1
|
Lin J, Chen S, Butt UD, Yan M, Wu B. A comprehensive review on ziconotide. Heliyon 2024; 10:e31105. [PMID: 38779019 PMCID: PMC11110537 DOI: 10.1016/j.heliyon.2024.e31105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Managing severe chronic pain is a challenging task, given the limited effectiveness of available pharmacological and non-pharmacological treatments. This issue continues to be a significant public health concern, requiring a substantial therapeutic response. Ziconotide, a synthetic peptide initially isolated from Conus magus in 1982 and approved by the US Food and Drug Administration and the European Medicines Agency in 2004, is the first-line intrathecal method for individuals experiencing severe chronic pain refractory to other therapeutic measures. Ziconotide produces powerful analgesia by blocking N-type calcium channels in the spinal cord, which inhibits the release of pain-relevant neurotransmitters from the central terminals of primary afferent neurons. However, despite possessing many favorable qualities, including the absence of tolerance development, respiratory depression, and withdrawal symptoms (largely due to the absence of a G-protein mediation mechanism), ziconotide's application is limited due to factors such as intrathecal administration and a narrow therapeutic window resulting from significant dose-related undesired effects of the central nervous system. This review aims to provide a comprehensive and clinically relevant summary of the literatures concerning the pharmacokinetics and metabolism of intrathecal ziconotide. It will also describe strategies intended to enhance clinical efficacy while reducing the incidence of side effects. Additionally, the review will explore the current efforts to refine the structure of ziconotide for better clinical outcomes. Lastly, it will prospect potential developments in the new class of selective N-type voltage-sensitive calcium-channel blockers.
Collapse
Affiliation(s)
- Jinping Lin
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Shuwei Chen
- Fuyang People's Hospital, Hangzhou 311400, China
| | | | - Min Yan
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan 321000, China
| |
Collapse
|
2
|
An D, Carrazoni GS, Souto das Neves BH, D’Hooge R, Peigneur S, Tytgat J. The Sobering Sting: Oleoyl Serotonin Is a Novel Stephanoconus Snail Venom-Derived Antagonist of Cannabinoid Receptors That Counteracts Learning and Memory Deficits. Biomedicines 2024; 12:454. [PMID: 38398056 PMCID: PMC10887214 DOI: 10.3390/biomedicines12020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Cannabinoid receptors (CB1 and CB2) are promising targets for a better understanding of neurological diseases. Nevertheless, only a few ligands of CB have reached clinical application so far. Venoms are considered as interesting sources of novel biologically active compounds. Here, we describe an endocannabinoid-like molecule, oleoyl serotonin (OS), present in the venom of Stephanoconus snails. Using electrophysiological assays, it was shown that OS inhibits CB1 and CB2. Structure-activity relationship studies using a chimeric CB1/2 revealed that the domain encompassing the transmembrane helix V (TMHV)- intracellular loop 3 (ICL3)-TMHVI of the CB2 is critical for the binding and function of OS. We concluded that OS binds to sites of the CB2 that are different from the binding sites of the non-selective CB agonist WIN55,212-2. Behavioral assays in mice showed that OS counteracted learning and memory deficits caused by WIN55,212-2. Furthermore, a selectivity screening of OS showed high selectivity for CB over various ion channels and receptors. Overall, OS may represent a new approach to the prevention and treatment of learning and memory cognition impairment in neurological diseases.
Collapse
Affiliation(s)
- Dongchen An
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, ON2, Herestraat 49, Box-922, 3000 Leuven, Belgium
| | - Guilherme Salgado Carrazoni
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, Box-3714, 3000 Leuven, Belgium; (G.S.C.); (B.-H.S.d.N.); (R.D.)
| | - Ben-Hur Souto das Neves
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, Box-3714, 3000 Leuven, Belgium; (G.S.C.); (B.-H.S.d.N.); (R.D.)
| | - Rudi D’Hooge
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, Box-3714, 3000 Leuven, Belgium; (G.S.C.); (B.-H.S.d.N.); (R.D.)
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, ON2, Herestraat 49, Box-922, 3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, ON2, Herestraat 49, Box-922, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Antunes FTT, Campos MM, Carvalho VDPR, da Silva Junior CA, Magno LAV, de Souza AH, Gomez MV. Current Drug Development Overview: Targeting Voltage-Gated Calcium Channels for the Treatment of Pain. Int J Mol Sci 2023; 24:ijms24119223. [PMID: 37298174 DOI: 10.3390/ijms24119223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/12/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are targeted to treat pain conditions. Since the discovery of their relation to pain processing control, they are investigated to find new strategies for better pain control. This review provides an overview of naturally based and synthetic VGCC blockers, highlighting new evidence on the development of drugs focusing on the VGCC subtypes as well as mixed targets with pre-clinical and clinical analgesic effects.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maria Martha Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | | | | | - Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | - Alessandra Hubner de Souza
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | | |
Collapse
|
5
|
Dong J, Zhang P, Xie J, Xie T, Zhu X, Zhangsun D, Yu J, Luo S. Loop2 Size Modification Reveals Significant Impacts on the Potency of α-Conotoxin TxID. Mar Drugs 2023; 21:md21050286. [PMID: 37233480 DOI: 10.3390/md21050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
α4/6-conotoxin TxID, which was identified from Conus textile, simultaneously blocks rat (r) α3β4 and rα6/α3β4 nicotinic acetylcholine receptors (nAChRs) with IC50 values of 3.6 nM and 33.9 nM, respectively. In order to identify the effects of loop2 size on the potency of TxID, alanine (Ala) insertion and truncation mutants were designed and synthesized in this study. An electrophysiological assay was used to evaluate the activity of TxID and its loop2-modified mutants. The results showed that the inhibition of 4/7-subfamily mutants [+9A]TxID, [+10A]TxID, [+14A]TxID, and all the 4/5-subfamily mutants against rα3β4 and rα6/α3β4 nAChRs decreased. Overall, ala-insertion or truncation of the 9th, 10th, and 11th amino acid results in a loss of inhibition and the truncation of loop2 has more obvious impacts on its functions. Our findings have strengthened the understanding of α-conotoxin, provided guidance for further modifications, and offered a perspective for future studies on the molecular mechanism of the interaction between α-conotoxins and nAChRs.
Collapse
Affiliation(s)
- Jianying Dong
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Zhang
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Junjie Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Ting Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|