. Recent advances on marine mollusk-derived natural products: chemistry, chemical ecology and therapeutical potential. Nat Prod Rep 2023; 40:509-556. [PMID: 35942896 DOI: 10.1039/d2np00021k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2011-2021Marine mollusks, which are well known as rich sources of diverse and biologically active natural products, have attracted significant attention from researchers due to their chemical and pharmacological properties. The occurrence of some of these marine mollusk-derived natural products in their preys, predators, and associated microorganisms has also gained interest in chemical ecology research. Based on previous reviews, herein, we present a comprehensive summary of the recent advances of interesting secondary metabolites from marine mollusks, focusing on their structural features, possible chemo-ecological significance, and promising biological activities, covering the literature from 2011 to 2021.
Collapse
Affiliation(s)
- Zi-Hui Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
14
|
Bibliometric Analysis of Marine Traditional Chinese Medicine in Pharmacopoeia of the People's Republic of China: Development, Differences, and Trends Directions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3971967. [PMID: 36605100 PMCID: PMC9810416 DOI: 10.1155/2022/3971967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022]
Abstract
Background Marine traditional Chinese medicine (MTCM) is a class of traditional medicine that has antitumor, anti-inflammatory, and antiviral properties. Bibliometric approaches were used in this study to conduct systematic research in order to gain a complete picture of MTCM research around the world. Methods CiteSpace and NoteExpress software were utilized as tools to examine the information about authors, sources, keywords, etc. Chinese publications were collected from the CNKI, VIP, and WANFANG databases; English publications were collected from the Web of Science database. Results A total of 10080 publications were screened, and the search volume of Chinese literature is greater than that of English literature; Nanjing University of Chinese Medicine, China, and Jeju National University, South Korea, published a greater number of articles than other institutions; the scholars Zhaohui-Zhang and Youjin-Jeon have published the highest number of articles in the world. MTCM of shells was often researched for inorganic elements, and data mining methods were applied frequently; MTCM of animals was commonly used for antifatigue and was taken authenticity identification owing to the scarcity of resources; scholars conducted the most research on MTCM of plants, this category usually for antitumor, anti-inflammatory, and antioxidant purposes, and the mechanisms of action were studied in depth. The Chinese literature has undertaken a multifaceted research study based on the theories of processing and the nature of TCM. In the English literature, in-depth studies have been done from the perspectives of the mechanism of action, the extraction and purification of active substances, etc. Conclusions According to the analysis of keywords, different medicinal parts present their own special research directions, and different research hotspots have also emerged under different medical theories. The development of MTCM is moving in the direction of standardization and modernization, thanks to the development of cross-disciplinary research as well as the use of several new technologies and statistical techniques.
Collapse
|
15
|
Sanchez-Arcos C, Paris D, Mazzella V, Mutalipassi M, Costantini M, Buia MC, von Elert E, Cutignano A, Zupo V. Responses of the Macroalga Ulva prolifera Müller to Ocean Acidification Revealed by Complementary NMR- and MS-Based Omics Approaches. Mar Drugs 2022; 20:md20120743. [PMID: 36547890 PMCID: PMC9783899 DOI: 10.3390/md20120743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO2. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga Ulva prolifera as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions. Our results show that U. prolifera grows at higher rates in acidified environments. Consistently, we observed lower sucrose and phosphocreatine concentrations in response to a higher demand of energy for growth and a higher availability of essential amino acids, likely related to increased protein biosynthesis. In addition, pathways leading to signaling and deterrent compounds appeared perturbed. Finally, a remarkable shift was observed here for the first time in the fatty acid composition of triglycerides, with a decrease in the relative abundance of PUFAs towards an appreciable increase of palmitic acid, thus suggesting a remodeling in lipid biosynthesis. Overall, our studies revealed modulation of several biosynthetic pathways under OA conditions in which, besides the possible effects on the marine ecosystem, the metabolic changes of the alga should be taken into account considering its potential nutraceutical applications.
Collapse
Affiliation(s)
- Carlos Sanchez-Arcos
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Debora Paris
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
| | - Valerio Mazzella
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, 87071 Amendolara, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Maria Cristina Buia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Eric von Elert
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Adele Cutignano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| | - Valerio Zupo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| |
Collapse
|
16
|
Mamada SS, Nainu F, Masyita A, Frediansyah A, Utami RN, Salampe M, Emran TB, Lima CMG, Chopra H, Simal-Gandara J. Marine Macrolides to Tackle Antimicrobial Resistance of Mycobacterium tuberculosis. Mar Drugs 2022; 20:691. [PMID: 36355013 PMCID: PMC9697125 DOI: 10.3390/md20110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/01/2023] Open
Abstract
Tuberculosis has become a major health problem globally. This is worsened by the emergence of resistant strains of Mycobacterium tuberculosis showing ability to evade the effectiveness of the current antimycobacterial therapies. Therefore, the efforts carried out to explore new entities from many sources, including marine, are critical. This review summarizes several marine-derived macrolides that show promising activity against M. tuberculosis. We also provide information regarding the biosynthetic processes of marine macrolides, including the challenges that are usually experienced in this process. As most of the studies reporting the antimycobacterial activities of the listed marine macrolides are based on in vitro studies, the future direction should consider expanding the trials to in vivo and clinical trials. In addition, in silico studies should also be explored for a quick screening on marine macrolides with potent activities against mycobacterial infection. To sum up, macrolides derived from marine organisms might become therapeutical options for tackling antimycobacterial resistance of M. tuberculosis.
Collapse
Affiliation(s)
- Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ayu Masyita
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Tangerang Selatan 15318, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Rifka Nurul Utami
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | | | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
17
|
Tong R, Liu S, Zhao C, Jiang D, Gao L, Wang W, Ye B, Song Z. 3-Silyl-3-Borylhex-4-Enoate: A Chiral Reagent for Asymmetric Crotylboration of Aldehydes. Org Lett 2022; 24:7822-7827. [PMID: 36250588 DOI: 10.1021/acs.orglett.2c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nonracemic 3-silyl-3-borylhex-4-enoate reagent has been developed. Its asymmetric crotylboration of aldehydes provides Z-anti-homoallylic alcohols possessing a trisubstituted vinylsilane in high yields with excellent stereo- and enantioselectivity. Diverse decoration of vinylsilane and ester groups, as well as formation of functionalized THF rings, showcase the potential of the approach in the synthesis of polyketide natural products.
Collapse
Affiliation(s)
- Ruiqi Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Song Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dongyang Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bengui Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Subba S, Saha S, Mandal S, Jyoti Ghosh A, Saha T. First total synthesis of aspergillolide. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Masi M, Castaldi S, Sautua F, Pescitelli G, Carmona MA, Evidente A. Truncatenolide, a Bioactive Disubstituted Nonenolide Produced by Colletotrichum truncatum, the Causal Agent of Anthracnose of Soybean in Argentina: Fungal Antagonism and SAR Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9834-9844. [PMID: 35925677 PMCID: PMC9389607 DOI: 10.1021/acs.jafc.2c02502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
A bioactive disubstituted nonenolide, named truncatenolide, was produced by Colletotrichum truncatum, which was collected from infected tissues of soybean showing anthracnose symptoms in Argentina. This is a devastating disease that drastically reduces the yield of soybean production in the world. The fungus also produced a new trisubstituted oct-2-en-4-one, named truncatenone, and the well-known tyrosol and N-acetyltyramine. Truncatenolide and truncatenone were characterized by spectroscopic (essentially one-dimensional (1D) and two-dimensional (2D) 1H and 13C NMR and HR ESIMS) and chemical methods as (5E,7R,10R)-7-hydroxy-10-methyl-3,4,7,8,9,10-hexahydro-2H-oxecin-2-one and (Z)-6-hydroxy-3,5-dimethyloct-2-en-4-one, respectively. The geometry of the double bond of truncatenolide was assigned by the value of olefinic proton coupling constant and that of truncatenone by the correlation observed in the corresponding NOESY spectrum. The relative configuration of each stereogenic center was assigned with the help of 13C chemical shift and 1H-1H scalar coupling DFT calculations, while the absolute configuration assignment of truncatenolide was performed by electronic circular dichroism (ECD). When tested on soybean seeds, truncatenolide showed the strongest phytotoxic activity. Tyrosol and N-acetyltyramine also showed phytotoxicity to a lesser extent, while truncatenone weakly stimulated the growth of the seed root in comparison to the control. When assayed against Macrophomina phaseolina and Cercospora nicotianae, other severe pathogens of soybean, truncatenolide showed significant activity against M. phaseolina and total inhibition of C. nicotianae. Thus, some other fungal nonenolides and their derivatives were assayed for their antifungal activity against both fungi in comparison with truncatenolide. Pinolidoxin showed to a less extent antifungal activity against both fungi, while modiolide A selectively and totally inhibited only the growth of C. nicotianae. The SAR results and the potential of truncatenolide, modiolide A, and pinolidoxin as biofungicides were also discussed.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Stefany Castaldi
- Dipartimento
di Biologia, Università di Napoli
Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Francisco Sautua
- Cátedra
de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina
| | - Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi
13, 56124 Pisa, Italy
| | - Marcelo Anibal Carmona
- Cátedra
de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina
| | - Antonio Evidente
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
20
|
Abstract
Covering: 2000 to 2022Natural products are a vital source of compounds for use in agriculture, medicine, cosmetics, and other fields. Macrolides are a wide group of natural products found in plants and microorganisms. They are a group of polyketides constituted of different-sized rings and characterized by the presence of a lactone group. These compounds show different biological activities, such as antiviral, antiparasitic, antifungal, antibacterial, immunosuppressive, herbicidal, and cytotoxic activities. This review is focused on macrolides isolated from fungal sources, examining their biological activities, stereochemistry, and structure-activity relationships. The review reports the chemical and biological characterization of fungal macrolides isolated in the last four decades, with assistance from SciFinder searches. A critical evaluation of the most recent reviews covering this area is also provided. The content provided in this review is of interest to chemists focusing on natural substances, plant pathologists and physiologists, botanists, mycologists, biologists, and pharmacologists. Furthermore, it is of interest to farmers and agri-food specialists and those working in the medicinal and cosmetic industries due to the potential practical application of macrolides. Politicians could also be interested in this class of natural compound, as the practical application of these macrolides in the above-cited fields could reduce environmental pollution and increase consumer satisfaction with respect to food, providing reduced or zero risk to human and animal health along with increased nutraceutical value.
Collapse
Affiliation(s)
- Antonio Evidente
- Department of Chemical Sciense, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| |
Collapse
|
21
|
Das R, Rauf A, Mitra S, Emran TB, Hossain MJ, Khan Z, Naz S, Ahmad B, Meyyazhagan A, Pushparaj K, Wan CC, Balasubramanian B, Rengasamy KR, Simal-Gandara J. Therapeutic potential of marine macrolides: An overview from 1990 to 2022. Chem Biol Interact 2022; 365:110072. [PMID: 35952775 DOI: 10.1016/j.cbi.2022.110072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/05/2023]
Abstract
The sea is a vast ecosystem that has remained primarily unexploited and untapped, resulting in numerous organisms. Consequently, marine organisms have piqued the interest of scientists as an abundant source of natural resources with unique structural features and fascinating biological activities. Marine macrolide is a top-class natural product with a heavily oxygenated polyene backbone containing macrocyclic lactone. In the last few decades, significant efforts have been made to isolate and characterize macrolides' chemical and biological properties. Numerous macrolides are extracted from different marine organisms such as marine microorganisms, sponges, zooplankton, molluscs, cnidarians, red algae, tunicates, and bryozoans. Notably, the prominent macrolide sources are fungi, dinoflagellates, and sponges. Marine macrolides have several bioactive characteristics such as antimicrobial (antibacterial, antifungal, antimalarial, antiviral), anti-inflammatory, antidiabetic, cytotoxic, and neuroprotective activities. In brief, marine organisms are plentiful in naturally occurring macrolides, which can become the source of efficient and effective therapeutics for many diseases. This current review summarizes these exciting and promising novel marine macrolides in biological activities and possible therapeutic applications.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, 94640, Pakistan.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan.
| | - Bashir Ahmad
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan.
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India.
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruit &Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit & Vegetables, College of Agronomy, Jiangxi Agricultural University Nanchang, 330045, Jiangxi, China.
| | | | - Kannan Rr Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
22
|
Hong LL, Ding YF, Zhang W, Lin HW. Chemical and biological diversity of new natural products from marine sponges: a review (2009-2018). MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:356-372. [PMID: 37073163 PMCID: PMC10077299 DOI: 10.1007/s42995-022-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Marine sponges are productive sources of bioactive secondary metabolites with over 200 new compounds isolated each year, contributing 23% of approved marine drugs so far. This review describes statistical research, structural diversity, and pharmacological activity of sponge derived new natural products from 2009 to 2018. Approximately 2762 new metabolites have been reported from 180 genera of sponges this decade, of which the main structural types are alkaloids and terpenoids, accounting for 50% of the total. More than half of new molecules showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibition, and antimalarial activities. As summarized in this review, macrolides and peptides had higher proportions of new bioactive compounds in new compounds than other chemical classes. Every chemical class displayed cytotoxicity as the dominant activity. Alkaloids were the major contributors to antibacterial, antifungal, and antioxidant activities while steroids were primarily responsible for pest resistance activity. Alkaloids, terpenoids, and steroids displayed the most diverse biological activities. The statistic research of new compounds by published year, chemical class, sponge taxonomy, and biological activity are presented. Structural novelty and significant bioactivities of some representative compounds are highlighted. Marine sponges are rich sources of novel bioactive compounds and serve as animal hosts for microorganisms, highlighting the undisputed potential of sponges in the marine drugs research and development. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00132-3.
Collapse
Affiliation(s)
- Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ya-Fang Ding
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316000 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042 Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| |
Collapse
|
23
|
Thiraporn A, Saikachain N, Khumjiang R, Muanprasat C, Tadpetch K. Total Synthesis and Biological Evaluation of Mutolide and Analogues. Chem Asian J 2022; 17:e202200329. [PMID: 35727893 DOI: 10.1002/asia.202200329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Indexed: 11/07/2022]
Abstract
The convergent total syntheses of three 14-membered macrolide natural products, mutolide, nigrosporolide and (4S,7S,13S)-4,7-dihydroxy-13-tetradeca-2,5,8-trienolide have been achieved. The key synthetic features include Shiina macrolactonization to assemble the 14-membered macrocyclic core, Wittig or Still-Gennari olefination and selective reduction of propargylic alcohol to construct the E- or Z-olefins. Cross metathesis was also highlighted as an efficient tool to forge the formation of E-olefin. The three synthetic macrolides were evaluated for their cytotoxic activity against three human cancer cell lines as well as for inhibitory effect on CFTR-mediated chloride secretion in human intestinal epithelial (T84) cells. Mutolide displayed significant cytotoxic activity against HCT116 colon cancer cells with an IC50 of ∼12 μM as well as a potent CTFR inhibitory effect with an IC50 value of ∼1 μM.
Collapse
Affiliation(s)
- Aticha Thiraporn
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Nongluk Saikachain
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Pli, Samut Prakan, 10540, Thailand
| | - Rungtiwa Khumjiang
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Pli, Samut Prakan, 10540, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Pli, Samut Prakan, 10540, Thailand
| | - Kwanruthai Tadpetch
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
24
|
Bone Relat RM, Winder PL, Bowden GD, Guzmán EA, Peterson TA, Pomponi SA, Roberts JC, Wright AE, O’Connor RM. High-Throughput Screening of a Marine Compound Library Identifies Anti-Cryptosporidium Activity of Leiodolide A. Mar Drugs 2022; 20:md20040240. [PMID: 35447913 PMCID: PMC9026894 DOI: 10.3390/md20040240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Cryptosporidium sp. are apicomplexan parasites that cause significant morbidity and possible mortality in humans and valuable livestock. There are no drugs on the market that are effective in the population most severely affected by this parasite. This study is the first high-throughput screen for potent anti-Cryptosporidium natural products sourced from a unique marine compound library. The Harbor Branch Oceanographic Institute at Florida Atlantic University has a collection of diverse marine organisms some of which have been subjected to medium pressure liquid chromatography to create an enriched fraction library. Numerous active compounds have been discovered from this library, but it has not been tested against Cryptosporidium parvum. A high-throughput in vitro growth inhibition assay was used to test 3764 fractions in the library, leading to the identification of 23 fractions that potently inhibited the growth of Cryptosporidium parvum. Bioassay guided fractionation of active fractions from a deep-sea sponge, Leiodermatium sp., resulted in the purification of leiodolide A, the major active compound in the organism. Leiodolide A displayed specific anti-Cryptosporidium activity at a half maximal effective concentration of 103.5 nM with selectivity indexes (SI) of 45.1, 11.9, 19.6 and 14.3 for human ileocecal colorectal adenocarcinoma cells (HCT-8), human hepatocellular carcinoma cells (Hep G2), human neuroblastoma cells (SH-SY5Y) and green monkey kidney cells (Vero), respectively. The unique structure of leiodolide A provides a valuable drug scaffold on which to develop new anti-Cryptosporidium compounds and supports the importance of screening natural product libraries for new chemical scaffolds.
Collapse
Affiliation(s)
- Rachel M. Bone Relat
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, 100 Dairy Rd, Pullman, WA 99164, USA; (R.M.B.R.); (G.D.B.)
| | - Priscilla L. Winder
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
| | - Gregory D. Bowden
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, 100 Dairy Rd, Pullman, WA 99164, USA; (R.M.B.R.); (G.D.B.)
| | - Esther A. Guzmán
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
| | - Tara A. Peterson
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
| | - Jill C. Roberts
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
| | - Amy E. Wright
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US Highway 1 North, Fort Pierce, FL 34946, USA; (P.L.W.); (E.A.G.); (T.A.P.); (S.A.P.); (J.C.R.)
- Correspondence: (A.E.W.); (R.M.O.)
| | - Roberta M. O’Connor
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, 100 Dairy Rd, Pullman, WA 99164, USA; (R.M.B.R.); (G.D.B.)
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Ave, St Paul, MN 55108, USA
- Correspondence: (A.E.W.); (R.M.O.)
| |
Collapse
|
25
|
Effects of Marine Antagonistic Fungi against Plant Pathogens and Rice Growth Promotion Activity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ten marine-derived fungi crude extracts, namely Emericella stellatus KUFA0208, Eupenicillium parvum KUFA0237, Neosartorya siamensis KUFA0514, N. spinosa KUFA 0528, Talaromyces flavus KUFA 0119, T. macrosporus KUFA 0135, T. trachyspermus KUFA0304, Trichoderma asperellum KUFA 0559, T. asperellum KUFA 0559 and T. harzianum KUFA 0631 were determined for their fungicidal activity against five rice pathogens in vitro. The results showed that the extracts of E. stellatus KUFA0208 and N. siamensis KUFA0514 exhibited the best antifungal activity, causing complete cessation of the mycelial growth of Alternaria padwickii, Bipalaris oryzae, Fusarium semitectum, Pyricularia oryzae and Rhizoctonia solani at 10 g/L. The N. siamensis KUFA0514 extract was fractioned and antifungal compounds were found in the fractions derived from petroleum-ether and chloroform (7: 3) evidenced by inhibition zones against the mycelial growth of A. padwickii around the disc containing each fraction. Moreover, in rice growth promotion tests, diluted cultural broth of T. asperellum KUFA 0559 and T. harzianum KUFA 0631 were found to strongly promote rice shoot and root elongation; however, higher concentrations of all marine fungal broths resulted in significantly reduced rice seedling growth rather than promotion. Meanwhile, Trichoderma showed great indole-3-acetic acid (IAA) production leading to the optimum IAA values of 45.38 and 52.30 µg/ml at 11 and 13 days after inoculation, respectively. The results of this study indicated that marine fungi are promising agents having antagonistic mechanisms involving antibiosis production and plant growth promotion and may be developed as novel biocontrol agents for rice disease management.
Collapse
|
26
|
Fernández-Peña L, Díez-Poza C, González-Andrés P, Barbero A. The Tetrahydrofuran Motif in Polyketide Marine Drugs. Mar Drugs 2022; 20:120. [PMID: 35200649 PMCID: PMC8880653 DOI: 10.3390/md20020120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Oxygen heterocycles are units that are abundant in a great number of marine natural products. Among them, marine polyketides containing tetrahydrofuran rings have attracted great attention within the scientific community due to their challenging structures and promising biological activities. An overview of the most important marine tetrahydrofuran polyketides, with a focused discussion on their isolation, structure determination, approaches to their total synthesis, and biological studies is provided.
Collapse
Affiliation(s)
| | | | | | - Asunción Barbero
- Department of Organic Chemistry, Campus Miguel Delibes, University of Valladolid, 47011 Valladolid, Spain; (L.F.-P.); (C.D.-P.); (P.G.-A.)
| |
Collapse
|
27
|
Chakraborty K, Paulose SK. Marginolides A-B, polyether macrolide analogues from veined octopus Amphioctopus marginatus: anti-hypertensive leads attenuate angiotensin-converting enzyme. Nat Prod Res 2021; 36:5688-5700. [PMID: 34927480 DOI: 10.1080/14786419.2021.2013841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) is considered as a major drug target for the treatment of hypertension as it catalyses the production of vasoconstrictor angiotensin II from angiotensin I. ACE inhibitor agents are an effective therapeutic strategy to control high blood pressure. Unprecedented polyether macrolides, marginolide A and B were isolated from the crude extract of marine octopus, Amphioctopus marginatus via bioassay-directed sequential chromatographic fractionation. Marginolide A displayed considerably greater ACE attenuation potential (IC50 0.58 mM) than that exhibited by marginolide B (IC50 0.72 mM). Higher antioxidant properties of marginolide A against the oxidant species (IC50 ∼ 1 mM) also supported its potential ACE inhibitory activity. Higher polar characteristics along with acceptable hydrophobic-hydrophilic equilibrium (partition coefficient of octanol-water, log Pow 2-4) revealed the potential anti-hypertensive activities of marginolides. This study recognized the anti-hypertensive properties of marginolides as promising pharmaceutical leads.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, Kerala, India
| | - Silpa Kunnappilly Paulose
- Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, Kerala, India.,Department of Chemistry, Mangalore University, Mangalagangothri, Karnataka, India
| |
Collapse
|
28
|
Mohamed GA, Ibrahim SRM. Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Mar Drugs 2021; 19:645. [PMID: 34822516 PMCID: PMC8622643 DOI: 10.3390/md19110645] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
The marine environment is an underexplored treasure that hosts huge biodiversity of microorganisms. Marine-derived fungi are a rich source of novel metabolites with unique structural features, bioactivities, and biotechnological applications. Marine-associated Cladosporium species have attracted considerable interest because of their ability to produce a wide array of metabolites, including alkaloids, macrolides, diketopiperazines, pyrones, tetralones, sterols, phenolics, terpenes, lactones, and tetramic acid derivatives that possess versatile bioactivities. Moreover, they produce diverse enzymes with biotechnological and industrial relevance. This review gives an overview on the Cladosporium species derived from marine habitats, including their metabolites and bioactivities, as well as the industrial and biotechnological potential of these species. In the current review, 286 compounds have been listed based on the reported data from 1998 until July 2021. Moreover, more than 175 references have been cited.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
29
|
Abdel-Bar HM, Abdallah IA, Fayed MAA, Moatasim Y, Mostafa A, El-Behairy MF, Elimam H, Elshaier YAMM, Abouzid KAM. Lipid polymer hybrid nanocarriers as a combinatory platform for different anti-SARS-CoV-2 drugs supported by computational studies. RSC Adv 2021; 11:28876-28891. [PMID: 35478590 PMCID: PMC9038182 DOI: 10.1039/d1ra04576h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/04/2021] [Indexed: 01/07/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has demonstrated the potential of emergent pathogens to severely damage public health and global economies. As a consequence of the pandemic, millions of people have been forced into self-isolation, which has negatively affected the global economy. More efforts are needed to find new innovative approaches that could fundamentally change our understanding and management of this disaster. Herein, lipid polymer hybrid nanoparticles (LPH NPs) were utilized as a platform for the delivery of azithromycin or niclosamide in combination with piroxicam. The obtained systems were successfully loaded with both azithromycin and piroxicam (LPHAzi–Pir) with entrapment efficiencies (EE%) of 74.23 ± 8.14% and 51.52 ± 5.45%, respectively, or niclosamide and piroxicam (LPHNic–Pir) with respective EE% of 85.14 ± 3.47% and 48.75 ± 4.77%. The prepared LPH NPs had a core–shell nanostructure with particle size ≈ 125 nm and zeta potential ≈ −16.5 irrespective of drug payload. A dose-dependent cellular uptake of both LPH NPs was observed in human lung fibroblast cells. An enhanced in vitro antiviral efficacy of both LPHAzi–Pir and LPHNic–Pir was obtained over the mixed solution of the drugs. The LPH NPs of azithromycin or niclosamide with piroxicam displyed a promising capability to hinder the replication of SARS-CoV-2, with IC50 of 3.16 and 1.86 μM, respectively. These results provide a rationale for further in vivo pharmacological as well as toxicological studies to evaluate the potential activity of these drugs to combat the COVID-19 outbreak, especially the concept of combination therapy. Additionally, the molecular docking of macrolide bioactive compounds against papain-like protease (PDB ID:6wuu) was achieved. A ligand-based study, especially rapid overlay chemical structure (ROCS), was also examined to identify the general pharmacophoric features of these compounds and their similarity to reported anti-SARS-CoV-2 drugs. Molecular dynamic simulation was also implemented. Drug repurposing approach to combat SARS-CoV-2: lipid polymer hybrid nanoparticles (LPH) for the delivery of azithromycin or niclosamide in combination with piroxicam.![]()
Collapse
Affiliation(s)
- Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre Giza 12622 Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre Giza 12622 Egypt
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Khaled A M Abouzid
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| |
Collapse
|
30
|
Lenz KD, Klosterman KE, Mukundan H, Kubicek-Sutherland JZ. Macrolides: From Toxins to Therapeutics. Toxins (Basel) 2021; 13:347. [PMID: 34065929 PMCID: PMC8150546 DOI: 10.3390/toxins13050347] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions. Here, we review each functional class of macrolides for their common structures, mechanisms of action, pharmacology, and human cellular targets.
Collapse
Affiliation(s)
| | | | | | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (K.D.L.); (K.E.K.); (H.M.)
| |
Collapse
|