1
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang W, Park HB, An EK, Kim SJ, Ryu D, Kim D, Lim D, Hwang J, Kwak M, You S, Lee PCW, Jin JO. Fucoidan from Durvillaea Antarctica enhances the anti-cancer effect of anti-PD-L1 antibody by activating dendritic cells and T cells. Int J Biol Macromol 2024; 280:135922. [PMID: 39322135 DOI: 10.1016/j.ijbiomac.2024.135922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Immune checkpoint inhibitors are showing groundbreaking results in tumor immunotherapy. However, there are cases where treatment efficiency is insufficient due to limitations in immune activity, and various trials to overcome this are being studied. In this study, we investigated the immune activation ability of fucoidan extracted from Durvillaea antarctica (FDA) and whether it can enhance the anti-cancer effects of immune checkpoint inhibitors. FDA treatment resulted in an elevation of co-stimulator and major histocompatibility complex molecule expression, as well as the production of pro-inflammatory cytokines in bone marrow-derived and splenic dendritic cells (DCs). Administration of 50 mg/kg FDA increased the number of splenic CD8 T cells by >1.4-fold compared to PBS administration. Additionally, 50 mg/kg FDA increased the production of IFN-γ in CD4 and CD8 T cells by 4.3-fold and 7.2-fold, respectively, compared to the PBS control. FDA promoted immune cell activation was TLR4 dependent. Furthermore, anti-PD-L1 antibody administration inhibited CT-26 tumor growth by approximately 3-fold compared to the PBS control group, whereas combined treatment with FDA and anti-PD-L1 antibody showed an 8.4-fold tumor growth inhibition effect compared to the PBS control group. Therefore, FDA may be used to enhance the anti-cancer effects of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 05505, South Korea
| | - Dayoung Kim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Daeun Lim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Juyoung Hwang
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 05505, South Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea.
| |
Collapse
|
3
|
Zhou Z, Ding Y, Cai R, Ning C, Zhang J, Guo X. Preparation and activity evaluation of zinc ion delivery system based on fucoidan-zinc complex. Biointerphases 2024; 19:051007. [PMID: 39436089 DOI: 10.1116/6.0003995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Zinc is a critical trace element in the human body, playing a key role in regulating various protein functions and cellular metabolism. Thus, maintaining zinc homeostasis is essential for human health, as zinc deficiency can directly contribute to the onset of numerous diseases. Effective supplementation with zinc ions offers a viable treatment for zinc deficiency. Polysaccharides, particularly natural polysaccharides, exhibit extensive physiological activities and serve as efficient systems for delivering zinc ions. Fucoidan (F) is an affordable, widely available polysaccharide with significant bioactivity and safety, attracting growing research interest. However, most studies focus on its physiological functions, while few explore the structure and effects of fucoidan-metal complexes. In this study, fucoidan (F) was chosen to complex with Zn2+ to form the fucoidan-zinc (F-Zn) complex, whose structure was characterized. The zinc ion content reached 9.15%, with zinc (II) predominantly complexed with sulfate groups in the F-Zn (II) complex. Evaluation demonstrated that the prepared fucoidan-zinc system, at a concentration of 110 μg/ml, exhibited no significant cytotoxicity toward HT22 cells. Furthermore, both F and F-Zn exhibited significant neuroprotective effects in an HT22 cell model induced by cisplatin. Additional investigations revealed that F and F-Zn could mitigate cisplatin-induced increases in reactive oxygen species levels and alleviate mitochondrial damage. The fucoidan-zinc complex presents itself as a promising zinc ion delivery system for treating zinc deficiency.
Collapse
Affiliation(s)
- Zhongxiang Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Yu Ding
- Department of Pharmacy, Dalian Rehabilitation Recuperation Center, Dalian 116013, China
| | - Rui Cai
- Center of Analysis and Research, Dalian University of Technology, Dalian 116024, China
| | - Changxu Ning
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangye Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiuhan Guo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| |
Collapse
|
4
|
Cao J, Qin L, Zhang L, Wang K, Yao M, Qu C, Miao J. Protective effect of cellulose and soluble dietary fiber from Saccharina japonica by-products on regulating inflammatory responses, gut microbiota, and SCFAs production in colitis mice. Int J Biol Macromol 2024; 267:131214. [PMID: 38580029 DOI: 10.1016/j.ijbiomac.2024.131214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 μm and 97.350 μm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.
Collapse
Affiliation(s)
- Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China.
| |
Collapse
|
5
|
Rondan FS, Pisarek P, de Maria MB, Szpunar J, Mesko MF. Characterization of low molecular weight sulfur species in seaweed from the Antarctic continent. Anal Bioanal Chem 2024; 416:2871-2882. [PMID: 38581531 DOI: 10.1007/s00216-024-05259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Antarctic seaweeds are vital components of polar marine ecosystems, playing a crucial role in nutrient cycling and supporting diverse life forms. The sulfur content in these organisms is particularly interesting due to its implication in biogeochemical processes and potential impacts on local and global environmental systems. In this study, we present a comprehensive characterization of seaweed collected in the Antarctic in terms of their total sulfur content and its distribution among different classes of species, including thiols, using various methods and high-sensitivity techniques. The data presented in this paper are unprecedented in the scientific literature. These methods allowed for the determination of total sulfur content and the distribution of sulfur compounds in different fractions, such as water-soluble and proteins, as well as the speciation of sulfur compounds in these fractions, providing valuable insights into the chemical composition of these unique marine organisms. Our results revealed that the total sulfur concentration in Antarctic seaweeds varied widely across different species, ranging from 5.5 to 56 g kg-1 dry weight. Furthermore, our investigation into the sulfur speciation revealed the presence of various sulfur compounds, including sulfate, and some thiols, which were quantified in all ten seaweed species evaluated. The concentration of these individual sulfur species also displayed considerable variability among the studied seaweeds. This study provides the first in-depth examination of total sulfur content and sulfur speciation in brown and red Antarctic seaweeds.
Collapse
Affiliation(s)
- Filipe Soares Rondan
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil
- IPREM, Institute of Analytical and Physical Chemistry for the Environment and Materials, UMR 5254 CNRS-UPPA, Hélioparc, 2, Av. Angot, 64053, Pau, France
| | - Paulina Pisarek
- IPREM, Institute of Analytical and Physical Chemistry for the Environment and Materials, UMR 5254 CNRS-UPPA, Hélioparc, 2, Av. Angot, 64053, Pau, France
| | - Mikel Bernabeu de Maria
- IPREM, Institute of Analytical and Physical Chemistry for the Environment and Materials, UMR 5254 CNRS-UPPA, Hélioparc, 2, Av. Angot, 64053, Pau, France
| | - Joanna Szpunar
- IPREM, Institute of Analytical and Physical Chemistry for the Environment and Materials, UMR 5254 CNRS-UPPA, Hélioparc, 2, Av. Angot, 64053, Pau, France.
| | - Marcia Foster Mesko
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil.
| |
Collapse
|
6
|
Gómez Garre D, Modrego J. Special Issue: Gut Microbiota in Disease and Health 2.0. Int J Mol Sci 2024; 25:4344. [PMID: 38673929 PMCID: PMC11050629 DOI: 10.3390/ijms25084344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, research on the gut microbiota has undeniably captivated the attention of students, investigators, clinicians, and the general public [...].
Collapse
Affiliation(s)
- Dulcenombre Gómez Garre
- Microbiota and Cardiovascular Risk Laboratory, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Network Biomedical Research Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Physiology Department, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Javier Modrego
- Microbiota and Cardiovascular Risk Laboratory, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Network Biomedical Research Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Kraiem M, Ben Hamouda S, Eleroui M, Ajala M, Feki A, Dghim A, Boujhoud Z, Bouhamed M, Badraoui R, Pujo JM, Essafi-Benkhadir K, Kallel H, Ben Amara I. Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed Halimeda tuna: Computational and Experimental Evidences. Mar Drugs 2024; 22:85. [PMID: 38393056 PMCID: PMC10890560 DOI: 10.3390/md22020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we investigated for the first time the anti-inflammatory and immunomodulatory properties of crude polysaccharide (PSHT) extracted from green marine algae Halimeda tuna. PSHT exhibited anti-oxidant activity in vitro through scavenging 1, 1-diphenyl-2-picryl hydroxyl free radical, reducing Fe3+/ferricyanide complex, and inhibiting nitric oxide. PSHT maintained the erythrocyte membrane integrity and prevented hemolysis. Our results also showed that PSHT exerted a significant anti-edematic effect in vivo by decreasing advanced oxidation protein products and malondialdehyde levels and increasing the superoxide dismutase and glutathione peroxidase activities in rat's paw model and erythrocytes. Interestingly, PSHT increased the viability of murine RAW264.7 macrophages and exerted an anti-inflammatory effect on lipopolysaccharide-stimulated cells by decreasing pro-inflammatory molecule levels, including nitric oxide, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF-α). Our findings indicate that PSHT could be used as a potential immunomodulatory, anti-inflammatory, anti-hemolytic, and anti-oxidant agent. These results could be explained by the computational findings showing that polysaccharide building blocks bound both cyclooxygenase-2 (COX-2) and TNF-α with acceptable affinities.
Collapse
Affiliation(s)
- Marwa Kraiem
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Sonia Ben Hamouda
- Laboratory of Molecular Epidemiology and Experimental Pathology–LR16IPT04, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (S.B.H.); (K.E.-B.)
| | - Malek Eleroui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Marwa Ajala
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Amal Feki
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Amel Dghim
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Zakaria Boujhoud
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences of Settat, Hassan First University of Settat, Settat 26000, Morocco;
| | - Marwa Bouhamed
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax 3029, Tunisia;
| | - Riadh Badraoui
- Department of General Biology, University of Ha’il, Ha’il 81451, Saudi Arabia;
- Section of Histology–Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Tunisia
| | - Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, Cayenne 97300, French Guiana;
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology–LR16IPT04, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (S.B.H.); (K.E.-B.)
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, Cayenne 97300, French Guiana;
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, University of Guiana, Cayenne 97300, French Guiana
| | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| |
Collapse
|
8
|
Roberto T AD, Virginia CA, Ángeles AAM, Casimiro CG, Claudia PM, Eduardo U, Félix ÁG, Nathalie K, Félix L F, Sergey D. Antitumor and antioxidant activities of polysaccharides from the seaweed Durvillaea antarctica. Chem Biol Drug Des 2024; 103:e14392. [PMID: 37945521 DOI: 10.1111/cbdd.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
The present study was carried out to determine the antitumor and antioxidant activities of the seaweed Durvillaea antarctica. Extraction and purification of polysaccharides from D. antarctica were performed. They were characterized by FT-IR and GC-MS, identifying isomers of arabinose, fucose, mannose, and galactose. The antioxidant capacity of polysaccharides was analyzed using the ABTS method (14.3 ± 0.5 μmol TE g-1 PS) and the DPPH method (21.82 ± 0.32 μmol TE g-1 PS). The antitumor capacity of polysaccharides was studied by MTT colorimetric assays in human leukemia, colon, breast, and lung cancer cell lines, obtaining the lowest IC50 in colon cancer (19.99 μg mL-1 ). In the line of healthy human gingival fibroblasts (HGF-1), an IC50 of 444.39 μg mL-1 was obtained. Flow cytometry in the HL60 cell line showed that polysaccharides at concentrations higher than IC50 inhibited cell proliferation, demonstrating a possible antitumor capacity in vitro. In the proteomic analysis with HGF-1, nine proteins involved in different biological processes were identified. In conclusion, polysaccharides from D. antarctica could be considered powerful nutraceuticals, mainly against colon cancer.
Collapse
Affiliation(s)
- Abdala Díaz Roberto T
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Casas-Arrojo Virginia
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | | | | | - Pérez Manríquez Claudia
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Uribe Eduardo
- Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Álvarez-Gómez Félix
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Korbee Nathalie
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Figueroa Félix L
- Universidad de Málaga, Instituto de Biotecnologia y Desarrollo Azul (IBYDA), Experimental Center Grice Hutchinson, Malaga, Spain
| | - Dobretsov Sergey
- Department of Marine Science and Fisheries, Sultan Qaboos University, Muscat, Oman
- UNESCO Chair in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
9
|
Guerrero-Wyss M, Yans C, Boscán-González A, Duran P, Parra-Soto S, Angarita L. Durvillaea antarctica: A Seaweed for Enhancing Immune and Cardiometabolic Health and Gut Microbiota Composition Modulation. Int J Mol Sci 2023; 24:10779. [PMID: 37445955 DOI: 10.3390/ijms241310779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Durvillaea antarctica is the seaweed that is the most consumed by the Chilean population. It is recognized worldwide for its high nutritional value in protein, vitamins, minerals, and dietary fiber. This is a narrative review in which an extensive search of the literature was performed to establish the immunomodulator, cardiometabolic, and gut microbiota composition modulation effect of Durvillaea antarctica. Several studies have shown the potential of Durvillaea antarctica to function as prebiotics and to positively modulate the gut microbiota, which is related to anti-obesity, anti-inflammatory, anticancer, lipid-lowering, and hypoglycemic effects. The quantity of Bacteroides was negatively correlated with that of inflammatory monocytes and positively correlated with the levels of several gut metabolites. Seaweed-derived polysaccharides modulate the quantity and diversity of beneficial intestinal microbiota, decreasing phenol and p-cresol, which are related to intestinal diseases and the loss of intestinal function. Additionally, a beneficial metabolic effect related to this seaweed was observed, mainly promoting the decrease in the glycemic levels, lower cholesterol levels and cardiovascular risk. Consuming Durvillaea antarctica has a positive impact on the immune system, and its bioactive compounds provide beneficial effects on glycemic control and other metabolic parameters.
Collapse
Affiliation(s)
- Marion Guerrero-Wyss
- Escuela de Nutrición y Dietética, Facultad para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile
| | - Caroline Yans
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Puerto Montt 5480000, Chile
| | - Arturo Boscán-González
- Facultad de Medicina, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Pablo Duran
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Solange Parra-Soto
- Departamento de Nutrición y Salud Pública, Facultad Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| |
Collapse
|
10
|
Dou X, Li G, Wang S, Shao D, Wang D, Deng X, Zhu Y, Gao P, Liu J, Deng N, Yuan C, Zhou Q. Probiotic-loaded calcium alginate/fucoidan hydrogels for promoting oral ulcer healing. Int J Biol Macromol 2023:125273. [PMID: 37301354 DOI: 10.1016/j.ijbiomac.2023.125273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Probiotics are beneficial bacteria located in the oral cavity which exhibit antimicrobial properties and contribute to the regulation of immune function and the modulation of tissue repair. Fucoidan (FD), a marine prebiotic, may further enhance the ability of probiotics to promote ulcer healing. However, neither FD nor probiotics are attached to the oral cavity and neither are well-suited for oral ulcer healing owing to the wet and highly dynamic environment. In this study, probiotic-loaded calcium alginate/fucoidan composite hydrogels were developed for use as bioactive oral ulcer patches. The well-shaped hydrogels exhibited remarkable wet-tissue adhesion, suitable swelling and mechanical properties, sustained probiotic release, and excellent storage durability. Moreover, in vitro biological assays demonstrated that the composite hydrogel exhibited excellent cyto/hemocompatibility and antimicrobial effects. Importantly, compared to commercial oral ulcer patches, bioactive hydrogels show superior therapeutic capability for promoting ulcer healing in vivo by enhancing cell migration, inducing epithelial formation and orderly collagen fiber deposition, as well as facilitating neovascularization. These results demonstrate that this novel composite hydrogel patch demonstrates great potential for the treatment of oral ulcerations.
Collapse
Affiliation(s)
- Xue Dou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Guotai Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Shuang Wang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China; Huangdao District Central Hospital, Qingdao, China
| | - Dan Shao
- Huangdao District Central Hospital, Qingdao, China
| | - Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Xuyang Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Yanli Zhu
- Department of Stomatology, Qingdao Women and Children's Hospital, Qingdao, Shandong 266000, China
| | - Pengyu Gao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Jia Liu
- Huangdao District Central Hospital, Qingdao, China
| | - Na Deng
- Department of Scientific Research, Qingdao East Sea Pharmaceutical Co., Ltd., Qingdao, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China; Dental Biomaterials Technology Innovation Center of Qingdao, Qingdao 266003, China.
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
11
|
Dhara S, Chakraborty K. Immunomodulatory effect of sulfated galactofucan from marine macroalga Turbinaria conoides. Int J Biol Macromol 2023; 238:124021. [PMID: 36921815 DOI: 10.1016/j.ijbiomac.2023.124021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Sulfated polysaccharides are effective immunostimulating agents by activating several intracellular signaling pathways. A sulfated (1 → 3)/(1 → 4)-linked galactofucan TCP-3 with promising immunomodulatory effects was purified from a marine macroalga Turbinaria conoides. The immune-enhancing potential of TCP-3 (100-400 mg/kg BW) was evaluated on cyclophosphamide-induced immunosuppressed animals by increasing bone marrow cellularity (10-13 cells/femur/mL x 106), α-esterase activity (1200-1700 number of positive cells/4000 BMC), interferon-γ (1.31-1.49 pg/mL), interleukin-2 (3.49-3.99 pg/mL) secretion, and WBC count (> 3000 cells/cu mm). The proliferation of lymphocytes for in vitro and in vivo conditions was enhanced by administering TCP-3 besides regulating the secretion of pro-inflammatory cytokines (interleukin-6/1β/12, tumor necrosis factor-α, transforming growth factor-β), and an inducible isoform of nitric oxide synthase. A promising reduction of viral copy formation was observed by administering TCP-3 (< 2 × 107 number) on SARS CoV-2 (delta variant) induced Vero cells in comparison with the infected group (> 5 × 107 number).
Collapse
Affiliation(s)
- Shubhajit Dhara
- Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka State, India
| | - Kajal Chakraborty
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India.
| |
Collapse
|
12
|
Xiao M, Ren X, Cheng J, Fu X, Li R, Zhu C, Kong Q, Mou H. Structural characterization of a novel fucosylated trisaccharide prepared from bacterial exopolysaccharides and evaluation of its prebiotic activity. Food Chem 2023; 420:136144. [PMID: 37060669 DOI: 10.1016/j.foodchem.2023.136144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Fucosylated oligosaccharides have promising prospects in various fields. In this study, a fucosylated trisaccharide (GFG) was separated from the acidolysis products of exopolysaccharides from Clavibacter michiganensis M1. Structural characterization demonstrated that GFG consists of glucose, galactose, and fucose, with a molecular weight of 488 Da. Nuclear magnetic resonance analysis showed that it has a different structure than that of 2'-fucosyllactose (2'-FL), even though they have the same monosaccharide composition. In vitro prebiotic experiments were conducted to evaluate the differences in the utilization of three selected carbohydrates by fourteen bacterial strains. In comparison with 2'-FL, GFG could be utilized by more beneficial bacteria, leading to generate more short-chain fatty acids. Moreover, GFG could not promote the proliferation of Escherichia coli. This work describes a novel fucosylated oligosaccharide and its preparation method, and the obtained trisaccharide may serve as a promising candidate for fucosylated human milk oligosaccharides.
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Jiaying Cheng
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Rong Li
- Qingdao Women and Children Hospital, Qingdao 266003, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
13
|
Chen X, Chen C, Fu X. Hypoglycemic activity in vitro and vivo of a water-soluble polysaccharide from Astragalus membranaceus. Food Funct 2022; 13:11210-11222. [PMID: 36222262 DOI: 10.1039/d2fo02298b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The polysaccharide AMP as one main bioactive component of Astragalus membranaceus (Fisch.) Bunge was separated and characterized. The results showed that AMP was a typical acidic heteropolysaccharide dominated by glucose, galacturonic acid and arabinose with typical shear-thinning and fluid-like behavior. Scanning electron microscopy images showed that AMP existed in the state of lamellar aggregates with a smooth compact surface. In addition, AMP exhibited strong antioxidant activity with an oxygen radical absorption capacity value of 278.68 ± 9.31 μM TE per g, and excellent α-glucosidase inhibitory activity and cholate binding ability. Furthermore, in vivo, AMP treatment significantly decreased blood glucose and serum insulin levels, improved glucose intolerance and insulin resistance, regulated the blood lipid profile, alleviated oxidative stress, and relieved liver damage in type 2 diabetes mellitus (T2DM) mice. Pearson correlation analysis suggested that the mitigation of oxidative stress contributed to the hypoglycemic effect of AMP, indicating that it is a beneficial functional food ingredient for T2DM.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Chun Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 510641, China.,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Xiong Fu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 510641, China.,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
14
|
Lin P, Chen S, Zhong S. Nutritional and Chemical Composition of Sargassum zhangii and the Physical and Chemical Characterization, Binding Bile Acid, and Cholesterol-Lowering Activity in HepG2 Cells of Its Fucoidans. Foods 2022; 11:foods11121771. [PMID: 35741969 PMCID: PMC9223202 DOI: 10.3390/foods11121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fucoidan is a marine sulfated polysaccharide that is rich in Sargassum and has a wide range of biological activities. In this study, the chemical composition and bile acid binding ability of six crude fucoidans were compared, the nutrition and chemical composition of Sargassum zhangii were analyzed, and fucoidan from Sargassum zhangii was extracted and purified. The purified fractions (ZF1, ZF2, and ZF3) were analyzed by physicochemical characterization, and the ability of binding bile acid and cholesterol lowering in HepG2 cells were evaluated. The results showed that the contents of sulfate in crude fucoidan from Sargassum Zhangii (ZF) was as high as13.63%. Its ability of binding bile acid was better than other five crude fucoidans. Sargassum zhangii was a kind of brown seaweed with high carbohydrate, and low fat and rich in minerals. The sulfate content of ZF1, ZF2, and ZF3 was 3.29%, 19.39%, and 18.89% respectively, and the molecular weight (Mw) was 4.026 × 105, 2.893 × 105, and 3.368 × 105, respectively. Three fucoidans all contained the characteristic absorption bands of polysaccharides and sulfate groups and were rich in fucose. Three fucoidans can bind to bile acid, and ZF2 showed the best binding capability. In vitro experiments showed that ZF1, ZF2, and ZF3 could reduce intracellular total cholesterol (TC) content in HepG2 cells without affecting their viability. ZF2 showed the best ability to reduce TC.
Collapse
Affiliation(s)
- Peichun Lin
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Suhua Chen
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China;
- Correspondence: ; Tel.: +86-759-239-6026
| | - Siyan Zhong
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
15
|
Quiñones J, Díaz R, Beltrán JF, Velazquez L, Cancino D, Muñoz E, Dantagnan P, Hernández A, Sepúlveda N, Farías JG. Analysis of Muscle Lipidome in Juvenile Rainbow Trout Fed Rapeseed Oil and Cochayuyo Meal. Biomolecules 2022; 12:biom12060805. [PMID: 35740930 PMCID: PMC9221170 DOI: 10.3390/biom12060805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
This study aimed to analyze the effects on the lipidome of juvenile Oncorhynchus mykiss muscle fed 90% Brassica napus “rapeseed” oil and different amounts of Durvillaea antarctica “Cochayuyo” meal (1.5, 3 and 6%) as a replacement for cellulose. The analysis allowed for the identification of 329 lipids, mainly represented by phospholipids and fatty esters. The inclusion of Brassica napus oil significantly increased the levels of C18:2 species and fatty esters of hydroxylated fatty acids, which could play a bioactive role in human health. One of the most abundant lipids in all fillets was Phosphatidylcholine 33:6, which, according to the literature, could be considered a biomarker for the identification of Oncorhynchus mykiss. In all experimental diets, the species Phosphatidylethanolamine 15:1-18:24 showed four-fold higher levels than the control; increments of n-3- and n-6-rich phospholipids were also observed. Diets containing Durvillaea antarctica meal did not generate more significant variation in fish muscle phospholipids relative to the muscle of the rapeseed-oil-only group. These lipid species consist of medium- and long-chain fatty acids with different degrees of unsaturation. Still, it appears that the rapeseed oil masks the lipid contribution of the meal, possibly due to the low levels of total lipids in the macroalgae.
Collapse
Affiliation(s)
- John Quiñones
- Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile
| | - Jorge F Beltrán
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile
| | - Lidiana Velazquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile
| | - David Cancino
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Temuco 4780000, Chile
| | - Erwin Muñoz
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4780000, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación de Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Adrián Hernández
- Núcleo de Investigación de Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|