1
|
Milazzo M, Rovelli R, Ricci C, Macchi T, Gallone G, Danti S. Rheology and Printability of Hydroxyapatite/Sodium Alginate Bioinks Added with Bovine or Fish Collagen Peptides. Gels 2025; 11:209. [PMID: 40136914 PMCID: PMC11941987 DOI: 10.3390/gels11030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
The high biocompatibility and the key role of collagen in bone extracellular matrix make it useful for tissue engineering. However, the high demand, costs, and challenges of extracting good-quality collagen have led to the use of collagen derivatives and search for non-human alternatives. This study investigates fish and bovine collagen peptides (Collf and Collb, respectively) as sustainable sources for 3D-printed bone scaffolds by developing and characterizing peptide-incorporated alginate/hydroxyapatite-based bioinks. The chemical analysis revealed structural similarities between the peptides, while rheological tests showed a slightly higher viscosity of Collf-based inks, which improved shape fidelity during the printing process. Upon oscillating rheological tests, both the Collf and Collb-based ink formulations demonstrated a solid-like behavior at frequencies higher than 0.4 Hz, which is crucial for maintaining the printed structure integrity during extrusion. Although Collb-based inks exhibited better pore printability, Collf-based inks achieved superior resolution and geometry retention. Macro-porous structures printed from both inks showed good accuracy, with minimal shrinkage attributed to hydroxyapatite. Both the produced inks had a high gel fraction and swelling behavior, with Collb-based outperforming Collf-based inks. Finally, both ink formulations resulted to be cytocompatibile with human dermal fibroblasts. These findings position Collf- and Collb-based inks as promising alternatives for bone tissue scaffolds, offering a sustainable balance between performance and structural stability in 3D printing applications.
Collapse
Affiliation(s)
- Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Viale Rinaldo Piaggio, Pontedera, 56025 Tuscany, Italy
| | - Roberta Rovelli
- PEGASO Doctoral School of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
| | - Teresa Macchi
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Giuseppe Gallone
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Viale Rinaldo Piaggio, Pontedera, 56025 Tuscany, Italy
| |
Collapse
|
2
|
An JH, Kim HY. Scaffolds Bioink for Three-Dimensional (3D) Bioprinting. Food Sci Anim Resour 2025; 45:126-144. [PMID: 39840242 PMCID: PMC11743847 DOI: 10.5851/kosfa.2024.e120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/23/2025] Open
Abstract
Rapid population growth and a corresponding increase in the demand for animal-derived proteins have led to food supply challenges and the need for alternative and sustainable meat production methods. Therefore, this study explored the importance of cell engineering technology-based three-dimensional bioprinting and bioinks, which play key roles in cultured meat production. In cultured meat production, bioinks have a significant effect on cell growth, differentiation, and mechanical stability. Hence, in this study, the characteristics of animal-, plant-, and marine-based bioinks were compared and analyzed, and the impact of each bioink on cultured meat production was evaluated. In particular, animal-based bioinks have the potential to produce cultured meat that is similar to conventional meat and are considered the most suitable bioinks for commercialization. Although plant- and marine-based bioinks are ecofriendly and have fewer religious restrictions, they are limited in terms of mechanical stability and consumer acceptance. Therefore, further research is required to develop and apply optimal animal-based bioinks for commercialization of cultured meat, particularly to improve its mechanical compatibility.
Collapse
Affiliation(s)
- Jin-Hee An
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resources Science Research Institute, Yesan 32439, Korea
| |
Collapse
|
3
|
Huang R, Niu X, Li X, Li X. Applications of type I and II collagen in osteochondral tissue engineering: Respective features and future perspectives. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2024; 24:100328. [DOI: 10.1016/j.medntd.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025] Open
|
4
|
Salim NV, Madhan B, Glattauer V, Ramshaw JAM. Comprehensive review on collagen extraction from food by-products and waste as a value-added material. Int J Biol Macromol 2024; 278:134374. [PMID: 39098671 DOI: 10.1016/j.ijbiomac.2024.134374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.
Collapse
Affiliation(s)
- Nisa V Salim
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600 020, India
| | | | - John A M Ramshaw
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia
| |
Collapse
|
5
|
Wallace GG. Driving Deployment of Bioengineered Products-An Arduous, Sometimes Tedious, Challenging, Rewarding, Most Exciting Journey That Has to Be Made! Bioengineering (Basel) 2024; 11:856. [PMID: 39199813 PMCID: PMC11352002 DOI: 10.3390/bioengineering11080856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
More than three decades ago, we embarked on a number of bioengineering explorations using the most advanced materials and fabrication methods. In every area we ventured into, it was our intention to ensure fundamental discoveries were deployed into the clinic to benefit patients. When we embarked on this journey, we did so without a road map, not even a compass, and so the path was arduous, sometimes tedious. Now, we can see the doorway to deployment on the near horizon. We now appreciate that overcoming the challenges has made this a rewarding and exciting journey. However, maybe we could have been here a lot sooner, and so maybe the lessons we have learned could benefit others and accelerate progress in clinical translation. Through a number of case studies, including neural regeneration, cartilage regeneration, skin regeneration, the 3D printing of capsules for islet cell transplantation, and the bioengineered cornea, here, we retrace our steps. We will summarise the journey to date, point out the obstacles encountered, and celebrate the translational impact. Then, we will provide a framework for project design with the clinical deployment of bioengineered products as the goal.
Collapse
Affiliation(s)
- Gordon George Wallace
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
| |
Collapse
|
6
|
Wierzbicka A, Bartniak M, Waśko J, Kolesińska B, Grabarczyk J, Bociaga D. The Impact of Gelatin and Fish Collagen on Alginate Hydrogel Properties: A Comparative Study. Gels 2024; 10:491. [PMID: 39195020 DOI: 10.3390/gels10080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Hydrogel materials based on sodium alginate find versatile applications in regenerative medicine and tissue engineering due to their unique properties, such as biocompatibility and biodegradability, and the possibility of the customization of their mechanical properties, such as in terms of the individual requirements of separate clinical applications. These materials, however, have numerous limitations in the area of biological activity. In order to eliminate their limitations, sodium alginate is popularly applied in combination with added gelatin, which represents a product of collagen hydrolysis. Despite numerous beneficial biological properties, matrix materials based on gelatin have poor mechanical properties and are characterized by their ability for rapid degradation in an aqueous environment, particularly at the physiological temperature of the body, which significantly limits the independent application opportunities of this type of composition in the range of scaffolding production dedicated for tissue engineering. Collagen hydrogels, unlike gelatin, are characterized by higher bioactivity, dictated by a greater number of ligands that allow for cell adhesion, as well as better stability under physiological conditions. Fish-derived collagen provides a material that may be efficiently extracted without the risk of mammalian prion infection and can be used in all patients without religious restrictions. Considering the numerous advantages of collagen indicating its superiority over gelatin, within the framework of this study, the compositions of hydrogel materials based on sodium alginate and fish collagen in different concentrations were developed. Prepared hydrogel materials were compared with the properties of a typical composition of alginate with the addition of gelatin. The rheological, mechanical, and physicochemical properties of the developed polymer compositions were evaluated. The first trials of 3D printing by extrusion technique using the analyzed polymer solutions were also conducted. The results obtained indicate that replacing gelatin with fish collagen at an analogous concentration leads to obtaining materials with a lower swelling degree, better mechanical properties, higher stability, limited release kinetics of calcium ions cross-linking the alginate matrix, a slowed process of protein release under physiological conditions, and the possibility of extrusion 3D printing. The conducted analysis highlights that the optimization of the applied concentrations of fish collagen additives to composition based on sodium alginate creates the possibility of designing materials with appropriate mechanical and rheological properties and degradation kinetics adjusted to the requirements of specific applications, leading to the prospective opportunity to produce materials capable of mimicking the properties of relevant soft tissues. Thanks to its excellent bioactivity and lower-than-gelatin viscosity of the polymer solution, fish collagen also provides a prospective solution for applications in the field of 3D bioprinting.
Collapse
Affiliation(s)
- Adrianna Wierzbicka
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| | - Mateusz Bartniak
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| | - Joanna Waśko
- Institute of Organic Chemistry, Lodz University of Technology, 90-543 Lodz, Poland
| | - Beata Kolesińska
- Institute of Organic Chemistry, Lodz University of Technology, 90-543 Lodz, Poland
| | - Jacek Grabarczyk
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| | - Dorota Bociaga
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| |
Collapse
|
7
|
Wang H. The Potential of Collagen Treatment for Comorbid Diseases. Polymers (Basel) 2023; 15:3999. [PMID: 37836047 PMCID: PMC10574914 DOI: 10.3390/polym15193999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Collagen, the most abundant protein in our bodies, plays a crucial role in maintaining the structural integrity of various tissues and organs. Beyond its involvement in skin elasticity and joint health, emerging research suggests that collagen may significantly impact the treatment of complex diseases, particularly those associated with tissue damage and inflammation. The versatile functions of collagen, including skin regeneration, improving joint health, and increasing bone strength, make it potentially useful in treating different diseases. To the best of my knowledge, the strategy of using collagen to treat comorbid diseases has not been widely studied. This paper aims to explore the potential of collagen in treating comorbid diseases, including rheumatoid arthritis, osteoarthritis, osteoporosis, psoriatic arthritis, sarcopenia, gastroesophageal reflux, periodontitis, skin aging, and diabetes mellitus. Collagen-based therapies have shown promise in managing comorbidities due to their versatile properties. The multifaceted nature of collagen positions it as a promising candidate for treating complex diseases and addressing comorbid conditions. Its roles in wound healing, musculoskeletal disorders, cardiovascular health, and gastrointestinal conditions highlight the diverse therapeutic applications of collagen in the context of comorbidity management.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
8
|
Carvalho DN, Dani S, Sotelo CG, Pérez-Martín RI, Reis RL, Silva TH, Gelinsky M. Assessing non-synthetic crosslinkers in biomaterial inks based on polymers of marine origin to increase the shape fidelity in 3D extrusion printing. Biomed Mater 2023; 18:055017. [PMID: 37531962 DOI: 10.1088/1748-605x/acecec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
In the past decade, there has been significant progress in 3D printing research for tissue engineering (TE) using biomaterial inks made from natural and synthetic compounds. These constructs can aid in the regeneration process after tissue loss or injury, but achieving high shape fidelity is a challenge as it affects the construct's physical and biological performance with cells. In parallel with the growth of 3D bioprinting approaches, some marine-origin polymers have been studied due to their biocompatibility, biodegradability, low immunogenicity, and similarities to human extracellular matrix components, making them an excellent alternative to land mammal-origin polymers with reduced disease transmission risk and ethical concerns. In this research, collagen from shark skin, chitosan from squid pens, and fucoidan from brown algae were effectively blended for the manufacturing of an adequate biomaterial ink to achieve a printable, reproducible material with a high shape fidelity and reticulated using four different approaches (phosphate-buffered saline, cell culture medium, 6% CaCl2, and 5 mM Genipin). Materials characterization was composed by filament collapse, fusion behavior, swelling behavior, and rheological and compressive tests, which demonstrated favorable shape fidelity resulting in a stable structure without deformations, and interesting shear recovery properties around the 80% mark. Additionally, live/dead assays were conducted in order to assess the cell viability of an immortalized human mesenchymal stem cell line, seeded directly on the 3D printed constructs, which showed over 90% viable cells. Overall, the Roswell Park Memorial Institute cell culture medium promoted the adequate crosslinking of this biopolymer blend to serve the TE approach, taking advantage of its capacity to hamper pH decrease coming from the acidic biomaterial ink. While the crosslinking occurs, the pH can be easily monitored by the presence of the indicator phenol red in the cell culture medium, which reduces costs and time.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - Sophie Dani
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - Carmen G Sotelo
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, Vigo, Pontevedra, Spain
| | - Ricardo I Pérez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, Vigo, Pontevedra, Spain
| | - Rui L Reis
- 3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Michael Gelinsky
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| |
Collapse
|
9
|
Ortiz-Arrabal O, Irastorza-Lorenzo A, Campos F, Martín-Piedra MÁ, Carriel V, Garzón I, Ávila-Fernández P, de Frutos MJ, Esteban E, Fernández J, Janer A, Campos A, Chato-Astrain J, Alaminos M. Fibrin and Marine-Derived Agaroses for the Generation of Human Bioartificial Tissues: An Ex Vivo and In Vivo Study. Mar Drugs 2023; 21:md21030187. [PMID: 36976236 PMCID: PMC10058299 DOI: 10.3390/md21030187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Development of an ideal biomaterial for clinical use is one of the main objectives of current research in tissue engineering. Marine-origin polysaccharides, in particular agaroses, have been widely explored as scaffolds for tissue engineering. We previously developed a biomaterial based on a combination of agarose with fibrin, that was successfully translated to clinical practice. However, in search of novel biomaterials with improved physical and biological properties, we have now generated new fibrin-agarose (FA) biomaterials using 5 different types of agaroses at 4 different concentrations. First, we evaluated the cytotoxic effects and the biomechanical properties of these biomaterials. Then, each bioartificial tissue was grafted in vivo and histological, histochemical and immunohistochemical analyses were performed after 30 days. Ex vivo evaluation showed high biocompatibility and differences in their biomechanical properties. In vivo, FA tissues were biocompatible at the systemic and local levels, and histological analyses showed that biointegration was associated to a pro-regenerative process with M2-type CD206-positive macrophages. These results confirm the biocompatibility of FA biomaterials and support their clinical use for the generation of human tissues by tissue engineering, with the possibility of selecting specific agarose types and concentrations for applications requiring precise biomechanical properties and in vivo reabsorption times.
Collapse
Grants
- FIS PI20/0317 FIS PI20/0318 FIS PI21/0980 ICI19/00024 ICI21/00010 Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+I) of the Spanish Ministry of Science and Innovation (Instituto de Salud Carlos III),
- PE-0395-2019 PI-0442-2019 Consejería de Salud y Familias, Junta de Andalucía, Spain
- IDI-20180052 Hispanagar SA, Burgos, Spain, through CDTI, Ministry of Science and Innovation, Spain, Pro-grama Operativo Plurirregional de Crecimiento Inteligente (CRIN)
- B-CTS-504-UGR20 B-CTS-450-UGR20 marco del Programa Operativo FEDER Andalucía 2014-2020, University of Granada and Conseje-ría de Transformación Económica, Industria, Conocimiento y Universidades
Collapse
Affiliation(s)
- Olimpia Ortiz-Arrabal
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
- Doctoral Program in Biochemistry and Molecular Biology, University of Granada, E18016 Granada, Spain
| | - Ainhoa Irastorza-Lorenzo
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Miguel Ángel Martín-Piedra
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | | | | | | | | | - Antonio Campos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| |
Collapse
|
10
|
Rajabimashhadi Z, Gallo N, Salvatore L, Lionetto F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers (Basel) 2023; 15:544. [PMID: 36771844 PMCID: PMC9920587 DOI: 10.3390/polym15030544] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Fish collagen garnered significant academic and commercial focus in the last decades featuring prospective applications in a variety of health-related industries, including food, medicine, pharmaceutics, and cosmetics. Due to its distinct advantages over mammalian-based collagen, including the reduced zoonosis transmission risk, the absence of cultural-religious limitations, the cost-effectiveness of manufacturing process, and its superior bioavailability, the use of collagen derived from fish wastes (i.e., skin, scales) quickly expanded. Moreover, by-products are low cost and the need to minimize fish industry waste's environmental impact paved the way for the use of discards in the development of collagen-based products with remarkable added value. This review summarizes the recent advances in the valorization of fish industry wastes for the extraction of collagen used in several applications. Issues related to processing and characterization of collagen were presented. Moreover, an overview of the most relevant applications in food industry, nutraceutical, cosmetics, tissue engineering, and food packaging of the last three years was introduced. Lastly, the fish-collagen market and the open technological challenges to a reliable recovery and exploitation of this biopolymer were discussed.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | | | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| |
Collapse
|
11
|
Ma Y, Wang X, Su T, Lu F, Chang Q, Gao J. Recent Advances in Macroporous Hydrogels for Cell Behavior and Tissue Engineering. Gels 2022; 8:606. [PMID: 36286107 PMCID: PMC9601978 DOI: 10.3390/gels8100606] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used as scaffolds in tissue engineering for cell adhesion, proliferation, migration, and differentiation because of their high-water content and biocompatibility similarity to the extracellular matrix. However, submicron or nanosized pore networks within hydrogels severely limit cell survival and tissue regeneration. In recent years, the application of macroporous hydrogels in tissue engineering has received considerable attention. The macroporous structure not only facilitates nutrient transportation and metabolite discharge but also provides more space for cell behavior and tissue formation. Several strategies for creating and functionalizing macroporous hydrogels have been reported. This review began with an overview of the advantages and challenges of macroporous hydrogels in the regulation of cellular behavior. In addition, advanced methods for the preparation of macroporous hydrogels to modulate cellular behavior were discussed. Finally, future research in related fields was discussed.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| |
Collapse
|
12
|
Szychlinska MA, Bucchieri F, Fucarino A, Ronca A, D’Amora U. Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources. J Funct Biomater 2022; 13:118. [PMID: 35997456 PMCID: PMC9397043 DOI: 10.3390/jfb13030118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organization by further enhancing its biological cues. However, there are still some limitations that need to be overcome before 3D bioprinting may be globally used for scaffolds' development and their clinical translation. One of them is represented by the poor availability of appropriate, biocompatible and eco-friendly biomaterials, which should present a series of specific requirements to be used and transformed into a proper bioink for CTE. In this scenario, considering that, nowadays, the environmental decline is of the highest concerns worldwide, exploring naturally-derived hydrogels has attracted outstanding attention throughout the scientific community. For this reason, a comprehensive review of the naturally-derived hydrogels, commonly employed as bioinks in CTE, was carried out. In particular, the current state of art regarding eco-friendly and natural bioinks' development for CTE was explored. Overall, this paper gives an overview of 3D bioprinting for CTE to guide future research towards the development of more reliable, customized, eco-friendly and innovative strategies for CTE.
Collapse
Affiliation(s)
- Marta Anna Szychlinska
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Alberto Fucarino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| |
Collapse
|