1
|
Hegazy GE, Moawad MN, Othman SS, Soliman NA, Abeer E A, Oraby H, Abdel-Fattah YR. Microbial dynamics, chemical profile, and bioactive potential of diverse Egyptian marine environments from archaeological wood to soda lake. Sci Rep 2024; 14:20918. [PMID: 39251732 PMCID: PMC11385181 DOI: 10.1038/s41598-024-70411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Halophilic archaea are a unique group of microorganisms that thrive in high-salt environments, exhibiting remarkable adaptations to survive extreme conditions. Archaeological wood and El-Hamra Lake serve as a substrate for a diverse range of microorganisms, including archaea, although the exact role of archaea in archaeological wood biodeterioration remains unclear. The morphological and chemical characterizations of archaeological wood were evaluated using FTIR, SEM, and EDX. The degradation of polysaccharides was identified in Fourier transform infrared analysis (FTIR). The degradation of wood was observed through scanning electron microscopy (SEM). The energy dispersive X-ray spectroscopy (EDX) revealed the inclusion of minerals, such as calcium, silicon, iron, and sulfur, into archaeological wood structure during burial and subsequent interaction with the surrounding environment. Archaea may also be associated with detected silica in archaeological wood since several organosilicon compounds have been found in the crude extracts of archaeal cells. Archaeal species were isolated from water and sediment samples from various sites in El-Hamra Lake and identified as Natronococcus sp. strain WNHS2, Natrialba hulunbeirensisstrain WNHS14, Natrialba chahannaoensis strain WNHS9, and Natronococcus occultus strain WNHS5. Additionally, three archaeal isolates were obtained from archaeological wood samples and identified as Natrialba chahannaoensisstrain W15, Natrialba chahannaoensisstrain W22, and Natrialba chahannaoensisstrain W24. These archaeal isolates exhibited haloalkaliphilic characteristics since they could thrive in environments with high salinity and alkalinity. Crude extracts of archaeal cells were analyzed for the organic compounds using gas chromatography-mass spectrometry (GC-MS). A total of 59 compounds were identified, including free saturated and unsaturated fatty acids, saturated fatty acid esters, ethyl and methyl esters of unsaturated fatty acids, glycerides, phthalic acid esters, organosiloxane, terpene, alkane, alcohol, ketone, aldehyde, ester, ether, and aromatic compounds. Several organic compounds exhibited promising biological activities. FTIR spectroscopy revealed the presence of various functional groups, such as hydroxyl, carboxylate, siloxane, trimethylsilyl, and long acyl chains in the archaeal extracts. Furthermore, the archaeal extracts exhibited antioxidant effects. This study demonstrates the potential of archaeal extracts as a valuable source of bioactive compounds with pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Ghada E Hegazy
- National Institute of Oceanography & Fisheries, NIOF-Egypt, Alexandria, Egypt.
| | - Madelyn N Moawad
- National Institute of Oceanography & Fisheries, NIOF-Egypt, Alexandria, Egypt.
| | - Sarah Samir Othman
- Pharmaceutical Bioproducts Research Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, Alexandria, Egypt
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, Alexandria, Egypt
| | - Abdelwahab Abeer E
- Medical Biotechnology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research &Technological Applications, Alexandria, Egypt
| | - Hussein Oraby
- Department of Chemical Engineering, Military Technical College, Cairo, Egypt.
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, Alexandria, Egypt
| |
Collapse
|
2
|
Khdera HA, Saad SY. Chemical composition of organic extracts of Phyla nodiflora L. in Syria by GC-MS. Heliyon 2024; 10:e34686. [PMID: 39149040 PMCID: PMC11325381 DOI: 10.1016/j.heliyon.2024.e34686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Phyla nodiflora L. is a perennial herbaceous plant belonging to the Verbenaceae family. It is widely used as an herbal drink to treat many diseases. It has antioxidant, antifungal and anti-inflammatory properties. In traditional medicine, it is used to treat skin infections. However, there is little information on the chemical composition of organic plant extracts. Therefore, the aim of this study was to determine the chemical composition of organic extracts of P. nodiflora L. Methods In this study, organic extracts were prepared using a continuous Soxhlet extractor and four different solvents with increasing polarity from nonpolar to polar solvents (petroleum ether, chloroform, ethyl acetate, and isopropanol) to ensure the possibility of extracting a wide range of compounds. GC‒MS analysis was performed to determine the chemical constituents of the organic extracts. Results Nineteen compounds were identified in the petroleum ether (Et) extract, 14 in the chloroform (Ch) extract, 18 in the ethyl acetate (Ea) extract and 15 in the isopropanol (Is) extract. The most important compounds in the Et extract were 1,1-diethoxyethane (33.9 %) and nonadecane (19.9 %). The most important compound in the Ch extract was octacosane (37.4 %). The most important compounds in the Ea extract were 3-hydroxy-dodecanoic acid (17.7 %) and geranyl isovalerate (15.5 %). The most important compound in the Is extract was behenic acid alcohol (18.6 %). The chemical structures of the major compounds were confirmed by mass spectrometry by studying their fragmentation mechanism and comparing the molecular weights of the resulting fragments with the molecular weights of the peaks present in each mass spectrum. Conclusions The results of this study show that the dominant compounds in nonpolar extracts (petroleum ether and chloroform) are hydrocarbons, ethers, epoxides, and silicon compounds, while the dominant compounds in moderately polar extracts (ethyl acetate and isopropanol) are alcohols, carbonyl compounds, and oxygenated terpenes.
Collapse
Affiliation(s)
- Hadi Aqel Khdera
- Department of Chemistry, Faculty of Sciences, Tishreen University, Lattakia, Syria
| | - Sawsan Youseff Saad
- Department of Chemistry, Faculty of Sciences, Tishreen University, Lattakia, Syria
| |
Collapse
|
3
|
Xiong JX, Du LS, Li NN, Wu XT, Xiang Y, Li S, Zou L, Liu D, Huang D, Xie ZF, Wang Y, Li J, Dai J, Yan D, Chao HJ. Pigmentiphaga kullae CHJ604 improved the growth of tobacco by degrading allelochemicals and xenobiotics in continuous cropping obstacles. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133466. [PMID: 38219583 DOI: 10.1016/j.jhazmat.2024.133466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Plant autotoxicity is considered to be one of the important causes of continuous cropping obstacles in modern agriculture, which accumulates a lot of allelochemicals and xenobiotics and is difficult to solve effectively. To overcome tobacco continuous obstacles, a strain Pigmentiphaga kullae CHJ604 isolated from the environment can effectively degrade these compounds in this study. CHJ604 strain can degrade 11 types of autotoxicity allelochemicals and xenobiotics (1646.22 μg/kg) accumulated in the soil of ten-years continuous cropping of tobacco. The 11 allelochemicals and xenobiotics significantly reduced Germination Percentage (GP), Germination Index (GI), and Mean Germination Time (MGT) of tobacco seeds, and inhibited the development of leaves, stems, and roots. These negative disturbances can be eliminated by CHJ604 strain. The degradation pathways of 11 allelochemicals and xenobiotics were obtained by whole genome sequence and annotation of CHJ604 strain. The heterologous expression of a terephthalate 1,2-dioxygenase can catalyze 4-hydroxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxybenzaldehyde, and 4-hydroxy-3-methoxy-benzaldehyde, respectively. The phthalate 4,5-dioxygenase can catalyze phthalic acid, diisobutyl phthalate, and dibutyl phthalate. These two enzymes are conducive to the simultaneous degradation of multiple allelochemicals and xenobiotics by strain CHJ604. This study provides new insights into the biodegradation of autotoxicity allelochemicals and xenobiotics as it is the first to describe a degrading bacterium of 11 types of allelochemicals and xenobiotics and their great potential in improving tobacco continuous obstacles.
Collapse
Affiliation(s)
- Jia-Xi Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ling-Shan Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Na-Na Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiu-Ting Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yang Xiang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Sha Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dongqi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Duo Huang
- Hubei Accurate Inspection & Testing Co., Ltd., Wuhan 430223, PR China
| | - Ze Feng Xie
- Hubei Accurate Inspection & Testing Co., Ltd., Wuhan 430223, PR China
| | - Ying Wang
- Hubei Accurate Inspection & Testing Co., Ltd., Wuhan 430223, PR China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jingcheng Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Dazhong Yan
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Hong-Jun Chao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
4
|
Kuzmin A, Grigoryeva T, Gorshkov A. Assessment of stable carbon isotope 13С/ 12С ratio in phthalates from surface waters using HPLC-HRMS-TOF approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87734-87742. [PMID: 37430082 DOI: 10.1007/s11356-023-28494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
A method for estimating the ratio of stable carbon isotopes 13С/12С in the composition of phthalates from surface water at a trace concentration level is proposed. It is based on the concentration of hydrophobic components of water using an analytical reversed phase HPLC column followed by their gradient separation and detection of eluted phthalates using a high-resolution time-of-flight mass spectrometer (ESI-HRMS-TOF) in the form of molecular ions. The ratio of stable carbon isotopes 13С/12C in phthalates is calculated as a ratio of integrals under the monoisotopic [M+1+H]+ and [M+H]+ peaks. The Δ13C value is calculated relatively to the 13C/12C ratio in commercial DnBP and DEHP phthalates used as standards. The minimal concentration of DnBP and DEHP in water required for a reliable determination of Δ13C value is estimated by the level of ca. 0.2 μg L-1. The technique has been verified during the monitoring of priority phthalates in the waters of Lake Baikal.
Collapse
Affiliation(s)
- Anton Kuzmin
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str, 664033, Irkutsk, Russia.
| | - Tatyana Grigoryeva
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str, 664033, Irkutsk, Russia
| | - Alexander Gorshkov
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str, 664033, Irkutsk, Russia
| |
Collapse
|
5
|
Zhou Y, Xu J, MacIsaac HJ, McKay RM, Xu R, Pei Y, Zi Y, Li J, Qian Y, Chang X. Comparative metabolomic analysis of exudates of microcystin-producing and microcystin-free Microcystis aeruginosa strains. Front Microbiol 2023; 13:1075621. [PMID: 36741884 PMCID: PMC9894096 DOI: 10.3389/fmicb.2022.1075621] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 01/20/2023] Open
Abstract
Cyanobacterial harmful algal blooms (cHABs) dominated by Microcystis aeruginosa threaten the ecological integrity and beneficial uses of lakes globally. In addition to producing hepatotoxic microcystins (MC), M. aeruginosa exudates (MaE) contain various compounds with demonstrated toxicity to aquatic biota. Previously, we found that the ecotoxicity of MaE differed between MC-producing and MC-free strains at exponential (E-phase) and stationary (S-phase) growth phases. However, the components in these exudates and their specific harmful effects were unclear. In this study, we performed untargeted metabolomics based on liquid chromatography-mass spectrometry to reveal the constituents in MaE of a MC-producing and a MC-free strain at both E-phase and S-phase. A total of 409 metabolites were identified and quantified based on their relative abundance. These compounds included lipids, organoheterocyclic compounds, organic acid, benzenoids and organic oxygen compounds. Multivariate analysis revealed that strains and growth phases significantly influenced the metabolite profile. The MC-producing strain had greater total metabolites abundance than the MC-free strain at S-phase, whereas the MC-free strain released higher concentrations of benzenoids, lipids, organic oxygen, organic nitrogen and organoheterocyclic compounds than the MC-producing strain at E-phase. Total metabolites had higher abundance in S-phase than in E- phase in both strains. Analysis of differential metabolites (DMs) and pathways suggest that lipids metabolism and biosynthesis of secondary metabolites were more tightly coupled to growth phases than to strains. Abundance of some toxic lipids and benzenoids DMs were significantly higher in the MC-free strain than the MC-producing one. This study builds on the understanding of MaE chemicals and their biotoxicity, and adds to evidence that non-MC-producing strains of cyanobacteria may also pose a threat to ecosystem health.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Department of Ecology and Environment of Yunnan Province, Kunming Ecology and Environment Monitoring Station, Kunming, China
| | - Jun Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Hugh J. MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Robert Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Runbing Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Ying Pei
- College of Agronomy and Life Sciences, Kunming University, Kunming, China
| | - Yuanyan Zi
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Jiaojiao Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yu Qian
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- College of Agronomy and Life Sciences, Kunming University, Kunming, China
| |
Collapse
|
6
|
Bazarsadueva SV, Taraskin VV, Budaeva OD, Nikitina EP, Zhigzhitzhapova SV, Shiretorova VG, Bazarzhapov TZ, Radnaeva LD. First Data on PAE Levels in Surface Water in Lakes of the Eastern Coast of Baikal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1173. [PMID: 36673930 PMCID: PMC9859432 DOI: 10.3390/ijerph20021173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The increasing consumption of phthalates (PAEs), along with their high toxicity and high mobility, poses a threat to the environment. This study presents initial data on the contents of six priority PAEs in the water of lakes located on the eastern shore of Lake Baikal-Arangatui, Bormashevoe, Dukhovoe, Kotokel, and Shchuchye. The mean total concentrations of the six PAEs in lakes Arangatui and Bormashevoe (low anthropogenic load) were comparable to those in Kotokel (medium anthropogenic load, 17.34 µg/L) but were significantly higher (p < 0.05) than in Dukhovoe and Shchuchye (high anthropogenic load, 10.49 and 2.30 µg/L, respectively). DBP and DEHP were the main PAEs in all samples. The DEHP content in lakes Arangatui and Bormashevoe was quite high, and at some sampling sites it exceeded the MACs established by Russian, U.S. EPA, and WHO regulations. The assessment showed that there is no potential risk to humans associated with the presence of PAEs in drinking water. However, the levels of DEHP, DBP, and DnOP in the water pose a potential threat to sensitive aquatic organisms, as shown by the calculated risk quotients (RQs). It is assumed that the origin of the phthalates in the studied lakes is both anthropogenic and biogenic.
Collapse
Affiliation(s)
- Selmeg V. Bazarsadueva
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanovoi St., 6, 670047 Ulan-Ude, Russia
| | - Vasilii V. Taraskin
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanovoi St., 6, 670047 Ulan-Ude, Russia
| | - Olga D. Budaeva
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanovoi St., 6, 670047 Ulan-Ude, Russia
| | - Elena P. Nikitina
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanovoi St., 6, 670047 Ulan-Ude, Russia
| | - Svetlana V. Zhigzhitzhapova
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanovoi St., 6, 670047 Ulan-Ude, Russia
| | - Valentina G. Shiretorova
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanovoi St., 6, 670047 Ulan-Ude, Russia
| | - Tcogto Zh. Bazarzhapov
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanovoi St., 6, 670047 Ulan-Ude, Russia
| | - Larisa D. Radnaeva
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanovoi St., 6, 670047 Ulan-Ude, Russia
- Department of Pharmacy of the Medical Institute, Banzarov Buryat State University, 670000 Ulan-Ude, Russia
| |
Collapse
|
7
|
Silva IVG, Silva KL, Maia RC, Duarte HM, Coutinho R, Neves MHCB, Soares AR, Lopes GPF. Crosstalk between biological and chemical diversity with cytotoxic and cytostatic effects of Aphanothece halophytica in vitro. AN ACAD BRAS CIENC 2022; 94:e20211585. [PMID: 36515327 DOI: 10.1590/0001-3765202220211585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Different solvent extracts from Aphanothece halophytica (A. halophytica) were evaluated for their cytotoxic effects against four human cancer cell lines. The samples demonstrated different percentages of cyanobacteria species populations. The samples containing 100% A. halophytica and 90% A. halophytica showed a significant cytotoxic effect in human breast cancer cells MDA231. The cytostatic effect was demonstrated in MDA231 and human glioblastoma T98G cells regardless of the treatment, resulting in a significant cell cycle arrest in the S phase. The chemical profiles of the extracts were proven to be diverse in qualitative and quantitative compositions. This variability was dependent on the A. halophytica´s abundance in each extract. The 100% A. halophytica extract induced cytotoxic and cytostatic effects in breast cancer cells, and those could be associated with the predominance of fatty acids, hydrocarbons and phthalates, indicating that A. halophytica is an interesting source of novel compound with anticancer effect.
Collapse
Affiliation(s)
- Isabel V G Silva
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| | - Karina L Silva
- Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37, Centro, 20321-050 Rio de Janeiro, RJ, Brazil
| | - Raquel C Maia
- Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, Centro, 20230-130 Rio de Janeiro, RJ, Brazil
| | - Heitor M Duarte
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, São José do Barreto, 27965-045 Macaé, RJ, Brazil
| | - Ricardo Coutinho
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Biotecnologia Marinha, Rua Kioto, 253, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| | - Maria Helena C B Neves
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Biotecnologia Marinha, Rua Kioto, 253, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| | - Angelica R Soares
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, São José do Barreto, 27965-045 Macaé, RJ, Brazil
| | - Giselle P F Lopes
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Biotecnologia Marinha, Rua Kioto, 253, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| |
Collapse
|
8
|
In Vitro Antibacterial and Antioxidant Activities and Molecular Docking Analysis of Phytochemicals from Cadia purpurea Roots. J Trop Med 2022; 2022:4190166. [PMID: 35251187 PMCID: PMC8894027 DOI: 10.1155/2022/4190166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/29/2022] [Indexed: 11/18/2022] Open
Abstract
Phytochemicals and antibacterial and antioxidant activities of Cadia purpurea roots were investigated herein for the first time. The phytochemical study led to the isolation of two compounds, di-(2-methylheptyl) phthalate (1) and 13-O-pyrrolecarboxyl lupanine (2), from methanol roots extract of C. purpurea. The antibacterial activity results revealed that the n-hexane extract presented a better inhibitory value (13.8 ± 0.0 mm) followed by chloroform (11.1 ± 0.4 mm) and chloroform : methanol (1 : 1) (10.7 ± 0.1 mm) extracts against E. coli at the maximum dose of 100 mg/mL. While, methanolic and ethanolic extracts displayed a mild activity against same bacterium at same dose. The methicillin resistant S. aureus was found with almost total resistance to all extracts up to the 100 mg/mL. The chloroform : methanol (1 : 1), chloroform, and n-hexane extracts recorded inhibition zone values (8.0 ± 0.0–10.0 ± 0.1 mm, 7.7 ± 0.0–9.8 ± 0.1 mm, and 7.3 ± 0.2–8.9 ± 0.2 mm, respectively) better than chloramphenicol (7.2 ± 0.6 mm at 30 μg dose) against P. aeruginosa. The alcoholic extracts also exhibited an activity better than chloramphenicol up to 25 mg/mL against same bacterium. Compound 2 produced a comparable inhibition value (9.6 ± 0.0 mm to 18.5 ± 0.0 mm) to that of chloramphenicol (21.5 ± 0.3 mm) against E. coli at doses up to 1.0 mg/mL; whereas, compound 1 showed a slight activity (7.1 ± 0.1 mm–10.3 ± 0.0 mm). Both compounds were found generally inactive against S. aureus, while they provided an activity better than chloramphenicol (7.2 ± 0.6 mm) against P. aeruginosa with inhibition zones ranging from 7.1 ± 0.0 mm to 9.0 ± 0.1 mm for compound 1 and 7.2 ± 0.0 mm to 10.6 ± 0.0 mm for compound 2. Ethanolic and methanolic extracts exhibited a better DPPH radical scavenging activity (IC50 values of 12.9 and 16.03 μg/mL, respectively) and strong ferric ion reducing power (with absorbance of 0.788 ± 0.000 and 0.810 ± 0.001, respectively) at a concentration of 500 μg/mL compared to the other extracts. Compound 1 also possessed a better anti-DPPH trapping activity (IC50, 7.99 μg/mL) than compound 2 (IC50, 58.34 μg/mL). The compounds, however, indicated a weak ferric ion reduction power even at higher amount. In general, the observed antibacterial and antioxidant activities of isolated compounds and extracts were found to be dose-dependent. Conducting further biochemical investigations on all parts of this plant could provide opportunities of finding extra alkaloidal compounds and other phthalate derivatives with better biological activity.
Collapse
|
9
|
Boutjagualt I, Hmimid F, Errami A, Bouharroud R, Qessaoui R, Etahiri S, Benba J. Chemical composition and insecticidal effects of brown algae (Fucus spiralis) essential oil against Ceratitis capitata Wiedemann (Diptera: Tephritidae) pupae and adults. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Safavi M, Jafari Olia MS, Abolhasani MH, Amini M, Kianirad M. Optimization of the culture medium and characterization of antioxidant compounds of a marine isolated microalga as a promising source in aquaculture feed. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Huang L, Zhu X, Zhou S, Cheng Z, Shi K, Zhang C, Shao H. Phthalic Acid Esters: Natural Sources and Biological Activities. Toxins (Basel) 2021; 13:toxins13070495. [PMID: 34357967 PMCID: PMC8310026 DOI: 10.3390/toxins13070495] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Phthalic acid esters (PAEs) are a class of lipophilic chemicals widely used as plasticizers and additives to improve various products' mechanical extensibility and flexibility. At present, synthesized PAEs, which are considered to cause potential hazards to ecosystem functioning and public health, have been easily detected in the atmosphere, water, soil, and sediments; PAEs are also frequently discovered in plant and microorganism sources, suggesting the possibility that they might be biosynthesized in nature. In this review, we summarize that PAEs have not only been identified in the organic solvent extracts, root exudates, and essential oils of a large number of different plant species, but also isolated and purified from various algae, bacteria, and fungi. Dominant PAEs identified from natural sources generally include di-n-butyl phthalate, diethyl phthalate, dimethyl phthalate, di(2-ethylhexyl) phthalate, diisobutyl phthalate, diisooctyl phthalate, etc. Further studies reveal that PAEs can be biosynthesized by at least several algae. PAEs are reported to possess allelopathic, antimicrobial, insecticidal, and other biological activities, which might enhance the competitiveness of plants, algae, and microorganisms to better accommodate biotic and abiotic stress. These findings suggest that PAEs should not be treated solely as a "human-made pollutant" simply because they have been extensively synthesized and utilized; on the other hand, synthesized PAEs entering the ecosystem might disrupt the metabolic process of certain plant, algal, and microbial communities. Therefore, further studies are required to elucidate the relevant mechanisms and ecological consequences.
Collapse
Affiliation(s)
- Ling Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.H.); (S.Z.); (Z.C.); (K.S.)
- Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xunzhi Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Shixing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.H.); (S.Z.); (Z.C.); (K.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenrui Cheng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.H.); (S.Z.); (Z.C.); (K.S.)
| | - Kai Shi
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.H.); (S.Z.); (Z.C.); (K.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chi Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
- Correspondence: (C.Z.); (H.S.)
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.H.); (S.Z.); (Z.C.); (K.S.)
- Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (C.Z.); (H.S.)
| |
Collapse
|
12
|
Tangrodchanapong T, Sornkaew N, Yurasakpong L, Niamnont N, Nantasenamat C, Sobhon P, Meemon K. Beneficial Effects of Cyclic Ether 2-Butoxytetrahydrofuran from Sea Cucumber Holothuria scabra against Aβ Aggregate Toxicity in Transgenic Caenorhabditis elegans and Potential Chemical Interaction. Molecules 2021; 26:molecules26082195. [PMID: 33920352 PMCID: PMC8070609 DOI: 10.3390/molecules26082195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
The pathological finding of amyloid-β (Aβ) aggregates is thought to be a leading cause of untreated Alzheimer’s disease (AD). In this study, we isolated 2-butoxytetrahydrofuran (2-BTHF), a small cyclic ether, from Holothuria scabra and demonstrated its therapeutic potential against AD through the attenuation of Aβ aggregation in a transgenic Caenorhabditis elegans model. Our results revealed that amongst the five H. scabra isolated compounds, 2-BTHF was shown to be the most effective in suppressing worm paralysis caused by Aβ toxicity and in expressing strong neuroprotection in CL4176 and CL2355 strains, respectively. An immunoblot analysis showed that CL4176 and CL2006 treated with 2-BTHF showed no effect on the level of Aβ monomers but significantly reduced the toxic oligomeric form and the amount of 1,4-bis(3-carboxy-hydroxy-phenylethenyl)-benzene (X-34)-positive fibril deposits. This concurrently occurred with a reduction of reactive oxygen species (ROS) in the treated CL4176 worms. Mechanistically, heat shock factor 1 (HSF-1) (at residues histidine 63 (HIS63) and glutamine 72 (GLN72)) was shown to be 2-BTHF’s potential target that might contribute to an increased expression of autophagy-related genes required for the breakdown of the Aβ aggregate, thus attenuating its toxicity. In conclusion, 2-BTHF from H. scabra could protect C. elegans from Aβ toxicity by suppressing its aggregation via an HSF-1-regulated autophagic pathway and has been implicated as a potential drug for AD.
Collapse
Affiliation(s)
- Taweesak Tangrodchanapong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (N.S.); (N.N.)
| | - Laphatrada Yurasakpong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (N.S.); (N.N.)
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (T.T.); (L.Y.); (P.S.)
- Correspondence: or ; Tel.: +66-22-015-407
| |
Collapse
|
13
|
Isolation and Structure Elucidation of a Novel Symmetrical Macrocyclic Phthalate Hexaester. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel symmetrical macrocyclic phthalate hexaester (1) and a known macrocyclic phthalate tetraester (2) were isolated during a natural product-exploring program on the cyanobacterium Moorea producens. Their structures were elucidated based on spectroscopic data, including nuclear magnetic resonance and high-resolution mass spectra. In the antibacterial activity test, compounds 1 and 2 showed no bioactivity at the concentrations tested.
Collapse
|
14
|
Abstract
The advantages and emergent interest in organism-derived bioactive molecules have recently renewed scientific research attention in this field. Since 1967, about 52 different derivatives of phthalate ester (PE) have been reported from different taxonomic groups. Anthropogenic derivatives of the PEs are confined to petroleum products, as a plasticizer. These derivatives exhibit a potential toxicity on the living system, particularly those having a reduced molecular weight. An organism-derived PE differs chemically from that of synthetic ones in terms of the abundance of 14C and its bond structure, leading to its varied activities in the biological system. The study of the biosynthetic pathway and the optimization of parameters for product enhancement have advocated their organism-derived nature. Various bioactivities of such organisms-derived derivatives of phthalates such as antibacterial, antifungal, an inducer of apoptosis and cell cycle arrest, antioxidant, cytotoxic, antitumor, allopathic, larvicidal, antifouling, chemotactic, antimelanogenic, antiviral, and anti-inflammatory activities have been well documented. This is the first review that focuses on the positive bioactivities of such organism-derived PEs in detail. There is enormous scope for research in this field to search for the utilization of such organism-derived phthalate derivatives will have potential bioactivity, their possible use to improve their efficacy.
Collapse
Affiliation(s)
- Raj Narayan Roy
- Microbiology Research Laboratory, Department of Botany, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Purba-Bardhaman, India
| |
Collapse
|
15
|
Kumar MS, Sharma SA. Toxicological effects of marine seaweeds: a cautious insight for human consumption. Crit Rev Food Sci Nutr 2020; 61:500-521. [PMID: 32188262 DOI: 10.1080/10408398.2020.1738334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine environment is a rich and diverse source for many biologically active substances including functional foods and nutraceuticals. It is well exploited for useful compounds, natural products and aquaculture industry; and seaweeds is one of the major contributors in terms of both food security and healthy nutrition. They are well-known due to their enormous benefits and is consumed globally in many countries. However, there is lack of attention toward their toxicity reports which might be due toxic chemical compounds from seaweed, epiphytic bacteria or harmful algal bloom and absorbed heavy metals from seawater. The excess of these components might lead to harmful interactions with drugs and hormone levels in the human body. Due to their global consumption and to meet increasing demands, it is necessary to address their hazardous and toxic aspects. In this review, we have done extensive literature for healthy seaweeds, their nutritional composition while summarizing the toxic effects of selected seaweeds from red, brown and green group which includes- Gracilaria, Acanthophora, Caulerpa, Cladosiphon, and Laminaria sp. Spirulina, a microalgae (cyanobacteria) biomass is also included in toxicity discussion as it an important food supplement and many times shows adverse reactions and drug interactions. The identified compounds from seaweeds were concluded to be toxic to humans, though they exhibited certain beneficial effects too. They have an easy access in food chain and thus invade the higher trophic level organisms. This review will create an awareness among scientific and nonscientific community, as well as government organization to regulate edible seaweed consumption and keep them under surveillance for their beneficial and safe consumption.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Simran A Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
16
|
Yoshimoto Y, Tanaka M, Miyashita M, Abdel-Wahab M, Megaly AMA, Nakagawa Y, Miyagawa H. A Fluorescent Compound from the Exuviae of the Scorpion, Liocheles australasiae. JOURNAL OF NATURAL PRODUCTS 2020; 83:542-546. [PMID: 32009395 DOI: 10.1021/acs.jnatprod.9b00972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most scorpions fluoresce under UV light. To date, two types of fluorescent compounds have been identified in scorpions, but it has been assumed that other unknown compounds may be responsible for the fluorescence. In this study, we isolated a fluorescent compound from the exuviae of the scorpion Liocheles australasiae identified as a macrocyclic diphthalate ester with a molecular mass of 496.2 Da. The same compound was also detected in extracts from four other scorpion species. This suggests that this compound is shared by multiple scorpion species, although its contribution to the cuticle fluorescence may be relatively small.
Collapse
Affiliation(s)
- Yusuke Yoshimoto
- Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto 606-8502 , Japan
| | - Masato Tanaka
- Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto 606-8502 , Japan
| | - Masahiro Miyashita
- Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto 606-8502 , Japan
| | | | - Alhussin M A Megaly
- Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto 606-8502 , Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto 606-8502 , Japan
| | - Hisashi Miyagawa
- Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Kyoto 606-8502 , Japan
| |
Collapse
|
17
|
Jerković I, Kranjac M, Marijanović Z, Šarkanj B, Cikoš AM, Aladić K, Pedisić S, Jokić S. Chemical Diversity of Codium bursa (Olivi) C. Agardh Headspace Compounds, Volatiles, Fatty Acids and Insight into Its Antifungal Activity. Molecules 2019; 24:molecules24050842. [PMID: 30818836 PMCID: PMC6429293 DOI: 10.3390/molecules24050842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
The focus of present study is on Codium bursa collected from the Adriatic Sea. C. bursa volatiles were identified by gas chromatography and mass spectrometry (GC-FID; GC-MS) after headspace solid-phase microextraction (HS-SPME), hydrodistillation (HD), and supercritical CO₂ extraction (SC-CO₂). The headspace composition of dried (HS-D) and fresh (HS-F) C. bursa was remarkably different. Dimethyl sulfide, the major HS-F compound was present in HS-D only as a minor constituent and heptadecane percentage was raised in HS-D. The distillate of fresh C. bursa contained heptadecane and docosane among the major compounds. After air-drying, a significantly different composition of the volatile oil was obtained with (E)-phytol as the predominant compound. It was also found in SC-CO₂ extract of freeze-dried C. bursa (FD-CB) as the major constituent. Loliolide (3.51%) was only identified in SC-CO₂ extract. Fatty acids were determined from FD-CB after derivatisation as methyl esters by GC-FID. The most dominant acids were palmitic (25.4%), oleic (36.5%), linoleic (11.6%), and stearic (9.0%). FD-CB H₂O extract exhibited better antifungal effects against Fusarium spp., while dimethyl sulfoxide (DMSO) extract was better for the inhibition of Penicillium expansum, Aspergillus flavus, and Rhizophus spp. The extracts showed relatively good antifungal activity, especially against P. expansum (for DMSO extract MIC50 was at 50 µg/mL).
Collapse
Affiliation(s)
- Igor Jerković
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia.
| | - Marina Kranjac
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia.
| | | | - Bojan Šarkanj
- Department of Food Technology, University Center Koprivnica, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia.
| | - Ana-Marija Cikoš
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia.
| | - Krunoslav Aladić
- Croatian Veterinary Institute, Branch-Veterinary Institute Vinkovci, Josipa Kozarca 24, 32100 Vinkovci, Croatia.
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Stela Jokić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia.
| |
Collapse
|
18
|
Production of di-(2-ethylhexyl) phthalate by Bacillus subtilis AD35: Isolation, purification, characterization and biological activities. Microb Pathog 2018; 124:89-100. [DOI: 10.1016/j.micpath.2018.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022]
|
19
|
Zhang H, Hua Y, Chen J, Li X, Bai X, Wang H. Organism-derived phthalate derivatives as bioactive natural products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:125-144. [PMID: 30444179 DOI: 10.1080/10590501.2018.1490512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phthalates are widely used in polymer materials as a plasticizer. These compounds possess potent toxic variations depending on their chemical structures. However, a growing body of evidence indicates that phthalate compounds are undoubtedly discovered in secondary metabolites of organisms, including plants, animals and microorganisms. This review firstly summarizes biological sources of various phthalates and their bioactivities reported during the past few decades as well as their environmental toxicities and public health risks. It suggests that these organisms are one of important sources of natural phthalates with diverse profiles of bioactivity and toxicity.
Collapse
Affiliation(s)
- Huawei Zhang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Yi Hua
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Jianwei Chen
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Xiuting Li
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing , China
| | - Xuelian Bai
- c College of Life and Environmental Sciences , Hangzhou Normal University , Hangzhou , China
| | - Hong Wang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| |
Collapse
|
20
|
Xie M, Yan Z, Ren X, Li X, Qin B. Codonopilate A, a Triterpenyl Ester as Main Autotoxin in Cultivated Soil of Codonopsis pilosula (Franch.) Nannf. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2032-2038. [PMID: 28240886 DOI: 10.1021/acs.jafc.6b04320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Codonopilate A (1), a triterpenyl ester, was isolated from monocultivated soil of annual Codonopsis pilosula and identified as the main autotoxin. The yield ratio of codonopilate A in dried soil was calculated as 2.04 μg/g. Other two triterpenoids, taraxeryl acetate (2) and 24-methylenecycloartanol (3), were isolated and identified as well showing weaker autotoxity. This was the first time that the potential allelochemicals and autotoxins in the cultivated soil of Codonopsis pilosula were reported. Accumulation of reactive oxygen species (ROS) induced by the autotoxins in the root tips of Codonopsis pilosula was considered as an important factor for the phytotoxic effect. This work systematically investigates the allelopathic and autotoxic effect of Codonopsis pilosula, and the preliminary autotoxic action mode of the three autotoxins. These findings are helpful to understand the molecular mechanism of autotoxicity and conducive to explore proper ways to degrade the autotoxins and eliminate the replanting problems of Codonopsis pilosula.
Collapse
Affiliation(s)
- Min Xie
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000, PR China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiqiang Yan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000, PR China
| | - Xia Ren
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000, PR China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiuzhuang Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000, PR China
| | - Bo Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000, PR China
| |
Collapse
|
21
|
Bio-Source of di-n-butyl phthalate production by filamentous fungi. Sci Rep 2016; 6:19791. [PMID: 26857605 PMCID: PMC4746570 DOI: 10.1038/srep19791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
Although DBP (di-n-butyl phthalate) is commonly encountered as an artificially-synthesized plasticizer with potential to impair fertility, we confirm that it can also be biosynthesized as microbial secondary metabolites from naturally occurring filamentous fungi strains cultured either in an artificial medium or natural water. Using the excreted crude enzyme from the fungi for catalyzing a variety of substrates, we found that the fungal generation of DBP was largely through shikimic acid pathway, which was assembled by phthalic acid with butyl alcohol through esterification. The DBP production ability of the fungi was primarily influenced by fungal spore density and incubation temperature. This study indicates an important alternative natural waterborne source of DBP in addition to artificial synthesis, which implied fungal contribution must be highlighted for future source control and risk management of DBP.
Collapse
|
22
|
Tong T, Ondov JM, Buchholz BA, VanDerveer MC. Contemporary carbon content of bis (2-ethylhexyl) phthalate in butter. Food Chem 2015. [PMID: 26213077 DOI: 10.1016/j.foodchem.2015.06.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The fraction of naturally produced bis (2-ethylhexyl) phthalate (DEHP), a ubiquitous plasticizer known to contaminate packaged foods, was determined for each of five 1.10 kg samples of unsalted market butter by accelerator mass spectrometry (AMS). After extraction and concentration enrichment with liquid-liquid extraction, flash column chromatography, and preparative-scale high performance liquid chromatography, each sample provided ≈ 250 μg extracts of DEHP with carbon purity ranging from 92.5 ± 1.2% (n = 3, 1σ) to 97.1 ± 0.8% (n = 3, 1σ) as measured with gas chromatography mass spectrometry (GC-MS). After corrections for method blank DEHP, co-eluting compounds, and unidentified carbon, the mean fraction of naturally produced DEHP in butter was determined to be 0.16 ± 0.12 (n = 5, 1σ). To our knowledge, this is the first report of the contemporary fraction of DEHP isolated from market butter in the U.S.
Collapse
Affiliation(s)
- T Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - J M Ondov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - B A Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - M C VanDerveer
- U.S. Food and Drug Administration, University Station, College Park, MD 20740, USA
| |
Collapse
|
23
|
Driche EH, Belghit S, Bijani C, Zitouni A, Sabaou N, Mathieu F, Badji B. A new Streptomyces strain isolated from Saharan soil produces di-(2-ethylhexyl) phthalate, a metabolite active against methicillin-resistant Staphylococcus aureus. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0972-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Anusha P, Thangaviji V, Velmurugan S, Michaelbabu M, Citarasu T. Protection of ornamental gold fish Carassius auratus against Aeromonas hydrophila by treating Ixora coccinea active principles. FISH & SHELLFISH IMMUNOLOGY 2014; 36:485-493. [PMID: 24380832 DOI: 10.1016/j.fsi.2013.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Herbals such as Ixora coccinea, Daemia extensa and Tridax procumbens were selected to screen in vitro antibacterial and immunostimulant activity against the freshwater fish pathogen Aeromonas hydrophila using different organic polar and non-polar solvents. Initial screening results revealed that, ethyl acetate extracts and its purified fraction of I. coccinea was able to suppress the A. hydrophila strains at more than 15 mm of zone of inhibition and positive immunostimulant activity. The purified active fraction, which eluted from H40: EA60 mobile phase was structurally characterized by GC-MS analysis. Two compounds such as Diethyl Phthalate (1,2-Benzene dicarboxylic acid, monobutyl ester) and Dibutyl Phthalate were characterized using NIST database search. In order to study the in vivo immunostimulant influence of the compounds, the crude extracts (ICE) and purified fractions (ICF) were incorporated to the artificial diets at the concentration of 400 mg kg⁻¹ and fed to the ornamental gold fish Carassius auratus for 30 days. After termination of feeding experiment, they were challenged with highly virulent A. hydrophila AHV-1 which was isolated from infected gold fish and studied the survival, specific bacterial load reduction, serum biochemistry, haematology, immunology and histological parameters. The control diet fed fishes succumbed to death within five days at 100% mortality whereas ICE and ICF fed groups survived 60 and 80% respectively after 10 days. The diets also helped to decrease the Aeromonas load after challenge and significantly (P ≤ 0.01) improved the serum albumin, globulin and protein. The diets also helped to increase the RBC and haemoglobin level significantly (P ≤ 0.05) from the control group. Surprisingly the immunological parameters like phagocytic activity, serum bactericidal activity and lysozyme activity were significantly increased (P ≤ 0.001) in the experimental diets. Macrophages and erythrocytes were abundantly expressed in the treated groups and the present work concluded that, the Phthalate derivatives from I. coccinea helps to stimulate the immune system against A. hydrophila challenge in C. auratus.
Collapse
Affiliation(s)
- Paulraj Anusha
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, 629502 Tamilnadu, India
| | - Vijayaragavan Thangaviji
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, 629502 Tamilnadu, India
| | - Subramanian Velmurugan
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, 629502 Tamilnadu, India
| | - Mariavincent Michaelbabu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, 629502 Tamilnadu, India
| | - Thavasimuthu Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, 629502 Tamilnadu, India.
| |
Collapse
|
25
|
Adsul VB, Khatiwora E, Torane RC, Deshpande NR. Isolation and characterization of dibutyl phthalate from leaves of Ipomoea carnea. Chem Nat Compd 2012. [DOI: 10.1007/s10600-012-0362-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Radonić A, Blažević I, Mastelić J, Zekić M, Skočibušić M, Maravić A. Phytochemical analysis and antimicrobial activity of Cardaria draba (L.) Desv. volatiles. Chem Biodivers 2011; 8:1170-81. [PMID: 21674789 DOI: 10.1002/cbdv.201000370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two different volatile isolates from the aerial parts of Cardaria draba (L.) Desv., obtained either by hydrodistillation (Extract I) or by CH(2) Cl(2) extraction subsequent to hydrolysis by exogenous myrosinase (Extract II), were characterized by GC-FID and GC/MS analyses. The main volatiles obtained by hydrodistillation, i.e., 4-(methylsulfanyl)butyl isothiocyanate (1; 28.0%) and 5-(methylsulfanyl)pentanenitrile (2; 13.8%), originated from the degradation of glucoerucin. In Extract I, also volatiles without sulfur and/or nitrogen were identified. These were mostly hexadecanoic acid (10.8%), phytol (10.2%), dibutyl phthalate (4.5%), and some other compounds in smaller percentages. Extract II contained mostly glucosinolate degradation products. They originated from glucoraphanin, viz., 4-(methylsulfinyl)butyl isothiocyanate (3; 69.2%) and 5-(methylsulfinyl)pentanenitrile (4; 4.5%), glucosinalbin, viz., 2-(4-hydroxyphenyl)acetonitrile (5; 7.2%), and glucoerysolin, viz., 4-(methylsulfonyl)butyl isothiocyanate (6; 5.0%). Moreover, the volatile samples were evaluated for their antimicrobial activity using the disc-diffusion method and determining minimum inhibitory concentrations (MIC). All volatile isolates expressed a wide range of growth inhibition activity against both Gram-positive and Gram-negative bacteria and fungi. The MIC values varied between 4 and 128 μg/ml.
Collapse
Affiliation(s)
- Ani Radonić
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, N. Tesle 10/V, HR-21000 Split.
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Huang L, Wen K, Gao X, Liu Y. Hypolipidemic effect of fucoidan from Laminaria japonica in hyperlipidemic rats. PHARMACEUTICAL BIOLOGY 2010; 48:422-6. [PMID: 20645721 DOI: 10.3109/13880200903150435] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, we investigated the effect of fucoidan polysaccharide sulfuric acid ester (FPS) from Laminaria japonica Aresch (Laminariaceae) on hyperlipidemic rats. FPS notably reduced the concentration of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) of hyperlipidemic rats and increased the concentration of high-density lipoprotein cholesterol (HDL-C) and the activities of lipoprotein lipase (LPL), hepatic lipoprotein (HL), and lecithin cholesterol acyltransferase (LCAT).
Collapse
Affiliation(s)
- Ling Huang
- Department of Oncology, Guangdong Provincial People's Hospital, Guangzhou, China
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Essam Abdel-Sattar
- a Department of Natural Products and Alternative Medicine, Faculty of Pharmacy , King Abdulaziz University , Jeddah, Kingdom of Saudi Arabia
| | - Sahar El-Mekkawy
- b Department of Chemistry of Natural Compounds , National Research Center , Dokki, Giza 12622, Egypt
| |
Collapse
|
30
|
Zhang Y, Mu J, Gu X, Zhao C, Wang X, Xie Z. A marine sulfate-reducing bacterium producing multiple antibiotics: biological and chemical investigation. Mar Drugs 2009; 7:341-54. [PMID: 19841718 PMCID: PMC2763104 DOI: 10.3390/md7030341] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 11/16/2022] Open
Abstract
A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biotechnology, School of Environmental and Chemical Engineering, Dalian Jiaotong University, 116028 Dalian, China.
| | | | | | | | | | | |
Collapse
|
31
|
Kavitha A, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y. Production of bioactive metabolites by Nocardia levis MK-VL_113. Lett Appl Microbiol 2009; 49:484-90. [PMID: 19708882 DOI: 10.1111/j.1472-765x.2009.02697.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To isolate and identify the bioactive compounds produced by Nocardia levis MK-VL_113. METHODS AND RESULTS Cultural characteristics of Noc. levis isolated from laterite soils of Guntur region were recorded on International Streptomyces Project media. Morphological studies of the strain through scanning electron microscopy revealed the clear pattern of its hyphal fragmentation into rod-shaped bacilli. Chemical examination of the secondary metabolites of the strain grown on sucrose-tryptone broth led to the isolation of three fractions active against Bacillus cereus. Further analysis of second fraction resulted in the isolation of two active subfractions. Two different phthalate esters, namely, bis-(2-ethylhexyl) phthalate and bis-(5-ethylheptyl) phthalate, were purified from the first active subfraction, and the structural elucidation of these compounds was confirmed on the basis of FT-IR, mass and NMR spectroscopy. The partially purified second subfraction subjected to Gas Chromatography-Mass spectroscopy contained nine components: decanedioic acid; 2,6-piperdione monooxime; 1-eicosanol; beta-1-arabinopyranoside, methyl; cyclopentaneundecanoic acid; hexadecanoic acid; silane, trichloro eicosyl; 1-hexacosanol; and 1,2-dodecanediol. The antimicrobial activity of the bioactive compounds produced by Noc. levis was expressed in terms of minimum inhibitory concentration. CONCLUSIONS The present study clearly revealed that the metabolites of Noc. levis act as bioactive compounds against gram-positive and gram-negative bacteria, yeast and filamentous fungi. It also supports the idea that there are a number of rare actinomycetes remained to be explored for new bioactive compounds. SIGNIFICANCE AND IMPACT OF THE STUDY Metabolites of Noc. levis exhibited antibacterial and antifungal activities. This is the first report of bis-(5-ethylheptyl) phthalate as well as the nine partially purified compounds from actinomycetes. In addition, this is also the first report of bis-(2-ethylhexyl) phthalate from the genus Nocardia.
Collapse
Affiliation(s)
- A Kavitha
- Department of Microbiology, Acharya Nagarjuna University, Guntur, India
| | | | | | | |
Collapse
|
32
|
Li Y, Qian ZJ, Kim SK. Cathepsin B inhibitory activities of three new phthalate derivatives isolated from seahorse, Hippocampus Kuda Bleeler. Bioorg Med Chem Lett 2008; 18:6130-4. [PMID: 18938081 DOI: 10.1016/j.bmcl.2008.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/14/2008] [Accepted: 10/03/2008] [Indexed: 01/11/2023]
Abstract
Three new phthalate acid derivatives, 2,12-diethyl-11-methylhexadecyl 2-ethyl-11-methylhexadecyl phthalate (1), 2-ethyldecyl 2-ethylundecyl phthalate (2), and bis(2-ethyldodecyl) phthalate (3), were isolated from seahorse, Hippocampus Kuda Bleeler, together with a known natural analog bis(2-ethylheptyl) phthalate (4). The structures of these compounds were elucidated mainly by means of the comprehensive analysis of their NMR spectroscopic data. The four phthalate derivatives showed dose-dependent cathepsin B inhibitions activities with IC(50) values of 0.13 mM (1), 0.21 mM (2), 0.18 mM (3), and 0.29 mM (4), respectively.
Collapse
Affiliation(s)
- Yong Li
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | |
Collapse
|