1
|
Chingizova EA, Yurchenko EA, Starnovskaya SS, Chingizov AR, Kuzmich AS, Pislyagin EA, Vasilchenko AS, Poshvina DV, Shilovsky GA, Dibrova DV, Aminin DL, Yurchenko AN. Flavuside B exhibits antioxidant and anti-inflammatory properties in Staphylococcus aureus infected skin wound and affect the expression of genes controlling bacterial quorum sensing. J Appl Microbiol 2025; 136:lxae318. [PMID: 39749841 DOI: 10.1093/jambio/lxae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/15/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
AIMS The aim of this study was to evaluate the antioxidant and anti-inflammatory effects of marine fungal cerebroside flavuside B (FlaB) on Staphylococcus aureus-infected keratinocytes in in vitro skin wounds and to identify FlaB targets in bacterial and human cells. METHODS AND RESULTS A combination of enzyme-linked immunosorbent assay (ELISA), plate spectrofluorimetry, and flow cytometry with fluorescence dye staining, scratch assay, and real-time cell imaging techniques was used to investigate the effects of FlaB on S. aureus-infected HaCaT keratinocytes. FlaB decreased reactive oxygen species levels, nitrite oxide levels, and TNF-α and IL-18 release in S. aureus-infected HaCaT cells. FlaB reversed the inhibition of HaCaT cell proliferation caused by S. aureus infection. FlaB significantly increased keratinocyte migration and wound healing in an in vitro S. aureus-infected wound skin model. Using real-time qPCR, we found that FlaB caused a 1.7-fold reduction in agrA expression, which controls quorum sensing system in S. aureus. Bioinformatics analysis and molecular docking, together with experimental data, suggest that FlaB targets the pro/antioxidant defense system in human cells. CONCLUSIONS Thus, FlaB can play a dual role as an antibacterial and pro/antioxidant machinery modulator, providing an observable positive effect in S. aureus-infected in vitro skin wounds. Staphylococcal sortase A enzyme and Arg systems are the targets of FlaB in bacterial cells. Nrf2/Bach1 dependent pro/antioxidant defense system is a target of FlaB in human cells. Some suggestions have also been made regarding the biological role of this marine fungal metabolite and its therapeutic possibilities.
Collapse
Affiliation(s)
- Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Ekaterina A Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Sofya S Starnovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Artur R Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Aleksandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Evgeny A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Alexey S Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), T6 Volodarskogo St., yumen State University, Tyumen 625003, Russia
| | - Darya V Poshvina
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), T6 Volodarskogo St., yumen State University, Tyumen 625003, Russia
| | - Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1 build.40 Leninskie Gory, Moscow 119234, Russia
- Faculty of Biology, Lomonosov Moscow State University, 1 build.12 Leninskie Gory, Moscow 119234, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences (Kharkevich Institute), 19 build.1 Bolshoy Karetny per., Moscow 127051, Russia
| | - Daria V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1 build.40 Leninskie Gory, Moscow 119234, Russia
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1 build.73 Leninskie Gory, Moscow 119991, Russia
| | - Dmitry L Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| | - Anton N Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia
| |
Collapse
|
2
|
Chen X, Ma Y, Yang Z, Shen D, Li X, Ni M, Xu X, Chen W. Characterization of naphthoquinones as inhibitors of glutathione reductase and inducers of intracellular oxidative stress. Redox Rep 2024; 29:2432830. [PMID: 39620933 PMCID: PMC11613414 DOI: 10.1080/13510002.2024.2432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
Glutathione reductase (GR), one of the most important antioxidant enzymes in maintaining intracellular redox homeostasis, has become a novel target to suppress cancer cell growth and metastasis. In this work, we evaluated a series of naphthoquinones (NQs) as potential GR inhibitors and elucidated the mechanism of inhibition. NQ-6, one of the most potent compounds among this series, inhibited GR in vitro and in vivo and was identified as a competitive and irreversible inhibitor. The Ki and kinact values of NQ-6 were determined to be 17.30 ± 3.63 μM and 0.0136 ± 0.0005 min-1, respectively. The tandem mass spectrometric analysis revealed that the two substrate binding sites Cys61 and Cys66 of yeast GR were modified simultaneously through arylation or only Cys66 was covalently modified by NQ-6. Intracellular reactive oxygen species, collapsing of mitochondrial membrane potential and protein S-glutathionylation elevation were induced by NQ-6. NQs can be valuable compounds in GR inhibition and oxidative stress-related research.
Collapse
Affiliation(s)
- Xiaowan Chen
- Postgraduate Training base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Yan Ma
- Department of Scientific Research, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
| | - Ziming Yang
- Postgraduate Training base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Dingjie Shen
- Postgraduate Training base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Xia Li
- Postgraduate Training base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine on Cancer, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
| | - Maowei Ni
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
| | - Xiaoling Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Wei Chen
- Postgraduate Training base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine on Cancer, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Dong M, Ming X, Xiang T, Feng N, Zhang M, Ye X, He Y, Zhou M, Wu Q. Recent research on the physicochemical properties and biological activities of quinones and their practical applications: a comprehensive review. Food Funct 2024; 15:8973-8997. [PMID: 39189379 DOI: 10.1039/d4fo02600d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Quinones represent a class of crude organic compounds ubiquitously distributed in nature. Their distinctive quinone-type structure confers upon them unique properties and applications. Quinones demonstrate significant biological activities, including antioxidant, antimicrobial, and antitumor properties. Additionally, they demonstrate noteworthy physicochemical characteristics, including excellent dyeing properties and stability. Given their diverse qualities, quinones hold significant promise for applications in industrial manufacturing, healthcare, and food production, thus garnering considerable attention in recent years. While there is a growing body of research on quinones, the existing literature falls short of providing a comprehensive review encompassing recent advancements in this field along with established knowledge. This paper offers a comprehensive review of research progress for quinones, encompassing structural classification, source synthesis, extraction methods, properties, functions, and specific applications. It serves as a reference and theoretical foundation for the further development and utilization of quinones.
Collapse
Affiliation(s)
- Mingyu Dong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Xiaozhi Ming
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Tianyu Xiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Mengyun Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Xurui Ye
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Yi He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China.
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
- Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang 310058, P. R. China
| |
Collapse
|
4
|
Nishimura A, Tang X, Zhou L, Ito T, Kato Y, Nishida M. Sulfur metabolism as a new therapeutic target of heart failure. J Pharmacol Sci 2024; 155:75-83. [PMID: 38797536 DOI: 10.1016/j.jphs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Sulfur-based redox signaling has long attracted attention as critical mechanisms underlying the development of cardiac diseases and resultant heart failure. Especially, post-translational modifications of cysteine (Cys) thiols in proteins mediate oxidative stress-dependent cardiac remodeling including myocardial hypertrophy, senescence, and interstitial fibrosis. However, we recently revealed the existence of Cys persulfides and Cys polysulfides in cells and tissues, which show higher redox activities than Cys and substantially contribute to redox signaling and energy metabolism. We have established simple evaluation methods that can detect polysulfides in proteins and inorganic polysulfides in cells and revealed that polysulfides abundantly expressed in normal hearts are dramatically catabolized by exposure to ischemic/hypoxic and environmental electrophilic stress, which causes vulnerability of the heart to mechanical load. Accumulation of hydrogen sulfide, a nucleophilic catabolite of persulfides/polysulfides, may lead to reductive stress in ischemic hearts, and perturbation of polysulfide catabolism can improve chronic heart failure after myocardial infarction in mice. This review focuses on the (patho)physiological role of sulfur metabolism in hearts, and proposes that sulfur catabolism during ischemic/hypoxic stress has great potential as a new therapeutic strategy for the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| | - Xiaokang Tang
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Tomoya Ito
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
Hammond J, Das IM, Paenga R, Caddie M, Skinner D, Sheridan JP, Miller MR, Munkacsi AB. Multi-omic analysis reveals genes and proteins integral to bioactivity of Echinochrome A isolated from the waste stream of the sea urchin industry in Aotearoa New Zealand. Food Sci Nutr 2024; 12:4927-4943. [PMID: 39055184 PMCID: PMC11266889 DOI: 10.1002/fsn3.4140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 07/27/2024] Open
Abstract
Evechinus chloroticus (commonly known as kina) is a sea urchin species endemic to New Zealand. Its roe is a culinary delicacy to the indigenous Māori and a globally exported food product. Echinochrome A (Ech A) is a bioactive compound isolated from the waste product of kina shells and spines; however, the molecular mechanisms of Ech A bioactivity are not well understood, partly due to Ech A never being studied using unbiased genome-wide analysis. To explore the high-value pharmaceutical potential of kina food waste, we obtained unbiased functional genomic and proteomic profiles of yeast cells treated with Echinochrome A. Abundance was measured for 4100 proteins every 30 min for four hours using fluorescent microscopy, resulting in the identification of 92 proteins with significant alterations in protein abundance caused by Ech A treatment that were over-represented with specific changes in DNA replication, repair and RNA binding after 30 min, followed by specific changes in the metabolism of metal ions (specifically iron and copper) from 60-240 min. Further analysis indicated that Ech A chelated iron, and that iron supplementation negated the growth inhibition caused by Ech A. Via a growth-based genome-wide analysis of 4800 gene deletion strains, 20 gene deletion strains were sensitive to Ech A in an iron-dependent manner. These genes were over-represented in the cellular response to oxidative stress, suggesting that Ech A suppressed growth inhibition caused by oxidative stress. Unexpectedly, genes integral to cardiolipin and inositol phosphate biosynthesis were required for Ech A bioactivity. Overall, these results identify genes, proteins, and cellular processes mediating the bioactivity of Ech A. Moreover, we demonstrate unbiased genomic and proteomic methodology that will be useful for characterizing bioactive compounds in food and food waste.
Collapse
Affiliation(s)
- Joseph Hammond
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | | | - Ruihana Paenga
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Manu Caddie
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Damian Skinner
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Jeffrey P. Sheridan
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | | | - Andrew B. Munkacsi
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
| |
Collapse
|
6
|
Volod'ko AV, Son EY, Glazunov VP, Davydova VN, Alexander-Sinkler EI, Aleksandrova SA, Blinova MI, Yermak IM. Carrageenan films as promising mucoadhesive ocular drug delivery systems. Colloids Surf B Biointerfaces 2024; 237:113854. [PMID: 38502974 DOI: 10.1016/j.colsurfb.2024.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Polymer mucoadhesive films being developed for use in ophthalmology represent a new tool for drug delivery and are considered an alternative to traditional dosage forms. Due to their mucoadhesive properties, carrageenans (CRGs) are widely used in various forms for drug delivery. In this study, films based on CRGs of various structural types (κ/β, κ, x, and λ) for use in ophthalmology were studied. The films were loaded with the active substance echinochrome (ECH), a sea urchin pigment used in ophthalmology. Spectral data showed that ECH remained stable after its incorporation into the CRG films and did not oxidize for at least six months. Hydrophilic CRG films with a thickness of 10-12 µm were characterized in terms of their swelling and mucoadhesive properties. The rheological properties of solutions formed after film dissolution in artificial tears were also assessed. κ- and κ/β-CRG films with ECH exhibited pseudoplastic behavior after rehydrating films with an artificial tear solution. The CRG-loaded films had different swelling characteristics depending on the structure of the CRG used. The films based on highly sulfated CRGs dissolved in artificial tears, while the films of low-sulfated κ/β-CRG exhibited limited swelling. All studied ECH-loaded films exhibited mucoadhesive properties, which were evaluated by a texture analyzer using mucous tissue of the small intestine of the pig as a model. There was a slight prolongation of ECH release from CRG films in artificial tears. The effect of CRG/ECH on the epithelial cell lines of the outer shell of the human eye was investigated. At low concentrations, ECH in the composition of the CRG/ECH complex had no cytotoxic effect on corneal epithelial and conjunctival human cells. The use of ECH-containing films can prevent the drug from being immediately washed away by tears and help to retain it by increasing viscosity and having mucoadhesive properties.
Collapse
Affiliation(s)
- Aleksandra V Volod'ko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, Vladivostok 690022, Russia.
| | - Elvira Yu Son
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, Vladivostok 690022, Russia
| | - Valery P Glazunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, Vladivostok 690022, Russia
| | - Viktoriya N Davydova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, Vladivostok 690022, Russia
| | - Elga I Alexander-Sinkler
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Prosp., 4, St. Petersburg 194064, Russia
| | - Svetlana A Aleksandrova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Prosp., 4, St. Petersburg 194064, Russia
| | - Miralda I Blinova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Prosp., 4, St. Petersburg 194064, Russia
| | - Irina M Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, Vladivostok 690022, Russia
| |
Collapse
|
7
|
Lixi F, Vitiello L, Giannaccare G. Marine Natural Products Rescuing the Eye: A Narrative Review. Mar Drugs 2024; 22:155. [PMID: 38667772 PMCID: PMC11050997 DOI: 10.3390/md22040155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Different degrees of visual impairment lead to a decrease in patient wellbeing, which has an adverse effect on many facets of social and professional life. Eye disorders can affect several parts of the eye, most notably the retina and the cornea, and the impacted areas might share a common form of cellular damage or dysfunction (such as inflammation, oxidative stress and neuronal degeneration). Considering that marine organisms inhabit a broad variety of marine habitats, they display a great degree of chemical diversity. As a result, molecules with a marine origin are receiving more and more attention in the hopes of developing novel therapeutic approaches. For instance, fucoxanthin has been demonstrated to be effective in protecting the retina against photo-induced damage, while largazole, astaxanthin and spirulina have all shown antioxidant, anti-inflammatory and antiapoptotic activities that can be useful for the management of several ocular diseases, such as age-related macular degeneration and ocular surface disorders. The aim of this review is to analyze the scientific literature relating to the therapeutic effects on the eye of the main natural marine products, focusing on their mechanism of action and potential clinical uses for the management of ocular diseases.
Collapse
Affiliation(s)
- Filippo Lixi
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, Italy;
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| |
Collapse
|
8
|
Huang LK, Zeng XS, Jiang ZW, Peng H, Sun F. Echinacoside alleviates glucocorticoid induce osteonecrosis of femoral head in rats through PI3K/AKT/FOXO1 pathway. Chem Biol Interact 2024; 391:110893. [PMID: 38336255 DOI: 10.1016/j.cbi.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH), caused by glucocorticoid (GC) administration, is known to exhibit a high incidence worldwide. Although osteoblast apoptosis has been reported as an important cytological basis of SONFH, the precise mechanism remains elusive. Echinacoside (Ech), a natural phenylethanoid glycoside, exerts multiple beneficial effects, such as facilitation of cell proliferation and anti-inflammatory and anticancer activities. Herein, we aimed to explore the regulatory mechanism underlying glucocorticoid-induced osteoblast apoptosis and determine the protective efficacy of Ech against SONFH. We comprehensively surveyed multiple public databases to identify SONFH-related genes. Using bioinformatics analysis, we identified that the PI3K/AKT/FOXO1 signaling pathway was most strongly associated with SONFH. We examined the protective effect of Ech against SONFH using in vivo and in vitro experiments. Specifically, dexamethasone (Dex) decreased p-PI3K and p-AKT levels, which were reversed following Ech addition. Validation of the PI3K inhibitor (LY294002) and molecular docking of Ech and PI3K/AKT further indicated that Ech could directly enhance PI3K/AKT activity to alleviate Dex-induced inhibition. Interestingly, Dex upregulated the expression of FOXO1, Bax, cleaved-caspase-9, and cleaved-caspase-3 and enhanced MC3T3-E1 apoptosis; application of Ech and siRNA-FOXO1 reversed these effects. In vitro, Ech decreased the number of empty osteocytic lacunae, reduced TUNEL and FOXO1 positive cells, and improved bone microarchitecture. Our results provide robust evidence that PI3K/AKT/FOXO1 plays a crucial role in the development of SONFH. Moreover, Ech may be a promising candidate drug for the treatment of SONFH.
Collapse
Affiliation(s)
- Liang Kun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Shuang Zeng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ze Wen Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fei Sun
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Agafonova I, Chingizova E, Chaikina E, Menchinskaya E, Kozlovskiy S, Likhatskaya G, Sabutski Y, Polonik S, Aminin D, Pislyagin E. Protection Activity of 1,4-Naphthoquinones in Rotenone-Induced Models of Neurotoxicity. Mar Drugs 2024; 22:62. [PMID: 38393033 PMCID: PMC10890484 DOI: 10.3390/md22020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The MTS cell viability test was used to screen a mini library of natural and synthetic 1,4-naphthoquinone derivatives (1,4-NQs) from marine sources. This screening identified two highly effective compounds, U-443 and U-573, which showed potential in protecting Neuro-2a neuroblastoma cells from the toxic effects of rotenone in an in vitro model of neurotoxicity. The selected 1,4-NQs demonstrated the capability to reduce oxidative stress by decreasing the levels of reactive oxygen species (ROS) and nitric oxide (NO) in Neuro-2a neuroblastoma cells and RAW 264.7 macrophage cells and displayed significant antioxidant properties in mouse brain homogenate. Normal mitochondrial function was restored and the mitochondrial membrane potential was also regained by 1,4-NQs after exposure to neurotoxins. Furthermore, at low concentrations, these compounds were found to significantly reduce levels of proinflammatory cytokines TNF and IL-1β and notably inhibit the activity of cyclooxygenase-2 (COX-2) in RAW 264.7 macrophages. The results of docking studies showed that the 1,4-NQs were bound to the active site of COX-2, analogically to a known inhibitor of this enzyme, SC-558. Both substances significantly improved the behavioral changes in female CD1 mice with rotenone-induced early stage of Parkinson's disease (PD) in vivo. It is proposed that the 1,4-NQs, U-443 and U-573, can protect neurons and microglia through their potent anti-ROS and anti-inflammatory activities.
Collapse
Affiliation(s)
- Irina Agafonova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Ekaterina Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Elena Chaikina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Sergey Kozlovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Yuri Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| |
Collapse
|
10
|
Grujić-Milanović J, Rajković J, Milanović S, Jaćević V, Miloradović Z, Nežić L, Novaković R. Natural Substances vs. Approved Drugs in the Treatment of Main Cardiovascular Disorders-Is There a Breakthrough? Antioxidants (Basel) 2023; 12:2088. [PMID: 38136208 PMCID: PMC10740850 DOI: 10.3390/antiox12122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases with a very high rate of morbidity and mortality. The clinical presentation of CVDs can vary from asymptomatic to classic symptoms such as chest pain in patients with myocardial infarction. Current therapeutics for CVDs mainly target disease symptoms. The most common CVDs are coronary artery disease, acute myocardial infarction, atrial fibrillation, chronic heart failure, arterial hypertension, and valvular heart disease. In their treatment, conventional therapies and pharmacological therapies are used. However, the use of herbal medicines in the therapy of these diseases has also been reported in the literature, resulting in a need for critical evaluation of advances related to their use. Therefore, we carried out a narrative review of pharmacological and herbal therapeutic effects reported for these diseases. Data for this comprehensive review were obtained from electronic databases such as MedLine, PubMed, Web of Science, Scopus, and Google Scholar. Conventional therapy requires an individual approach to the patients, as when patients do not respond well, this often causes allergic effects or various other unwanted effects. Nowadays, medicinal plants as therapeutics are frequently used in different parts of the world. Preclinical/clinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common CVDs. The natural products analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in CVDs pharmacotherapy, and some of them have already been approved by the FDA. There are insufficient clinical studies to compare the effectiveness of natural products compared to approved therapeutics for the treatment of CVDs. Further long-term studies are needed to accelerate the potential of using natural products for these diseases. Despite this undoubted beneficence on CVDs, there are no strong breakthroughs supporting the implementation of natural products in clinical practice. Nevertheless, they are promising agents in the supplementation and co-therapy of CVDs.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Jovana Rajković
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia
| | - Sladjan Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, Biomedical Engineering and Physics of Complex Systems, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11 000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defense, 11 000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 002 Hradec Kralove, Czech Republic
| | - Zoran Miloradović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Radmila Novaković
- Institute of Molecular Genetics and Genetic Engineering, Center for Genome Sequencing and Bioinformatics, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
11
|
da Silva AG, Alves MDM, da Cunha AA, Caires GA, Kerkis I, Vigerelli H, Sciani JM. Echinometra lucunter molecules reduce Aβ42-induced neurotoxicity in SH-SY5Y neuron-like cells: effects on disaggregation and oxidative stress. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230031. [PMID: 38053575 PMCID: PMC10694836 DOI: 10.1590/1678-9199-jvatitd-2023-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
Background Echinometra lucunter is a sea urchin commonly found on America's rocky shores. Its coelomic fluid contains molecules used for defense and biological processes, which may have therapeutic potential for the treatment of amyloid-based neurodegenerative diseases, such as Alzheimer's, that currently have few drug options available. Methods In this study, we incubated E. lucunter coelomic fluid (ELCF) and fractions obtained by solid phase extraction in SH-SY5Y neuron-like cells to evaluate their effect on cell viability caused by the oligomerized amyloid peptide 42 (Aβ42o). Moreover, the Aβ42o was quantified after the incubation with ELCF fractions in the presence or not of cells, to evaluate if samples could cause amyloid peptide disaggregation. Antioxidant activity was determined in ELCF fractions, and cells were evaluated to check the oxidative stress after incubation with samples. The most relevant fraction was analyzed by mass spectrometry for identification of molecules. Results ELCF and certain fractions could prevent and treat the reduction of cell viability caused by Aβ42o in SH-SY5Y neuron-like cells. We found that one fraction (El50) reduced the oligomerized Aβ42 and the oxidative stress caused by the amyloid peptide through its antioxidant molecules, which in turn reduced cell death. Mass spectrometry analysis revealed that El50 comprises small molecules containing flavonoid antioxidants, such as phenylpyridazine and dihydroquercetin, and two peptides. Conclusion Our results suggest that sea urchin molecules may interact with Aβ42o and oxidative stress, preventing or treating neurotoxicity, which may be useful in treating dementia.
Collapse
Affiliation(s)
- Amanda Gomes da Silva
- Integrated Pharmacology and Gastroenterology Unit (UNIFAG), Bragança
Paulista, SP, Brazil
- Laboratory of Natural Products, Postgraduate Program in Health
Sciences, São Francisco University, Bragança Paulista, SP, Brazil
| | | | | | | | - Irina Kerkis
- Laboratory of Genetics, Butantan Institute, São Paulo, SP,
Brazil
| | - Hugo Vigerelli
- Laboratory of Genetics, Butantan Institute, São Paulo, SP,
Brazil
- Center of Excellence in New Target Discovery, Butantan Institute,
São Paulo, SP, Brazil
| | - Juliana Mozer Sciani
- Laboratory of Natural Products, Postgraduate Program in Health
Sciences, São Francisco University, Bragança Paulista, SP, Brazil
| |
Collapse
|
12
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|
13
|
Han DG, Kwak J, Choi E, Seo SW, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim HK, Han J, Byun JH, Jung IH, Yun H, Yoon IS. Physicochemical characterization and phase II metabolic profiling of echinochrome A, a bioactive constituent from sea urchin, and its physiologically based pharmacokinetic modeling in rats and humans. Biomed Pharmacother 2023; 162:114589. [PMID: 37004327 DOI: 10.1016/j.biopha.2023.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Echinochrome A, a natural naphthoquinone pigment found in sea urchins, is increasingly being investigated for its nutritional and therapeutic value associated with antioxidant, anticancer, antiviral, antidiabetic, and cardioprotective activities. Although several studies have demonstrated the biological effects and therapeutic potential of echinochrome A, little is known regarding its biopharmaceutical behaviors. Here, we aimed to investigate the physicochemical properties and metabolic profiles of echinochrome A and establish a physiologically-based pharmacokinetic (PBPK) model as a useful tool to support its clinical applications. We found that the lipophilicity, color variability, ultraviolet/visible spectrometry, and stability of echinochrome A were markedly affected by pH conditions. Moreover, metabolic and pharmacokinetic profiling studies demonstrated that echinochrome A is eliminated primarily by hepatic metabolism and that four possible metabolites, i.e., two glucuronidated and two methylated conjugates, are formed in rat and human liver preparations. A whole-body PBPK model incorporating the newly identified hepatic phase II metabolic process was constructed and optimized with respect to chemical-specific parameters. Furthermore, model simulations suggested that echinochrome A could exhibit linear disposition profiles without systemic and local tissue accumulation in clinical settings. Our proposed PBPK model of echinochrome A could be a valuable tool for predicting drug interactions in previously unexplored scenarios and for optimizing dosage regimens and drug formulations.
Collapse
|
14
|
Sun Q, Hu S, Lou Z, Gao J. The macrophage polarization in inflammatory dermatosis and its potential drug candidates. Biomed Pharmacother 2023; 161:114469. [PMID: 37002572 DOI: 10.1016/j.biopha.2023.114469] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Inflammatory dermatosis is characterized by persistent inflammatory infiltration and hard repair of diseased skin. As a member of the human innate immune cells, macrophages usually show different phenotypes in different diseases. The macrophage phenotype (M1/M2) imbalance caused by the increase of M1 macrophages or the decrease of M2 macrophages is common in inflammatory dermatosis. In recent years, with the deepening research on inflammatory skin diseases, more and more natural medicines/traditional Chinese medicines (TCMs), represented by Shikonin and Angelica Dahurica, have shown their therapeutic effects by affecting the polarization of macrophages. This review introduced macrophage polarization in different inflammatory dermatosis, such as psoriasis. Then summarized the natural medicines/TCMs that have potential therapeutic effects so far and introduced their mechanisms of action and the proteins/signal pathways involved. We found that the TCMs with therapeutic effects listed in this review are closely related to the theory of five flavors and four properties of Chinese medicinal, and most of them are bitter, acrid and sweet. Bitter TCMs have antipyretic, anti-inflammatory and antibacterial effects, which may improve the persistent inflammation of M1 macrophage infiltration. Acrid TCMs have the effect of promoting blood circulation, while sweet TCMs have the effect of nourishing. These 2 flavors may accelerate the repair of skin lesions of inflammatory dermatosis by affecting M2 macrophages. In conclusion, we hope to provide sufficient knowledge for natural medicine research and the development of inflammatory dermatosis related to macrophage phenotype imbalance.
Collapse
Affiliation(s)
- Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China.
| |
Collapse
|
15
|
Kikionis S, Papakyriakopoulou P, Mavrogiorgis P, Vasileva EA, Mishchenko NP, Fedoreyev SA, Valsami G, Ioannou E, Roussis V. Development of Novel Pharmaceutical Forms of the Marine Bioactive Pigment Echinochrome A Enabling Alternative Routes of Administration. Mar Drugs 2023; 21:md21040250. [PMID: 37103389 PMCID: PMC10147083 DOI: 10.3390/md21040250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Echinochrome A (EchA), a marine bioactive pigment isolated from various sea urchin species, is the active agent of the clinically approved drug Histochrome®. EchA is currently only available in the form of an isotonic solution of its di- and tri-sodium salts due to its poor water solubility and sensitivity to oxidation. Electrospun polymeric nanofibers have lately emerged as promising drug carriers capable of improving the dissolution and bioavailability of drugs with limited water solubility. In the current study, EchA isolated from sea urchins of the genus Diadema collected at the island of Kastellorizo was incorporated in electrospun micro-/nanofibrous matrices composed of polycaprolactone and polyvinylpyrrolidone in various combinations. The physicochemical properties of the micro-/nanofibers were characterized using SEM, FT-IR, TGA and DSC analyses. The fabricated matrices exhibited variable dissolution/release profiles of EchA, as evidenced in in vitro experiments using gastrointestinal-like fluids (pH 1.2, 4.5 and 6.8). Ex vivo permeability studies using the EchA-loaded micro-/nanofibrous matrices showed an increased permeation of EchA across the duodenum barrier. The results of our study clearly show that electrospun polymeric micro-/nanofibers represent promising carriers for the development of new pharmaceutical formulations with controlled release, as well as increased stability and solubility of EchA, suitable for oral administration, while offering the potential for targeted delivery.
Collapse
Affiliation(s)
- Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Panagiotis Mavrogiorgis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Elena A Vasileva
- Laboratory of the Chemistry of Natural Quinonoid Compounds of the G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, 690022 Vladivostok, Russia
| | - Natalia P Mishchenko
- Laboratory of the Chemistry of Natural Quinonoid Compounds of the G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, 690022 Vladivostok, Russia
| | - Sergey A Fedoreyev
- Laboratory of the Chemistry of Natural Quinonoid Compounds of the G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, 690022 Vladivostok, Russia
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
16
|
Pham TK, Nguyen THT, Yun HR, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Vu TT, Nguyen HQ, Cho SW, Kim HK, Han J. Echinochrome A Prevents Diabetic Nephropathy by Inhibiting the PKC-Iota Pathway and Enhancing Renal Mitochondrial Function in db/db Mice. Mar Drugs 2023; 21:md21040222. [PMID: 37103361 PMCID: PMC10142928 DOI: 10.3390/md21040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Echinochrome A (EchA) is a natural bioproduct extracted from sea urchins, and is an active component of the clinical drug, Histochrome®. EchA has antioxidant, anti-inflammatory, and antimicrobial effects. However, its effects on diabetic nephropathy (DN) remain poorly understood. In the present study, seven-week-old diabetic and obese db/db mice were injected with Histochrome (0.3 mL/kg/day; EchA equivalent of 3 mg/kg/day) intraperitoneally for 12 weeks, while db/db control mice and wild-type (WT) mice received an equal amount of sterile 0.9% saline. EchA improved glucose tolerance and reduced blood urea nitrogen (BUN) and serum creatinine levels but did not affect body weight. In addition, EchA decreased renal malondialdehyde (MDA) and lipid hydroperoxide levels, and increased ATP production. Histologically, EchA treatment ameliorated renal fibrosis. Mechanistically, EchA suppressed oxidative stress and fibrosis by inhibiting protein kinase C-iota (PKCι)/p38 mitogen-activated protein kinase (MAPK), downregulating p53 and c-Jun phosphorylation, attenuating NADPH oxidase 4 (NOX4), and transforming growth factor-beta 1 (TGFβ1) signaling. Moreover, EchA enhanced AMPK phosphorylation and nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) signaling, improving mitochondrial function and antioxidant activity. Collectively, these findings demonstrate that EchA prevents DN by inhibiting PKCι/p38 MAPK and upregulating the AMPKα/NRF2/HO-1 signaling pathways in db/db mice, and may provide a therapeutic option for DN.
Collapse
Affiliation(s)
- Trong Kha Pham
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
- Faculty of Biology, University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - To Hoai T. Nguyen
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Hyeong Rok Yun
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Thu Thi Vu
- Faculty of Biology, University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Huy Quang Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Ilsan Paik Hospital, Cardiac & Vascular Center, College of Medicine, Inje University, Goyang 10380, Republic of Korea
| | - Hyoung Kyu Kim
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Jin Han
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
17
|
Quarta S, Scoditti E, Zonno V, Siculella L, Damiano F, Carluccio MA, Pagliara P. In Vitro Anti-Inflammatory and Vasculoprotective Effects of Red Cell Extract from the Black Sea Urchin Arbacia lixula. Nutrients 2023; 15:nu15071672. [PMID: 37049512 PMCID: PMC10096920 DOI: 10.3390/nu15071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Sea urchins have emerged as an important source of bioactive compounds with anti-inflammatory and antioxidant properties relevant to human health. Since inflammation is a crucial pathogenic process in the development and progression of atherosclerosis, we here assessed the potential anti-inflammatory and vasculoprotective effects of coelomic red-cell methanolic extract of the black sea urchin Arbacia lixula in an in vitro model of endothelial cell dysfunction. Human microvascular endothelial cells (HMEC-1) were pretreated with A. lixula red-cell extract (10 and 100 μg/mL) before exposure to the pro-inflammatory cytokine tumor necrosis factor (TNF)-α. The extract was non-toxic after 24 h cell treatment and was characterized by antioxidant power and phenol content. The TNF-α-stimulated expression of adhesion molecules (VCAM-1, ICAM-1) and cytokines/chemokines (MCP-1, CCL-5, IL-6, IL-8, M-CSF) was significantly attenuated by A. lixula red-cell extract. This was functionally accompanied by a reduction in monocyte adhesion and chemotaxis towards activated endothelial cells. At the molecular level, the tested extract significantly counteracted the TNF-α-stimulated activation of the pro-inflammatory transcription factor NF-κB. These results provide evidence of potential anti-atherosclerotic properties of A. lixula red-cell extract, and open avenues in the discovery and development of dietary supplements and/or drugs for the prevention or treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Vincenzo Zonno
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | | | - Patrizia Pagliara
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
18
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
19
|
Kim SE, Chung EDS, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim HK, Nam JH, Kim SJ. Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology. Mar Drugs 2023; 21:78. [PMID: 36827119 PMCID: PMC9963876 DOI: 10.3390/md21020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 μM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elina Da Sol Chung
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Hyoung Kyu Kim
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Health Sciences and Technology, Graduate School, Inje University, Busan 47392, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang-si 10326, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
20
|
Tang X, Nishimura A, Ariyoshi K, Nishiyama K, Kato Y, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim HK, Han J, Kanda Y, Umezawa K, Urano Y, Akaike T, Nishida M. Echinochrome Prevents Sulfide Catabolism-Associated Chronic Heart Failure after Myocardial Infarction in Mice. Mar Drugs 2023; 21:52. [PMID: 36662225 PMCID: PMC9863521 DOI: 10.3390/md21010052] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Abnormal sulfide catabolism, especially the accumulation of hydrogen sulfide (H2S) during hypoxic or inflammatory stresses, is a major cause of redox imbalance-associated cardiac dysfunction. Polyhydroxynaphtoquinone echinochrome A (Ech-A), a natural pigment of marine origin found in the shells and needles of many species of sea urchins, is a potent antioxidant and inhibits acute myocardial ferroptosis after ischemia/reperfusion, but the chronic effect of Ech-A on heart failure is unknown. Reactive sulfur species (RSS), which include catenated sulfur atoms, have been revealed as true biomolecules with high redox reactivity required for intracellular energy metabolism and signal transduction. Here, we report that continuous intraperitoneal administration of Ech-A (2.0 mg/kg/day) prevents RSS catabolism-associated chronic heart failure after myocardial infarction (MI) in mice. Ech-A prevented left ventricular (LV) systolic dysfunction and structural remodeling after MI. Fluorescence imaging revealed that intracellular RSS level was reduced after MI, while H2S/HS- level was increased in LV myocardium, which was attenuated by Ech-A. This result indicates that Ech-A suppresses RSS catabolism to H2S/HS- in LV myocardium after MI. In addition, Ech-A reduced oxidative stress formation by MI. Ech-A suppressed RSS catabolism caused by hypoxia in neonatal rat cardiomyocytes and human iPS cell-derived cardiomyocytes. Ech-A also suppressed RSS catabolism caused by lipopolysaccharide stimulation in macrophages. Thus, Ech-A has the potential to improve chronic heart failure after MI, in part by preventing sulfide catabolism.
Collapse
Affiliation(s)
- Xiaokang Tang
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Kohei Ariyoshi
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhiro Nishiyama
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Hyoung-Kyu Kim
- Cardiovascular and Metabolic Disease Center (CMDC), Inje University, Busan 47392, Republic of Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center (CMDC), Inje University, Busan 47392, Republic of Korea
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Keitaro Umezawa
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Song BW, Kim S, Kim R, Jeong S, Moon H, Kim H, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Lee MY, Kim J, Kim HK, Han J, Chang W. Regulation of Inflammation-Mediated Endothelial to Mesenchymal Transition with Echinochrome a for Improving Myocardial Dysfunction. Mar Drugs 2022; 20:756. [PMID: 36547903 PMCID: PMC9781361 DOI: 10.3390/md20120756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is a process by which endothelial cells (ECs) transition into mesenchymal cells (e.g., myofibroblasts and smooth muscle cells) and induce fibrosis of cells/tissues, due to ischemic conditions in the heart. Previously, we reported that echinochrome A (EchA) derived from sea urchin shells can modulate cardiovascular disease by promoting anti-inflammatory and antioxidant activity; however, the mechanism underlying these effects was unclear. We investigated the role of EchA in the EndMT process by treating human umbilical vein ECs (HUVECs) with TGF-β2 and IL-1β, and confirmed the regulation of cell migration, inflammatory, oxidative responses and mitochondrial dysfunction. Moreover, we developed an EndMT-induced myocardial infarction (MI) model to investigate the effect of EchA in vivo. After EchA was administered once a day for a total of 3 days, the histological and functional improvement of the myocardium was investigated to confirm the control of the EndMT. We concluded that EchA negatively regulates early or inflammation-related EndMT and reduces the myofibroblast proportion and fibrosis area, meaning that it may be a potential therapy for cardiac regeneration or cardioprotection from scar formation and cardiac fibrosis due to tissue granulation. Our findings encourage the study of marine bioactive compounds for the discovery of new therapeutics for recovering ischemic cardiac injuries.
Collapse
Affiliation(s)
- Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Republic of Korea
| | - Sejin Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Republic of Korea
| | - Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Republic of Korea
| | - Seongtae Jeong
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Republic of Korea
| | - Hanbyeol Moon
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Republic of Korea
| | - Hojin Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hyoung Kyu Kim
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University, Busan 47392, Republic of Korea
| | - Jin Han
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University, Busan 47392, Republic of Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
22
|
Effect of Echinochrome A on Submandibular Gland Dysfunction in Ovariectomized Rats. Mar Drugs 2022; 20:md20120729. [PMID: 36547876 PMCID: PMC9785380 DOI: 10.3390/md20120729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Post-menopausal dry mouth or xerostomia is caused by reduced salivary secretion. This study aimed to investigate the efficacy of echinochrome A (Ech A) in alleviating submandibular gland dysfunctions in ovariectomized rats that mimic menopause. Female rats that were eight-weeks-old were randomly divided into SHAM-6, -12; OVX-6, -12; and ECH-6, -12 groups (consisting of 6- and 12-weeks post-sham-operated, ovariectomized, and Ech A-treated ovariectomized rats, respectively). The ECH groups had lower body weight than OVX but similar food intake and estradiol or estrogen receptor β expression. However, the ECH groups had lower mRNA expression of sterol-regulatory element binding protein-1c (Srebp-1c), acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), cluster of differentiation 36 (Cd36), and lipid vacuole deposition than OVX mice. Moreover, reactive oxygen species (ROS), malondialdehyde (MDA), and iron accumulation were lower in the ECH than in the OVX groups. Fibrosis markers, transforming growth factor β (Tgf-βI and Tgf-βII mRNA) increased in the OVX than SHAM groups but decreased in the ECH groups. Aquaporin (Aqp-1 and Aqp-5 mRNA) and mucin expressions were downregulated in the OVX groups but improved with Ech A. In addition, Ech A prevented post-menopausal salivary gland dysfunction by inhibiting lipogenesis and ferroptosis. These findings suggest Ech A as an effective remedy for treating menopausal dry mouth.
Collapse
|
23
|
Cui H, Liu J, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Zhang Y. Echinochrome A Reverses Kidney Abnormality and Reduces Blood Pressure in a Rat Model of Preeclampsia. Mar Drugs 2022; 20:722. [PMID: 36421999 PMCID: PMC9699499 DOI: 10.3390/md20110722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 05/31/2024] Open
Abstract
We aimed to observe the effects of Echinochrome A (Ech A) on systemic changes using a rat model of preeclampsia. The results showed that an infusion of angiotensin II (Ang II) through an osmotic pump (1 μg/kg/min) on GD 8 increased systolic and diastolic blood pressures and reduced fetal weight and placental weight. The diameters of the glomeruli were expended and glomeruli capillaries were diminished. No change was observed in the heart and liver in the Ang II group, but epithelial structures were disrupted in the uterus. Ech A treatment on GD 14 (100 μg/μL) through the jugular vein reduced systolic and diastolic blood pressures and reversed glomerulus alterations, but the fetal or placental parameters were unaffected. Ech A only partly reversed the effect on the uterus. The mRNA expression of TNF-α was increased and IL-10 and VEGF were reduced in the uterus of the Ang II group, while Ech A restored these changes. A similar trend was observed in the kidney, liver, and heart of this group. Furthermore, Bcl-2 was reduced and Bcl-2/Bax ratios were significantly reduced in the kidney and heart of the Ang II group, while Ech A reversed these changes. We suggest that Ech A modulates inflammation and apoptosis in key systemic organs in Ang II-induced rat preeclampsia and preserves kidney and uterus structures and reduces blood pressure.
Collapse
Affiliation(s)
- Huixing Cui
- Department of Physiology & Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
- Department of Research Center, Yanbian University Hospital, Yanji 133000, China
| | - Junxian Liu
- Department of Physiology & Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
- Department of Research Center, Yanbian University Hospital, Yanji 133000, China
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Yinhua Zhang
- Department of Physiology & Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
- Department of Research Center, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
24
|
Ahn JS, Shin YY, Oh SJ, Song MH, Kang MJ, Park SY, Nguyen PT, Nguyen DK, Kim HK, Han J, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Seo Y, Lee BC, Kim HS. Implication of Echinochrome A in the Plasticity and Damage of Intestinal Epithelium. Mar Drugs 2022; 20:715. [PMID: 36421992 PMCID: PMC9693993 DOI: 10.3390/md20110715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 05/31/2024] Open
Abstract
The diverse therapeutic feasibility of the sea urchin-derived naphthoquinone pigment, Echinochrome A (Ech A), has been studied. Simple and noninvasive administration routes should be explored, to obtain the feasibility. Although the therapeutic potential has been proven through several preclinical studies, the biosafety of orally administered Ech A and its direct influence on intestinal cells have not been evaluated. To estimate the bioavailability of Ech A as an oral administration drug, small intestinal and colonic epithelial organoids were developed from mice and humans. The morphology and cellular composition of intestinal organoids were evaluated after Ech A treatment. Ech A treatment significantly increased the expression of LGR5 (~2.38-fold change, p = 0.009) and MUC2 (~1.85-fold change, p = 0.08). Notably, in the presence of oxidative stress, Ech A attenuated oxidative stress up to 1.8-fold (p = 0.04), with a restored gene expression of LGR5 (~4.11-fold change, p = 0.0004), as well as an increased expression of Ly6a (~3.51-fold change, p = 0.005) and CLU (~2.5-fold change, p = 0.01), markers of revival stem cells. In conclusion, Ech A is harmless to intestinal tissues; rather, it promotes the maintenance and regeneration of the intestinal epithelium, suggesting possible beneficial effects on the intestine when used as an oral medication.
Collapse
Affiliation(s)
- Ji-Su Ahn
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ye Young Shin
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Su-Jeong Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Min-Hye Song
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Min-Jung Kang
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - So Yeong Park
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Phuong Thao Nguyen
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dang Khoa Nguyen
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyoung Kyu Kim
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Jin Han
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Republic of Korea
| | - Elena A Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
25
|
Ageenko NV, Kiselev KV, Odintsova NA. Quinoid Pigments of Sea Urchins Scaphechinus mirabilis and Strongylocentrotus intermedius: Biological Activity and Potential Applications. Mar Drugs 2022; 20:611. [PMID: 36286435 PMCID: PMC9605347 DOI: 10.3390/md20100611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
This review presents literature data: the history of the discovery of quinoid compounds, their biosynthesis and biological activity. Special attention is paid to the description of the quinoid pigments of the sea urchins Scaphechinus mirabilis (from the family Scutellidae) and Strongylocentrotus intermedius (from the family Strongylocentrotidae). The marine environment is considered one of the most important sources of natural bioactive compounds with extremely rich biodiversity. Primary- and some secondary-mouthed animals contain very high concentrations of new biologically active substances, many of which are of significant potential interest for medical purposes. The quinone pigments are products of the secondary metabolism of marine animals, can have complex structures and become the basis for the development of new natural products in echinoids that are modulators of chemical interactions and possible active ingredients in medicinal preparations. More than 5000 chemical compounds with high pharmacological potential have been isolated and described from marine organisms. There are three well known ways of naphthoquinone biosynthesis-polyketide, shikimate and mevalonate. The polyketide pathway is the biosynthesis pathway of various quinones. The shikimate pathway is the main pathway in the biosynthesis of naphthoquinones. It should be noted that all quinoid compounds in plants and animals can be synthesized by various ways of biosynthesis.
Collapse
Affiliation(s)
- Natalya V. Ageenko
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Federal State Budgetary Institution of Science, The Far Eastern Branch of the Russian Academy of Sciences (FEB RAS), 690041 Vladivostok, Russia
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Federal State Budgetary Institution of Science, FEB RAS, 690022 Vladivostok, Russia
| | - Nelly A. Odintsova
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Federal State Budgetary Institution of Science, The Far Eastern Branch of the Russian Academy of Sciences (FEB RAS), 690041 Vladivostok, Russia
| |
Collapse
|
26
|
Echinochrome A Inhibits Melanogenesis in B16F10 Cells by Downregulating CREB Signaling. Mar Drugs 2022; 20:md20090555. [PMID: 36135744 PMCID: PMC9502928 DOI: 10.3390/md20090555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/22/2022] Open
Abstract
Excessive increase in melanin pigment in the skin can be caused by a variety of environmental factors, including UV radiation, and can result in spots, freckles, and skin cancer. Therefore, it is important to develop functional whitening cosmetic reagents that regulate melanogenesis. In this study, we investigated the effects of echinochrome A (Ech A) on melanogenesis in the B16F10 murine melanoma cell line. We triggered B16F10 cells using α-MSH under Ech A treatment to observe melanin synthesis and analyze expression changes in melanogenesis-related enzymes (tyrosinase, tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2)) at the mRNA and protein levels. Furthermore, we measured expression changes in the microphthalmia-associated transcription factor (MITF), CREB, and pCREB proteins. Melanin synthesis in the cells stimulated by α-MSH was significantly reduced by Ech A. The expression of the tyrosinase, TYRP1, and TYRP2 mRNA and proteins was significantly decreased by Ech A, as was that of the MITF, CREB, and pCREB proteins. These results show that Ech A suppresses melanin synthesis by regulating melanogenesis-related enzymes through the CREB signaling pathway and suggest the potential of Ech A as a functional agent to prevent pigmentation and promote skin whitening.
Collapse
|
27
|
Obluchinskaya ED, Pozharitskaya ON, Flisyuk EV, Shikov AN. Formulation, Optimization and In Vivo Evaluation of Fucoidan-Based Cream with Anti-Inflammatory Properties. Mar Drugs 2021; 19:643. [PMID: 34822514 PMCID: PMC8620601 DOI: 10.3390/md19110643] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Fucoidan is a polysaccharide found in brown alga with glorious potential for pharmacological activities, among which its anti-inflammatory properties have gained meaningful attention. Due to several advantages of formulations for topical application, this study aimed to develop and optimize a fucoidan-based cream formulation and to investigate its anti-inflammatory potential after topical application in vivo. Fucoidan from Fucus vesiculosus L. was used. The cream base consisting of olive oil and Kolliphor RH40 was optimized followed by in vitro agar diffusion and drug release studies. The fucoidan-based cream with 13% Kolliphor P 407, 1% Transcutol P, and 5% PEG400 showed good spreadability, washability, and colloidal stability, and it did not irritate the skin. The kinetics of fucoidan release from the optimized cream exhibited the best fit to the Korsmeyer-Peppas and Higuchi models with R2 > 0.99. Fucoidan release was controlled by drug diffusion and anomalous transport provided by the optimized cream base. The formulation was stable and provided high fucoidan release after storage for 1 year. Topical application of the fucoidan-based cream dose-dependently inhibited carrageenan-induced edema and ameliorated mechanical allodynia in rats. The efficacy of the fucoidan-based cream at a high dose was comparable with the efficacy of diclofenac gel. The fucoidan-based cream could be considered a promising anti-inflammatory formulation.
Collapse
Affiliation(s)
- Ekaterina D. Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| | - Elena V. Flisyuk
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14a, Saint-Petersburg 197376, Russia;
| | - Alexander N. Shikov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14a, Saint-Petersburg 197376, Russia;
| |
Collapse
|
28
|
Echinochrome A Treatment Alleviates Atopic Dermatitis-like Skin Lesions in NC/Nga Mice via IL-4 and IL-13 Suppression. Mar Drugs 2021; 19:md19110622. [PMID: 34822493 PMCID: PMC8625509 DOI: 10.3390/md19110622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease in which skin barrier dysfunction leads to dryness, pruritus, and erythematous lesions. AD is triggered by immune imbalance and oxidative stress. Echinochrome A (Ech A), a natural pigment isolated from sea urchins, exerts antioxidant and beneficial effects in various inflammatory disease models. In the present study, we tested whether Ech A treatment alleviated AD-like skin lesions. We examined the anti-inflammatory effect of Ech A on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like lesions in an NC/Nga mouse model. AD-like skin symptoms were induced by treatment with 1% DNCB for 1 week and 0.4% DNCB for 5 weeks in NC/Nga mice. The results showed that Ech A alleviated AD clinical symptoms, such as edema, erythema, and dryness. Treatment with Ech A induced the recovery of epidermis skin lesions as observed histologically. Tewameter® and Corneometer® measurements indicated that Ech A treatment reduced transepidermal water loss and improved stratum corneum hydration, respectively. Ech A treatment also inhibited inflammatory-response-induced mast cell infiltration in AD-like skin lesions and suppressed the expression of proinflammatory cytokines, such as interferon-γ, interleukin-4, and interleukin-13. Collectively, these results suggest that Ech A may be beneficial for treating AD owing to its anti-inflammatory effects.
Collapse
|
29
|
Echinochrome A Protects against Ultraviolet B-induced Photoaging by Lowering Collagen Degradation and Inflammatory Cell Infiltration in Hairless Mice. Mar Drugs 2021; 19:md19100550. [PMID: 34677449 PMCID: PMC8537837 DOI: 10.3390/md19100550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/26/2022] Open
Abstract
Echinochrome A (Ech A, 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone) has been known to exhibit anti-oxidative and anti-inflammatory effects. However, no study has been carried out on the efficacy of Ech A against skin photoaging; this process is largely mediated by oxidative stress. Six-week-old male SKH-1 hairless mice (n = 36) were divided into five groups. Except for a group that were not treated (n = 4), all mice underwent ultraviolet-B (UVB) exposure for 8 weeks while applying phosphate-buffered saline or Ech A through intraperitoneal injection. UVB impaired skin barrier function, showing increased transepidermal water loss and decreased stratum corneum hydration. UVB induced dermal collagen degeneration and mast cell infiltration. Ech A injection was found to significantly lower transepidermal water loss while attenuating tissue inflammatory changes and collagen degeneration compared to the control. Furthermore, Ech A was found to decrease the relative expression of matrix metalloproteinase, tryptase, and chymase. Taken together, these results suggest that Ech A protects against UVB-induced photoaging in both functional and histologic aspects, causing a lowering of collagen degradation and inflammatory cell infiltration.
Collapse
|