1
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2025; 42:257-297. [PMID: 39911015 DOI: 10.1039/d4np00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Covering: January to the end of December 2023This review covers the literature published in 2023 for marine natural products (MNPs), with 582 citations (541 for the period January to December 2023) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1220 in 340 papers for 2023), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the progress in the study of prokaryote involvement in macro-invertebrate MNP production is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
2
|
Chaúque BJM, da Silva TCB, Rott EB, Rott FB, Leite APMC, Benitez GB, Neuana NF, Goldim JR, Rott MB, Zanette RA. Effectiveness of phytoproducts against pathogenic free-living amoebae - A scoping and critical review paving the way toward plant-based pharmaceuticals. Fitoterapia 2025; 182:106404. [PMID: 39922391 DOI: 10.1016/j.fitote.2025.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/10/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Infections caused by free-living amoebae (FLA) have increased worldwide and are expected to worsen. The lack of drugs that are effective (especially against cysts), affordable, and safe to treat these infections exacerbates the concern. Plants present a promising source of bioactive compounds for developing effective drugs; however, the scientific literature on this topic has yet to be adequately synthesized. This work provides a critical scoping review summarizing the amoebicidal performance of plant-derived products and their potential for developing effective drugs to treat FLA infections. Out of 5889 articles retrieved from multiple databases, 119 articles were selected, from which data on 180 plant species belonging to 127 genera and 62 families were extracted. The extracts, essential oils, and compounds from these plants exhibited a diverse range of potency against cysts and trophozoites. Among the compounds studied, periglaucine A, kolavenic acid, and (+)-elatol are promising cysticidal drug candidates due to their high potency, as well as their known low toxicity to non-target cells. Tovophillin A, gartinin, 8-deoxygartinin, garcinone E, 9-hydroxycalabaxanthone, γ-mangostin, and borneol also exhibit high cysticidal potency, but their selectivity profile is unknown. Resveratrol, rosmarinic acid, β-amyrin, and vanillic acid stand out for their high potency against trophozoites and low toxicity to mammalian cells. Another group of compounds with similarly high trophocidal potency includes (-)-epicatechin, (-)-epigallocatechin, apigenin, costunolide, demethoxycurcumin, kaempferol, methyl-β-orcinolcarboxylate, sakuraetin, (+)-elatol, debromolaurinterol, luteolin, (-)-rogiolol, cystomexicone B, epigallocatechin gallate, quercetin, and α-bisabolol. These compounds are priority candidates for further studies on in vivo efficacy, safety, pharmacokinetics, and pharmacodynamics.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil; Postdoctoral fellow at Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Rio Grande do Sul, Brazil; Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique.
| | - Thaisla Cristiane Borella da Silva
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, 90035-002 Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Felipe Brittes Rott
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | - Guilherme Brittes Benitez
- Industrial and Systems Engineering Graduate Program, Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Brazil
| | - Neuana Fernando Neuana
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique; Department of Mechanical and Materials Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - José Roberto Goldim
- Postdoctoral fellow at Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Rio Grande do Sul, Brazil.
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, 90035-002 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Yamagishi Y, Kamada T, Ishii T, Matsuura H, Kikuchi N, Abe T, Suzuki M. Morphological and Chemical Diversity within Japanese Laurencia Complex (Rhodomelaceae, Ceramiales, Rhodophyta). Chem Biodivers 2024; 21:e202400833. [PMID: 38959122 DOI: 10.1002/cbdv.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Seaweeds of the red algal genus Laurencia are distributed worldwide in tropical, subtropical to temperate zones, growing in Japan from Hokkaido to Okinawa. Laurencia is highly difficult to classify morphologically because of a high degree of morphological variation within individual species. Nevertheless, Laurencia investigation is favored by organic chemists as it produces uniquely structured compounds. Halogenated secondary metabolites are considered to be used as chemical markers for chemical systematics (chemotaxonomy) of this troublesome genus. As a "weedy seaweed", Laurencia is not effectively utilized, yet it produces a variety of metabolites and thus, holds good potential for containing compounds with specific activity, especially in aspects of secondary metabolites. In this review, we reported significant morphological features to distinguish species in this genus, and the morphological features, habitat, distribution, and chemical composition that help discriminate Japanese Laurencia species.
Collapse
Affiliation(s)
- Yukimasa Yamagishi
- Department of Marine Bio-Science, Faculty of Life Science and Biotechnology, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Takashi Kamada
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka, 437-8555, Japan
| | - Takahiro Ishii
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Hiroshi Matsuura
- Department of Materials Chemistry, Advanced Course of Applied Chemistry, National Institute of Technology, Asahikawa College, 2-2-1-6 Shunkodai, Asahikawa, Hokkaido, 071-8142, Japan
| | - Norio Kikuchi
- Coastal Branch of Natural History Museum and Institute, Chiba, 123 Yoshio, Katsuura, Chiba, 299-5242, Japan
| | - Tsuyoshi Abe
- The Hokkaido University Museum, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Minoru Suzuki
- Coastal Branch of Natural History Museum and Institute, Chiba, 123 Yoshio, Katsuura, Chiba, 299-5242, Japan
| |
Collapse
|
4
|
Pomeroy J, Khalifa MM, Milanes JE, Palmentiero CM, Morris JC, Golden JE. Synthesis and Evaluation of Benzylamine Inhibitors of Neuropathogenic Naegleria fowleri "Brain-Eating" Amoeba. ACS Med Chem Lett 2024; 15:87-92. [PMID: 38229759 PMCID: PMC10789148 DOI: 10.1021/acsmedchemlett.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
Current therapy for primary amoebic meningoencephalitis (PAM), a highly lethal brain infection in humans caused by Naegleria fowleri amoeba, is restricted to repurposed drugs with limited efficacy and success. Discovery of an antiamoebic benzylamine scaffold 2 precipitated a medicinal chemistry effort to improve potency, cytotoxicity profile, and drug-like properties. Thirty-four compounds were prepared, leading to compound 28 with significant gains in potency (EC50 = 0.92 μM), solubility, and microsomal stability and a demonstrated absence of cytotoxicity in SH-SY5Y human neuroblastoma cells (CC50 > 20 μM). The compounds demonstrated excellent blood-brain barrier permeability in an in vitro assay, thereby providing a new structural scaffold that inhibits N. fowleri viability and permits the investigation of therapeutic interventions in an understudied neglected disease.
Collapse
Affiliation(s)
- Julia
M. Pomeroy
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United
States
| | - Muhammad M. Khalifa
- School
of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jillian E. Milanes
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Caroline M. Palmentiero
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - James C. Morris
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Jennifer E. Golden
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United
States
- School
of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|