1
|
Lesgourgues M, Latire T, Terme N, Douzenel P, Leschiera R, Lebonvallet N, Bourgougnon N, Bedoux G. Ultrasound Depolymerization and Characterization of Poly- and Oligosaccharides from the Red Alga Solieria chordalis (C. Agardh) J. Agardh 1842. Mar Drugs 2024; 22:367. [PMID: 39195483 DOI: 10.3390/md22080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Red seaweed carrageenans are frequently used in industry for its texturizing properties and have demonstrated antiviral activities that can be used in human medicine. However, their high viscosity, high molecular weight, and low skin penetration limit their use. Low-weight carrageenans have a reduced viscosity and molecular weight, enhancing their biological properties. In this study, ι-carrageenan from Solieria chordalis, extracted using hot water and dialyzed, was depolymerized using hydrogen peroxide and ultrasound. Ultrasonic depolymerization yielded fractions of average molecular weight (50 kDa) that were rich in sulfate groups (16% and 33%) compared to those from the hydrogen peroxide treatment (7 kDa, 6% and 9%). The potential bioactivity of the polysaccharides and low-molecular-weight (LMW) fractions were assessed using WST-1 and LDH assays for human fibroblast viability, proliferation, and cytotoxicity. The depolymerized fractions did not affect cell proliferation and were not cytotoxic. This research highlights the diversity in the biochemical composition and lack of cytotoxicity of Solieria chordalis polysaccharides and LMW fractions produced by a green (ultrasound) depolymerization method.
Collapse
Affiliation(s)
- Mathilde Lesgourgues
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
- Laboratoire d'efficacité cosmétique (E-COS), Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
- Laboratoire d'efficacité cosmétique (E-COS), Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France
| | - Nolwenn Terme
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
- Laboratoire d'efficacité cosmétique (E-COS), Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France
| | - Philippe Douzenel
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
| | - Raphaël Leschiera
- Laboratoire Interaction Epithéliums Neurones (LIEN), UR 4685, Université Bretagne Occidentale, 29200 Brest, France
| | - Nicolas Lebonvallet
- Laboratoire Interaction Epithéliums Neurones (LIEN), UR 4685, Université Bretagne Occidentale, 29200 Brest, France
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
| |
Collapse
|
2
|
Bouzenad N, Ammouchi N, Chaib N, Messaoudi M, Bousabaa W, Bensouici C, Sawicka B, Atanassova M, Ahmad SF, Zahnit W. Exploring Bioactive Components and Assessing Antioxidant and Antibacterial Activities in Five Seaweed Extracts from the Northeastern Coast of Algeria. Mar Drugs 2024; 22:273. [PMID: 38921584 PMCID: PMC11205126 DOI: 10.3390/md22060273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The main goal of this study was to assess the bioactive and polysaccharide compositions, along with the antioxidant and antibacterial potentials, of five seaweeds collected from the northeastern coast of Algeria. Through Fourier transform infrared spectroscopy analysis and X-ray fluorescence spectroscopy, the study investigated the elemental composition of these seaweeds and their chemical structure. In addition, this study compared and identified the biochemical makeup of the collected seaweed by using cutting-edge methods like tandem mass spectrometry and ultra-high-performance liquid chromatography, and it searched for new sources of nutritionally valuable compounds. According to the study's findings, Sargassum muticum contains the highest levels of extractable bioactive compounds, showing a phenolic compound content of 235.67 ± 1.13 µg GAE·mg-1 and a total sugar content of 46.43 ± 0.12% DW. Both S. muticum and Dictyota dichotoma have high concentrations of good polyphenols, such as vanillin and chrysin. Another characteristic that sets brown algae apart is their composition. It showed that Cladophora laetevirens has an extracted bioactive compound content of 12.07% and a high capacity to scavenge ABTS+ radicals with a value of 78.65 ± 0.96 µg·mL-1, indicating high antioxidant activity. In terms of antibacterial activity, S. muticum seaweed showed excellent growth inhibition. In conclusion, all five species of seaweed under investigation exhibited unique strengths, highlighting the variety of advantageous characteristics of these seaweeds, especially S. muticum.
Collapse
Affiliation(s)
- Nawal Bouzenad
- Department of Process Engineering, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria
- Laboratory of Interactions, Biodiversity, Ecosystems and Biotechnology (LIBEB), University 20 August 1955, Skikda 21000, Algeria
| | - Nesrine Ammouchi
- Department of Sciences and Technology, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria;
- Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces (LRPCSI), University 20 August 1955, Skikda 21000, Algeria
| | - Nadjla Chaib
- Department of Process Engineering, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria
- Laboratory of Catalysis, Bioprocesses and Environment (LCBE), University 20 August 1955, Skikda 21000, Algeria
| | | | - Walid Bousabaa
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), BP384, Bou-Ismail 42004, Algeria;
| | - Chawki Bensouici
- Laboratory of Biochemistry, Biotechnology and Health Division, Center for Research in Biotechnology, Constantine 25000, Algeria;
| | - Barbara Sawicka
- Department of Plant Production Technology and Commoditties Science, University of Life Sciences in Lublin, Akademicka 15 Str., 20-950 Lublin, Poland;
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wafa Zahnit
- Laboratory of Valorization and Promotion of Saharan Resource (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, Ouargla 30000, Algeria
| |
Collapse
|
3
|
Srisai P, Suriyaprom S, Panya A, Pekkoh J, Tragoolpua Y. Inhibitory effects of algal polysaccharide extract from Cladophora spp. against herpes simplex virus infection. Sci Rep 2024; 14:11914. [PMID: 38789457 PMCID: PMC11126740 DOI: 10.1038/s41598-024-60941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Herpes simplex virus (HSV) is a causative agent of fever blister, genital herpes, and neonatal herpes. Nowadays, edible algae are recognized as health food due to high nutrition content and their many active compounds that are beneficial to health. The purpose of this study is to investigate the inhibitory effects of algal polysaccharide extract from Cladophora spp. against herpes simplex virus type 1 and type 2 on Vero cells. In this study, the structure of polysaccharide extract is presented as S=O and C-O-S of the sulfate group, as identified by the FT-IR technique. The toxicity of algal polysaccharide extract on Vero cells was determined by MTT assay. The algal extract showed low toxicity on the cells, with 50% cytotoxic concentration (CC50) value greater than 5000 µg mL-1. The inhibition of HSV infection by the algal extract was then evaluated on Vero cells using plaque reduction assay. The 50% effective concentration (EC50) values of algal extract exhibited antiviral activity against HSV-1 upon treatment before, during, and after viral adsorption with and without removal of the extract were 70.31, 15.17, > 5000 and 9.78 µg mL-1, respectively. Additionally, the EC50 values of algal extract against HSV-2 upon treatment before, during and after viral adsorption with, and without removal of the extract were 5.85, 2.57, > 5000 and 26.96 µg mL-1, respectively. Moreover, the algal extract demonstrated direct inactivation of HSV-1 and HSV-2 virions as well as inhibitory effect against HSV replication. Accordingly, algal polysaccharide extract containing sulfated polysaccharides showed strong activity against HSV. Therefore, it is proved to be useful to apply Cladophora spp. polysaccharide extract as an anti-HSV agent.
Collapse
Affiliation(s)
- Pitchayuth Srisai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Hao C, Xu Z, Xu C, Yao R. Anti-herpes simplex virus activities and mechanisms of marine derived compounds. Front Cell Infect Microbiol 2024; 13:1302096. [PMID: 38259968 PMCID: PMC10800978 DOI: 10.3389/fcimb.2023.1302096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpes simplex virus (HSV) is the most widely prevalent herpes virus worldwide, and the herpetic encephalitis and genital herpes caused by HSV infection have caused serious harm to human health all over the world. Although many anti-HSV drugs such as nucleoside analogues have been ap-proved for clinical use during the past few decades, important issues, such as drug resistance, toxicity, and high cost of drugs, remain unresolved. Recently, the studies on the anti-HSV activities of marine natural products, such as marine polysaccharides, marine peptides and microbial secondary metabolites are attracting more and more attention all over the world. This review discusses the recent progress in research on the anti-HSV activities of these natural compounds obtained from marine organisms, relating to their structural features and the structure-activity relationships. In addition, the recent findings on the different anti-HSV mechanisms and molecular targets of marine compounds and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Cui Hao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongqiu Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Can Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Vandanjon L, Burlot AS, Zamanileha EF, Douzenel P, Ravelonandro PH, Bourgougnon N, Bedoux G. The Use of FTIR Spectroscopy as a Tool for the Seasonal Variation Analysis and for the Quality Control of Polysaccharides from Seaweeds. Mar Drugs 2023; 21:482. [PMID: 37755095 PMCID: PMC10532535 DOI: 10.3390/md21090482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Macroalgae are a potentially novel source of nutrition and biologically active molecules. Proliferative species such as Eucheuma denticulatum, Solieria chordalis (red algae) and Sargassum muticum (brown alga) constitute a huge biomass that can be exploited. In this study, we focus on the extraction of polysaccharides from these three macroalgae species and the characterization of cell wall polysaccharides such as carrageenans, fucoidans and alginates by Fourier Transform Infrared spectroscopy with Attenuated Reflectance Module (FTIR-ATR). The comparison of purified extracts with commercial solutions of fucoidans, alginates or carrageenans shows a strong similarity between the spectra. It demonstrates that the methods of extraction that have been used are also suitable purifying technics. Moreover, it validates infrared spectroscopy as a quick, simple and non-destructive method for the accurate analysis of polysaccharides. The FTIR technique applied to samples collected at different periods of the year allowed us to highlight differences in the composition of fucoidans, alginates and carrageenans. Different classes corresponding to the season can be distinguished by statistical multidimensionnal analysis (Principal Component Analysis) showing that the structure of algal polysaccharides, related to bioactivity, depends on the period of harvest. FTIR results showed that S. chordalis and E. denticulatum possess a dominant type of carrageenan called iota-carrageenan. This type of carrageenan is in the majority when the alga is at maturity in its development cycle. During its growth phase, iota-carrageenan precursors can be detected by FTIR spectra, enabling a better control of the extraction and an application of these compounds in various economic sectors. When the alga E. denticulatum is in its juvenile stage, we found traces of kappa-carrageenan and nu-carrageenan polysaccharides in some extracts.
Collapse
Affiliation(s)
- Laurent Vandanjon
- Laboratory of Marine Biotechnology and Chemistry (LBCM), University Bretagne Sud (UBS), EMR CNRS 6076, IUEM, Campus Tohannic, 56000 Vannes, France; (A.-S.B.); (E.F.Z.); (N.B.); (G.B.)
| | - Anne-Sophie Burlot
- Laboratory of Marine Biotechnology and Chemistry (LBCM), University Bretagne Sud (UBS), EMR CNRS 6076, IUEM, Campus Tohannic, 56000 Vannes, France; (A.-S.B.); (E.F.Z.); (N.B.); (G.B.)
| | - Elando Fréda Zamanileha
- Laboratory of Marine Biotechnology and Chemistry (LBCM), University Bretagne Sud (UBS), EMR CNRS 6076, IUEM, Campus Tohannic, 56000 Vannes, France; (A.-S.B.); (E.F.Z.); (N.B.); (G.B.)
- Research Unit in Process and Environmental Engineering (URGPGE), Faculty of Sciences, PEI, University of Antananarivo, Antananarivo 101, Madagascar;
| | - Philippe Douzenel
- SVT Department, Faculty of Sciences, UBS, Campus Tohannic, 56000 Vannes, France;
| | - Pierre Hervé Ravelonandro
- Research Unit in Process and Environmental Engineering (URGPGE), Faculty of Sciences, PEI, University of Antananarivo, Antananarivo 101, Madagascar;
| | - Nathalie Bourgougnon
- Laboratory of Marine Biotechnology and Chemistry (LBCM), University Bretagne Sud (UBS), EMR CNRS 6076, IUEM, Campus Tohannic, 56000 Vannes, France; (A.-S.B.); (E.F.Z.); (N.B.); (G.B.)
| | - Gilles Bedoux
- Laboratory of Marine Biotechnology and Chemistry (LBCM), University Bretagne Sud (UBS), EMR CNRS 6076, IUEM, Campus Tohannic, 56000 Vannes, France; (A.-S.B.); (E.F.Z.); (N.B.); (G.B.)
| |
Collapse
|
6
|
Lomartire S, Gonçalves AMM. Algal Phycocolloids: Bioactivities and Pharmaceutical Applications. Mar Drugs 2023; 21:384. [PMID: 37504914 PMCID: PMC10381318 DOI: 10.3390/md21070384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seaweeds are abundant sources of diverse bioactive compounds with various properties and mechanisms of action. These compounds offer protective effects, high nutritional value, and numerous health benefits. Seaweeds are versatile natural sources of metabolites applicable in the production of healthy food, pharmaceuticals, cosmetics, and fertilizers. Their biological compounds make them promising sources for biotechnological applications. In nature, hydrocolloids are substances which form a gel in the presence of water. They are employed as gelling agents in food, coatings and dressings in pharmaceuticals, stabilizers in biotechnology, and ingredients in cosmetics. Seaweed hydrocolloids are identified in carrageenan, alginate, and agar. Carrageenan has gained significant attention in pharmaceutical formulations and exhibits diverse pharmaceutical properties. Incorporating carrageenan and natural polymers such as chitosan, starch, cellulose, chitin, and alginate. It holds promise for creating biodegradable materials with biomedical applications. Alginate, a natural polysaccharide, is highly valued for wound dressings due to its unique characteristics, including low toxicity, biodegradability, hydrogel formation, prevention of bacterial infections, and maintenance of a moist environment. Agar is widely used in the biomedical field. This review focuses on analysing the therapeutic applications of carrageenan, alginate, and agar based on research highlighting their potential in developing innovative drug delivery systems using seaweed phycocolloids.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Jousselin C, Pliego-Cortés H, Damour A, Garcia M, Bodet C, Robledo D, Bourgougnon N, Lévêque N. Anti-SARS-CoV-2 Activity of Polysaccharides Extracted from Halymenia floresii and Solieria chordalis (Rhodophyta). Mar Drugs 2023; 21:348. [PMID: 37367673 DOI: 10.3390/md21060348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Even after hundreds of clinical trials, the search for new antivirals to treat COVID-19 is still relevant. Carrageenans are seaweed sulfated polysaccharides displaying antiviral activity against a wide range of respiratory viruses. The objective of this work was to study the antiviral properties of Halymenia floresii and Solieria chordalis carrageenans against SARS-CoV-2. Six polysaccharide fractions obtained from H. floresii and S. chordalis by Enzyme-Assisted Extraction (EAE) or Hot Water Extraction (HWE) were tested. The effect of carrageenan on viral replication was assessed during infection of human airway epithelial cells with a clinical strain of SARS-CoV-2. The addition of carrageenans at different times of the infection helped to determine their mechanism of antiviral action. The four polysaccharide fractions isolated from H. floresii displayed antiviral properties while the S. chordalis fractions did not. EAE-purified fractions caused a stronger reduction in viral RNA concentration. Their antiviral action is likely related to an inhibition of the virus attachment to the cell surface. This study confirms that carrageenans could be used as first-line treatment in the respiratory mucosa to inhibit the infection and transmission of SARS-CoV-2. Low production costs, low cytotoxicity, and a broad spectrum of antiviral properties constitute the main strengths of these natural molecules.
Collapse
Affiliation(s)
- Clément Jousselin
- Laboratoire de Virologie et Mycobactériologie, Centre Hospitalier Universitaire, 86021 Poitiers, France
- Laboratoire Inflammation Tissus Epitheliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France
| | - Hugo Pliego-Cortés
- Université Bretagne-Sud, EMR CNRS 6076, LBCM, IUEM, F-56000 Vannes, France
| | - Alexia Damour
- Laboratoire Inflammation Tissus Epitheliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France
| | - Magali Garcia
- Laboratoire de Virologie et Mycobactériologie, Centre Hospitalier Universitaire, 86021 Poitiers, France
- Laboratoire Inflammation Tissus Epitheliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation Tissus Epitheliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France
| | - Daniel Robledo
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Unidad Mérida, AP 73, Cordemex, Mérida 97310, Yucatán, Mexico
| | | | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, Centre Hospitalier Universitaire, 86021 Poitiers, France
- Laboratoire Inflammation Tissus Epitheliaux et Cytokines, Université de Poitiers, 86073 Poitiers, France
| |
Collapse
|
8
|
Antiviral Activity and Mechanisms of Seaweeds Bioactive Compounds on Enveloped Viruses-A Review. Mar Drugs 2022; 20:md20060385. [PMID: 35736188 PMCID: PMC9228758 DOI: 10.3390/md20060385] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the interest in seaweed has significantly increased. Bioactive compounds from seaweed’s currently receive major attention from pharmaceutical companies as they express several interesting biological activities which are beneficial for humans. The structural diversity of seaweed metabolites provides diverse biological activities which are expressed through diverse mechanisms of actions. This review mainly focuses on the antiviral activity of seaweed’s extracts, highlighting the mechanisms of actions of some seaweed molecules against infection caused by different types of enveloped viruses: influenza, Lentivirus (HIV-1), Herpes viruses, and coronaviruses. Seaweed metabolites with antiviral properties can act trough different pathways by increasing the host’s defense system or through targeting and blocking virus replication before it enters host cells. Several studies have already established the large antiviral spectrum of seaweed’s bioactive compounds. Throughout this review, antiviral mechanisms and medical applications of seaweed’s bioactive compounds are analyzed, suggesting seaweed’s potential source of antiviral compounds for the formulation of novel and natural antiviral drugs.
Collapse
|