1
|
Dhanji-Rapkova M, Hatfield RG, Walker DI, Hooper C, Alewijnse S, Baker-Austin C, Turner AD, Ritchie JM. Investigating Non-Native Ribbon Worm Cephalothrix simula as a Potential Source of Tetrodotoxin in British Bivalve Shellfish. Mar Drugs 2024; 22:458. [PMID: 39452866 PMCID: PMC11509275 DOI: 10.3390/md22100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin found in several phylogenetically diverse organisms, some of which are sought as seafood. Since 2015, TTX has been reported in bivalve shellfish from several estuarine locations along the Mediterranean and European Atlantic coasts, posing an emerging food safety concern. Although reports on spatial and temporal distribution have increased in recent years, processes leading to TTX accumulation in European bivalves are yet to be described. Here, we explored the hypothesis that the ribbon worm species Cephalothrix simula, known to contain high levels of TTX, could play a role in the trophic transfer of the toxin into shellfish. During a field study at a single location in southern England, we confirmed C. simula DNA in seawater adjacent to trestle-farmed Pacific oysters Magallana gigas (formerly Crassostrea gigas) with a history of TTX occurrence. C. simula DNA in seawater was significantly higher in June and July during the active phase of toxin accumulation compared to periods of either no or continually decreasing TTX concentrations in M. gigas. In addition, C. simula DNA was detected in oyster digestive glands collected on 15 June 2021, the day with the highest recorded C. simula DNA abundance in seawater. These findings show evidence of a relationship between C. simula and TTX occurrence, providing support for the hypothesis that bivalves may acquire TTX through filter-feeding on microscopic life forms of C. simula present in the water column at particular periods each year. Although further evidence is needed to confirm such feeding activity, this study significantly contributes to discussions about the biological source of TTX in European bivalve shellfish.
Collapse
Affiliation(s)
- Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Robert G. Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - David I. Walker
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Sarah Alewijnse
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Andrew D. Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (R.G.H.); (D.I.W.); (C.H.); (S.A.); (C.B.-A.); (A.D.T.)
| | - Jennifer M. Ritchie
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| |
Collapse
|
2
|
Yonezawa R, Hayashi K, Oyama H, Yoshitake K, Sato S, Senevirathna JDM, Smith AR, Okabe T, Suo R, Kinoshita S, Takatani T, Arakawa O, Asakawa S, Itoi S. Tissue Localization of Tetrodotoxin in the Flatworm Planocera multitentaculata (Platyhelminthes: Polycladida). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:649-657. [PMID: 38861110 DOI: 10.1007/s10126-024-10332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Tetrodotoxin (TTX), a pufferfish toxin, is a highly potent neurotoxin that has been found in a wide variety of animals. The TTX-bearing flatworm Planocera multitentaculata possesses a large amount of TTX and is considered responsible for the toxification of TTX-bearing animals such as pufferfish (Takifugu and Chelonodon) and the toxic goby Yongeichthys criniger. However, the mechanism underlying TTX accumulation in flatworms remains unclear. Previous studies have been limited to identifying the distribution of TTX in multiple organs, such as the digestive organs, genital parts, and the remaining tissues of flatworms. Here, we performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and immunohistochemical staining using a monoclonal anti-TTX antibody to elucidate the detailed localization of TTX in the tissues and organs of the flatworm P. multitentaculata. Immunohistochemical staining for P. multitentaculata showed that TTX-specific signals were detected not only in the ovaries and pharynx but also in many other tissues and organs, whereas no signal was detected in the brain, Lang's vesicle, and genitalia. In addition, combined with LC-MS/MS analysis, it was revealed for the first time that TTX accumulates in high concentrations in the basement membrane and epidermis. These findings robustly support the hypotheses of "TTX utilization protection from predators."
Collapse
Affiliation(s)
- Ryo Yonezawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Hayashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hikaru Oyama
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soshi Sato
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jayan Duminda M Senevirathna
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - Ashley R Smith
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taiki Okabe
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
- Niigata Prefectural Kaiyo High School, Itoigawa, Niigata, 949-1352, Japan
| | - Rei Suo
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Takatani
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Shiro Itoi
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan.
| |
Collapse
|
3
|
Ueda H, Ito M, Yonezawa R, Hayashi K, Tomonou T, Kashitani M, Oyama H, Shirai K, Suo R, Yoshitake K, Kinoshita S, Asakawa S, Itoi S. Japanese Planocerid Flatworms: Difference in Composition of Tetrodotoxin and Its Analogs and the Effects of Ingestion by Toxin-Bearing Fishes in the Ryukyu Islands, Japan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:500-510. [PMID: 38630353 PMCID: PMC11178581 DOI: 10.1007/s10126-024-10312-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 06/15/2024]
Abstract
Tetrodotoxin (TTX), known as pufferfish toxin, is a potent neurotoxin blocking sodium channels in muscle and nerve tissues. TTX has been detected in various taxa other than pufferfish, including marine polyclad flatworms, suggesting that pufferfish toxin accumulates in fish bodies via food webs. The composition of TTX and its analogs in the flatworm Planocera multitentaculata was identical to those in wild grass puffer Takifugu alboplumbeus. Previously, Planocera sp. from Okinawa Island, Japan, were reported to possess high level of TTX, but no information was available on TTX analogs in this species. Here we identified TTX and analogs in the planocerid flatworm using high-resolution liquid chromatography-mass spectrometry, and compared the composition of TTX and analogs with those of another toxic and non-toxic planocerid species. We show that the composition of TTX and several analogs, such as 5,6,11-trideoxyTTX, dideoxyTTXs, deoxyTTXs, and 11-norTTX-6(S)-ol, of Planocera sp. was identical to those of toxic species, but not to its non-toxic counterpart. The difference in the toxin composition was reflected in the phylogenetic relationship based on the mitochondrial genome sequence. A toxification experiment using predatory fish and egg plates of P. multitentaculata demonstrated that the composition of TTX and analogs in wild T. alboplumbeus juveniles was reproduced in artificially toxified pufferfish. Additionally, feeding on the flatworm egg plates enhanced the signal intensities of all TTX compounds in Chelonodon patoca and that of deoxyTTXs in Yongeichthys criniger.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Yonezawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Hayashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Taiga Tomonou
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kyoko Shirai
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
4
|
Vlasenko AE, Pereverzeva AO, Velansky PV, Magarlamov TY. Tetrodotoxins in Tissues and Cells of Different Body Regions of Ribbon Worms Kulikovia alborostrata and K. manchenkoi from Spokoynaya Bay, Sea of Japan. Toxins (Basel) 2024; 16:186. [PMID: 38668611 PMCID: PMC11053740 DOI: 10.3390/toxins16040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Nemerteans, or ribbon worms, possess tetrodotoxin and its analogues (TTXs), neurotoxins of bacterial origin, which they presumably use for capturing prey and self-defense. Most TTXs-containing nemertean species have low levels of these toxins and, therefore, have usually been neglected in studies of TTXs functions and accumulation. In the present study, Kulikovia alborostrata and K. manchenkoi, two closely related species, were analyzed for TTXs distribution in the body using the HPLC-MS/MS and fluorescence microscopy methods. The abundance of TTXs-positive cells was determined in the proboscis, integument, and digestive system epithelium. As a result, six TTXs-positive cell types were identified in each species; however, only four were common. Moreover, the proportions of the toxins in different body parts were estimated. According to the HPLC-MS/MS analysis, the TTXs concentrations in K. alborostrata varied from 0.91 ng/g in the proboscis to 5.52 ng/g in the precerebral region; in K. manchenkoi, the concentrations ranged from 7.47 ng/g in the proboscis to 72.32 ng/g in the posterior body region. The differences observed between the two nemerteans in the distribution of the TTXs were consistent with the differences in the localization of TTXs-positive cells. In addition, TTXs-positive glandular cell types were found in the intestine and characterized for the first time. TTXs in the new cell types were assumed to play a unique physiological role for nemerteans.
Collapse
Affiliation(s)
| | | | | | - Timur Yu. Magarlamov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
5
|
Malykin GV, Velansky PV, Magarlamov TY. Tetrodotoxin and Its Analogues (TTXs) in the Food-Capture and Defense Organs of the Palaeonemertean Cephalothrix cf. simula. Toxins (Basel) 2024; 16:43. [PMID: 38251259 PMCID: PMC10818845 DOI: 10.3390/toxins16010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Tetrodotoxin (TTX), an extremely potent low-molecular-weight neurotoxin, is widespread among marine animals including ribbon worms (Nemertea). Previously, studies on the highly toxic palaeonemertean Cephalothrix cf. simula showed that toxin-positive structures are present all over its body and are mainly associated with glandular cells and epithelial tissues. The highest TTXs concentrations were detected in a total extract from the intestine of the anterior part of the body and also in a total extract from the proboscis. However, many questions as to the TTXs distribution in the organs of the anterior part of the worm's body and the functions of the toxins in these organs are still unanswered. In the present report, we provide additional results of a detailed and comprehensive analysis of TTXs distribution in the nemertean's proboscis, buccal cavity, and cephalic gland using an integrated approach including high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), confocal laser scanning microscopy with anti-TTX antibodies, light and electron microscopies, and observations of feeding behavior. For the proboscis, we have found a TTXs profile different from that characteristic of other organs and tissues. We have also shown for the first time that the major amount of TTXs is localized in the anterior part of the proboscis that is mainly involved in hunting. TTX-containing glandular cells, which can be involved in the prey immobilization, have been found in the buccal cavities of the nemerteans. A significant contribution of the cephalic gland to the toxicity of this animal has been shown for the first time, and the role of the gland is hypothesized to be involved not only in protection against potential enemies but also in immobilizing prey. The data obtained have made it possible to extend the understanding of the role and features of the use of TTXs in the organs of the anterior part of nemertean's body.
Collapse
Affiliation(s)
| | | | - Timur Yu. Magarlamov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
6
|
Malykin GV, Velansky PV, Melnikova DI, Magarlamov TY. Tetrodotoxins in Larval Development of Ribbon Worm Cephalothrix cf. simula (Palaeonemertea, Nemertea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:918-934. [PMID: 37672165 DOI: 10.1007/s10126-023-10249-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
The toxic ribbon worm, Cephalothrix cf. simula (Palaeonemertea, Nemertea), possesses extremely high concentrations of tetrodotoxin (TTX). Although TTX has been found in the eggs of this species, the fate of the toxin in the ontogeny of the animal has not been explored. Here, using high performance liquid chromatography with tandem mass spectrometry and immunohistochemistry with anti-TTX antibodies, we examined levels, profile, and localization of TTX and its analogues (TTXs) in larvae of C. cf. simula throughout 41 days post-fertilization. A detailed investigation of cells in sites of TTX-accumulation was performed with light and electron microscopy. Newly hatched larvae possessed weak TTX-like immunoreactivity in all cells. With subsequent development, intensity of TTX-labeling in the ectodermal structures, mesodermal cells and apical cylinder of the apical gland increased. In the ectodermal structures, an intense TTX-labeling was observed in the multiciliated, type II granular, type I mucoid, and basal cells of the epidermis, and in the type III granular cells of the mouth gland. In the mesoderm, TTX was localized in the muscle and unigranular parenchyma-like cells. Eggs and larvae of C. cf. simula contained five TTXs, with two major toxins - TTX and 5,6,11-trideoxyTTX. Level and relative proportion of TTXs did not differ significantly among developmental stages, confirming that larvae obtained toxins from maternal eggs and were able to retain it. The results of this study provide insights into the formation of TTX-bearing apparatus of C. cf. simula through the larval development.
Collapse
Affiliation(s)
- Grigorii V Malykin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
| | - Peter V Velansky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
| | - Daria I Melnikova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
| | - Timur Yu Magarlamov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation.
| |
Collapse
|
7
|
Sonoda GG, Tobaruela EDC, Norenburg J, Fabi JP, Andrade SCS. Venomous Noodles: The Evolution of Toxins in Nemertea through Positive Selection and Gene Duplication. Toxins (Basel) 2023; 15:650. [PMID: 37999513 PMCID: PMC10674772 DOI: 10.3390/toxins15110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023] Open
Abstract
Some, probably most and perhaps all, members of the phylum Nemertea are poisonous, documented so far from marine and benthic specimens. Although the toxicity of these animals has been long known, systematic studies on the characterization of toxins, mechanisms of toxicity, and toxin evolution for this group are scarce. Here, we present the first investigation of the molecular evolution of toxins in Nemertea. Using a proteo-transcriptomic approach, we described toxins in the body and poisonous mucus of the pilidiophoran Lineus sanguineus and the hoplonemertean Nemertopsis pamelaroeae. Using these new and publicly available transcriptomes, we investigated the molecular evolution of six selected toxin gene families. In addition, we also characterized in silico the toxin genes found in the interstitial hoplonemertean, Ototyphlonemertes erneba, a meiofaunal taxa. We successfully identified over 200 toxin transcripts in each of these species. Evidence of positive selection and gene duplication was observed in all investigated toxin genes. We hypothesized that the increased rates of gene duplications observed for Pilidiophora could be involved with the expansion of toxin genes. Studies concerning the natural history of Nemertea are still needed to understand the evolution of their toxins. Nevertheless, our results show evolutionary mechanisms similar to other venomous groups.
Collapse
Affiliation(s)
- Gabriel Gonzalez Sonoda
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo 05508-090, Brazil;
- Instituto Butantan, São Paulo 05503-900, Brazil
| | - Eric de Castro Tobaruela
- Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo, São Paulo 05508-080, Brazil; (E.d.C.T.); (J.P.F.)
| | | | - João Paulo Fabi
- Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo, São Paulo 05508-080, Brazil; (E.d.C.T.); (J.P.F.)
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo 05508-090, Brazil;
| |
Collapse
|
8
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
9
|
Oyama H, Ito M, Suo R, Goto-Inoue N, Morisasa M, Mori T, Sugita H, Mori T, Nakahigashi R, Adachi M, Nishikawa T, Itoi S. Changes in Tissue Distribution of Tetrodotoxin and Its Analogues in Association with Maturation in the Toxic Flatworm, Planocera multitentaculata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1158-1167. [PMID: 36322281 DOI: 10.1007/s10126-022-10179-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The toxic flatworm, Planocera multitentaculata, possesses highly concentrated tetrodotoxin (TTX), also known as pufferfish toxin, throughout its life cycle, including the egg and larval stages. Additionally, TTX analogues, 5,6,11-trideoxyTTX and 11-norTTX-6(S)-ol, have also been detected in the flatworm. The high concentration of TTX in the eggs and larvae appears to be for protection against predation, and 11-norTTX-6(S)-ol in the pharyngeal tissue in the adults is likely used to sedate or kill prey during predation. However, information on the role of 5,6,11-trideoxyTTX, a potential important biosynthetic intermediate of TTX, in the toxic flatworm is lacking. Here, we aimed to determine the region of localization of TTX and its analogues in the flatworm body, understand their pharmacokinetics during maturation, and speculate on their function. Flatworm specimens in four stages of maturity, namely juvenile, mating, spawning, and late spawning, were subjected to LC-MS/MS analysis, using the pharyngeal tissue, oocytes in seminal receptacle, sperm, and tissue from 12 other sites. Although TTX was consistently high in the pharyngeal tissue throughout maturation, it was extremely high in the oocytes during the spawning period. Meanwhile, 5,6,11-trideoxyTTX was almost undetectable in the pharyngeal part throughout the maturation but was very abundant in the oocytes during spawning. 11-norTTX-6(S)-ol consistently localized in the pharyngeal tissue. Although the localization of TTX and its analogues was approximately consistent with the MS imaging data, TTX and 11-norTTX-6(S)-ol were found to be highly localized in the parenchyma surrounding the pharynx, which suggests the parenchyma is involved in the accumulation and production of TTXs.
Collapse
Affiliation(s)
- Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mizuki Morisasa
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
10
|
Melnikova DI, Magarlamov TY. An Overview of the Anatomical Distribution of Tetrodotoxin in Animals. Toxins (Basel) 2022; 14:toxins14080576. [PMID: 36006238 PMCID: PMC9412668 DOI: 10.3390/toxins14080576] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrodotoxin (TTX), a potent paralytic sodium channel blocker, is an intriguing marine toxin. Widely distributed in nature, TTX has attracted attention in various scientific fields, from biomedical studies to environmental safety concerns. Despite a long history of studies, many issues concerning the biosynthesis, origin, and spread of TTX in animals and ecosystems remain. This review aims to summarize the current knowledge on TTX circulation inside TTX-bearing animal bodies. We focus on the advances in TTX detection at the cellular and subcellular levels, providing an expanded picture of intra-organismal TTX migration mechanisms. We believe that this review will help address the gaps in the understanding of the biological function of TTX and facilitate the development of further studies involving TTX-bearing animals.
Collapse
|
11
|
Suo R, Tanaka M, Oyama H, Kojima Y, Yui K, Sakakibara R, Nakahigashi R, Adachi M, Nishikawa T, Sugita H, Itoi S. Tetrodotoxins in the flatworm Planocera multitentaculata. Toxicon 2022; 216:169-173. [PMID: 35843466 DOI: 10.1016/j.toxicon.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
The marine polyclad flatworm Planocera multitentaculata is known to possess high levels of tetrodotoxin (TTX), but the presence of TTX analogues in the species has been unexplored. In this study, TTX and several analogues such as 5,6,11-trideoxyTTX, monodeoxyTTXs, dideoxyTTXs, and 11-norTTX-6(S)-ol were identified in three adults and egg plates of P. multitentaculata using high resolution liquid chromatography-mass spectrometry (HR-LC/MS) for the first time.
Collapse
Affiliation(s)
- Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Makoto Tanaka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yuki Kojima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kentaro Yui
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Sakakibara
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
12
|
Ito M, Furukawa R, Yasukawa S, Sato M, Oyama H, Okabe T, Suo R, Sugita H, Takatani T, Arakawa O, Adachi M, Nishikawa T, Itoi S. Local Differences in the Toxin Amount and Composition of Tetrodotoxin and Related Compounds in Pufferfish ( Chelonodon patoca) and Toxic Goby ( Yongeichthys criniger) Juveniles. Toxins (Basel) 2022; 14:150. [PMID: 35202177 PMCID: PMC8876675 DOI: 10.3390/toxins14020150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Tetrodotoxin (TTX)-bearing fish ingest TTX from their preys through the food chain and accumulate TTX in their bodies. Although a wide variety of TTX-bearing organisms have been reported, the missing link in the TTX supply chain has not been elucidated completely. Here, we investigated the composition of TTX and 5,6,11-trideoxyTTX in juveniles of the pufferfish, Chelonodon patoca, and toxic goby, Yongeichthys criniger, using LC-MS/MS, to resolve the missing link in the TTX supply chain. The TTX concentration varied among samples from different localities, sampling periods and fish species. In the samples from the same locality, the TTX concentration was significantly higher in the toxic goby juveniles than in the pufferfish juveniles. The concentration of TTX in all the pufferfish juveniles was significantly higher than that of 5,6,11-trideoxyTTX, whereas the compositional ratio of TTX and 5,6,11-trideoxyTTX in the goby was different among sampling localities. However, the TTX/5,6,11-trideoxyTTX ratio in the goby was not different among samples collected from the same locality at different periods. Based on a species-specific PCR, the detection rate of the toxic flatworm (Planocera multitentaculata)-specific sequence (cytochrome c oxidase subunit I) also varied between the intestinal contents of the pufferfish and toxic goby collected at different localities and periods. These results suggest that although the larvae of the toxic flatworm are likely to be responsible for the toxification of the pufferfish and toxic goby juveniles by TTX, these fish juveniles are also likely to feed on other TTX-bearing organisms depending on their habitat, and they also possess different accumulation mechanisms of TTX and 5,6,11-trideoxyTTX.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Risako Furukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Shino Yasukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Masaya Sato
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Tomohiro Takatani
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (T.T.); (O.A.)
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (T.T.); (O.A.)
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan;
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| |
Collapse
|