1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Andretta E, De Chiara S, Pagliuca C, Cirella R, Scaglione E, Di Rosario M, Kokoulin MS, Nedashkovskaya OI, Silipo A, Salvatore P, Molinaro A, Di Lorenzo F. Increasing outer membrane complexity: the case of the lipopolysaccharide lipid A from marine Cellulophaga pacifica. Glycoconj J 2024; 41:119-131. [PMID: 38642279 PMCID: PMC11065906 DOI: 10.1007/s10719-024-10149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/22/2024]
Abstract
Gram-negative bacteria living in marine waters have evolved peculiar adaptation strategies to deal with the numerous stress conditions that characterize aquatic environments. Among the multiple mechanisms for efficient adaptation, these bacteria typically exhibit chemical modifications in the structure of the lipopolysaccharide (LPS), which is a fundamental component of their outer membrane. In particular, the glycolipid anchor to the membrane of marine bacteria LPSs, i.e. the lipid A, frequently shows unusual chemical structures, which are reflected in equally singular immunological properties with potential applications as immune adjuvants or anti-sepsis drugs. In this work, we determined the chemical structure of the lipid A from Cellulophaga pacifica KMM 3664T isolated from the Sea of Japan. This bacterium showed to produce a heterogeneous mixture of lipid A molecules that mainly display five acyl chains and carry a single phosphate and a D-mannose disaccharide on the glucosamine backbone. Furthermore, we proved that C. pacifica KMM 3664T LPS acts as a weaker activator of Toll-like receptor 4 (TLR4) compared to the prototypical enterobacterial Salmonella typhimurium LPS. Our results are relevant to the future development of novel vaccine adjuvants and immunomodulators inspired by marine LPS chemistry.
Collapse
Affiliation(s)
- Emanuela Andretta
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy
| | - Stefania De Chiara
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy
| | - Roberta Cirella
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy
| | - Martina Di Rosario
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy
| | - Maxim S Kokoulin
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, 159/2, Prospect 100 Let Vladivostoku, Vladivostok, 690022, Russia
| | - Olga I Nedashkovskaya
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, 159/2, Prospect 100 Let Vladivostoku, Vladivostok, 690022, Russia
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 436, Naples, 80131, Italy
- Task Force on Microbiome Studies University of Naples Federico II, Naples, 80100, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy.
| |
Collapse
|
3
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|