1
|
Martínez-Mercado MA, Cembella AD, Sánchez-Castrejón E, Saavedra-Flores A, Galindo-Sánchez CE, Durán-Riveroll LM. Functional diversity of bacterial microbiota associated with the toxigenic benthic dinoflagellate Prorocentrum. PLoS One 2024; 19:e0306108. [PMID: 39012861 PMCID: PMC11251618 DOI: 10.1371/journal.pone.0306108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
Interactions between bacterial microbiota and epibenthic species of the dinoflagellate Prorocentrum may define the onset and persistence of benthic harmful algal blooms (bHABs). Chemical ecological interactions within the dinoflagellate phycosphere potentially involve a complex variety of organic molecules, metabolites, and toxins, including undefined bioactive compounds. In this study, the bacterial diversity and core members of the dinoflagellate-associated microbiota were defined from 11 strains of three epibenthic Prorocentrum species, representing three geographically disjunct locations within Mexican coastal waters. Microbiota profiles in stable monoclonal Prorocentrum cultures were obtained by sequencing amplicons of the V3-V4 region of the 16S rRNA gene. Thirteen classes of bacteria were identified among dinoflagellate clones, where Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia were consistently dominant. The bacterial community structure exhibited significantly different grouping by the location of origin of dinoflagellate clones. No significant diversity difference was found among free-living or unattached bacteria in the dinoflagellate culture medium (M) compared with those in closer association with the dinoflagellate host cells (H). Twelve taxa were defined as core members of the bacterial assemblage, representing the genera Algiphilus, Cohaesibacter, Labrenzia, Mameliella, Marinobacter, Marivita, Massilia, Muricauda, Roseitalea, and an unclassified member of the Rhodobacteraceae. The core members are inferred to significantly contribute to primary and secondary metabolic functions, but no direct correlation with dinoflagellate toxigenicity was apparent. Overall the bacterial profile and implied gene functionality indicated a suite of positive interactions, suggesting either mutualism or commensalism with the dinoflagellate. The further characterization and interpretation of specific gene functions and interactions between bacteria and dinoflagellates, such as epibenthic members of genus Prorocentrum, are key to understanding their role in toxigenesis and bHAB development.
Collapse
Affiliation(s)
- Miguel A. Martínez-Mercado
- Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada B.C., Ensenada, Mexico
| | - Allan D. Cembella
- Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada B.C., Ensenada, Mexico
- Department of Ecological Chemistry, Alfred-Wegener Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
| | - Edna Sánchez-Castrejón
- Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada B.C., Ensenada, Mexico
| | - Anaid Saavedra-Flores
- Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada B.C., Ensenada, Mexico
| | - Clara E. Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada B.C., Ensenada, Mexico
| | - Lorena M. Durán-Riveroll
- Department of Ecological Chemistry, Alfred-Wegener Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
- CONAHCyT-Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. Ensenada, Mexico
| |
Collapse
|
2
|
Yilmaz M, Foss AJ, Selwood AI, Özen M, Boundy M. Paralytic shellfish toxin producing Aphanizomenon gracile strains isolated from Lake Iznik, Turkey. Toxicon 2018; 148:132-142. [DOI: 10.1016/j.toxicon.2018.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/15/2018] [Accepted: 04/25/2018] [Indexed: 02/01/2023]
|
3
|
Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A. Marine microorganisms as a promising and sustainable source of bioactive molecules. MARINE ENVIRONMENTAL RESEARCH 2017; 128:58-69. [PMID: 27160988 DOI: 10.1016/j.marenvres.2016.05.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
There is an urgent need to discover new drug entities due to the increased incidence of severe diseases as cancer and neurodegenerative pathologies, and reducing efficacy of existing antibiotics. Recently, there is a renewed interest in exploring the marine habitat for new pharmaceuticals also thanks to the advancement in cultivation technologies and in molecular biology techniques. Microorganisms represent a still poorly explored resource for drug discovery. The possibility of obtaining a continuous source of bioactives from marine microorganisms, more amenable to culturing compared to macro-organisms, may be able to meet the challenging demands of pharmaceutical industries. This would enable a more environmentally-friendly approach to drug discovery and overcome the over-utilization of marine resources and the use of destructive collection practices. The importance of the topic is underlined by the number of EU projects funded aimed at improving the exploitation of marine organisms for drug discovery.
Collapse
Affiliation(s)
- G Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - M Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - C Sansone
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - C Lauritano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - N Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy; Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, Naples 80078, Italy
| | - A Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
4
|
Comparative transcriptome analysis of four prymnesiophyte algae. PLoS One 2014; 9:e97801. [PMID: 24926657 PMCID: PMC4057078 DOI: 10.1371/journal.pone.0097801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/23/2014] [Indexed: 11/25/2022] Open
Abstract
Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists.
Collapse
|
5
|
Vilches TS, Norte M, Daranas AH, Fernández JJ. Biosynthetic studies on water-soluble derivative 5c (DTX5c). Mar Drugs 2012; 10:2234-2245. [PMID: 23170080 PMCID: PMC3497019 DOI: 10.3390/md10102234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 11/23/2022] Open
Abstract
The dinoflagellate Prorocentrum belizeanum is responsible for the production of several toxins involved in the red tide phenomenon known as Diarrhetic Shellfish Poisoning (DSP). In this paper we report on the biosynthetic origin of an okadaic acid water-soluble ester derivative, DTX5c, on the basis of the spectroscopical analysis of ¹³C enriched samples obtained by addition of labelled sodium [l-¹³C], [2-¹³C] acetate to artificial cultures of this dinoflagellate.
Collapse
Affiliation(s)
- Tamara S. Vilches
- University Institute for Bio-Organic Chemistry “Antonio González”, University of La Laguna, Av. Astrofísico Francisco Sánchez 2, La Laguna 38206, Spain; (T.S.V.); (M.N.)
| | - Manuel Norte
- University Institute for Bio-Organic Chemistry “Antonio González”, University of La Laguna, Av. Astrofísico Francisco Sánchez 2, La Laguna 38206, Spain; (T.S.V.); (M.N.)
- Department of Organic Chemistry, Faculty of Pharmacy, University of La Laguna, Av. Astrofísico Francisco Sánchez s/n, La Laguna 38206, Spain
| | - Antonio Hernández Daranas
- University Institute for Bio-Organic Chemistry “Antonio González”, University of La Laguna, Av. Astrofísico Francisco Sánchez 2, La Laguna 38206, Spain; (T.S.V.); (M.N.)
- Department of Chemical Engineering and Pharmaceutical Technology, Faculty of Pharmacy, University of La Laguna, Av. Astrofísico Francisco Sánchez s/n, La Laguna 38206, Spain
| | - José J. Fernández
- University Institute for Bio-Organic Chemistry “Antonio González”, University of La Laguna, Av. Astrofísico Francisco Sánchez 2, La Laguna 38206, Spain; (T.S.V.); (M.N.)
- Department of Organic Chemistry, Faculty of Pharmacy, University of La Laguna, Av. Astrofísico Francisco Sánchez s/n, La Laguna 38206, Spain
| |
Collapse
|
6
|
Gallardo-Rodríguez J, Sánchez-Mirón A, García-Camacho F, López-Rosales L, Chisti Y, Molina-Grima E. Bioactives from microalgal dinoflagellates. Biotechnol Adv 2012; 30:1673-84. [PMID: 22884890 DOI: 10.1016/j.biotechadv.2012.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 01/12/2023]
Abstract
Dinoflagellate microalgae are an important source of marine biotoxins. Bioactives from dinoflagellates are attracting increasing attention because of their impact on the safety of seafood and potential uses in biomedical, toxicological and pharmacological research. Here we review the potential applications of dinoflagellate toxins and the methods for producing them. Only sparing quantities of dinoflagellate toxins are generally available and this hinders bioactivity characterization and evaluation in possible applications. Approaches to production of increased quantities of dinoflagellate bioactives are discussed. Although many dinoflagellates are fragile and grow slowly, controlled culture in bioreactors appears to be generally suitable for producing many of the metabolites of interest.
Collapse
|
7
|
Kalaitzis JA, Chau R, Kohli GS, Murray SA, Neilan BA. Biosynthesis of toxic naturally-occurring seafood contaminants. Toxicon 2010; 56:244-58. [DOI: 10.1016/j.toxicon.2009.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 08/20/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
|
8
|
Kellmann R, Stüken A, Orr RJS, Svendsen HM, Jakobsen KS. Biosynthesis and molecular genetics of polyketides in marine dinoflagellates. Mar Drugs 2010; 8:1011-48. [PMID: 20479965 PMCID: PMC2866473 DOI: 10.3390/md8041011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/17/2010] [Accepted: 03/26/2010] [Indexed: 11/20/2022] Open
Abstract
Marine dinoflagellates are the single most important group of algae that produce toxins, which have a global impact on human activities. The toxins are chemically diverse, and include macrolides, cyclic polyethers, spirolides and purine alkaloids. Whereas there is a multitude of studies describing the pharmacology of these toxins, there is limited or no knowledge regarding the biochemistry and molecular genetics involved in their biosynthesis. Recently, however, exciting advances have been made. Expressed sequence tag sequencing studies have revealed important insights into the transcriptomes of dinoflagellates, whereas other studies have implicated polyketide synthase genes in the biosynthesis of cyclic polyether toxins, and the molecular genetic basis for the biosynthesis of paralytic shellfish toxins has been elucidated in cyanobacteria. This review summarises the recent progress that has been made regarding the unusual genomes of dinoflagellates, the biosynthesis and molecular genetics of dinoflagellate toxins. In addition, the evolution of these metabolic pathways will be discussed, and an outlook for future research and possible applications is provided.
Collapse
Affiliation(s)
- Ralf Kellmann
- University of Bergen, Department of Molecular Biology, 5020 Bergen, Norway; E-Mail:
| | - Anke Stüken
- University of Oslo, Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), 0316 Oslo, Norway; E-Mails:
(A.S.);
(K.S.J.)
- University of Oslo, Department of Biology, Microbial Evolution Research Group (MERG), 0316 Oslo, Norway; E-Mail:
| | - Russell J. S. Orr
- University of Oslo, Department of Biology, Microbial Evolution Research Group (MERG), 0316 Oslo, Norway; E-Mail:
| | - Helene M. Svendsen
- University of Bergen, Department of Molecular Biology, 5020 Bergen, Norway; E-Mail:
| | - Kjetill S. Jakobsen
- University of Oslo, Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), 0316 Oslo, Norway; E-Mails:
(A.S.);
(K.S.J.)
| |
Collapse
|
9
|
Vilotijevic I, Jamison TF. Synthesis of marine polycyclic polyethers via endo-selective epoxide-opening cascades. Mar Drugs 2010; 8:763-809. [PMID: 20411125 PMCID: PMC2857356 DOI: 10.3390/md8030763] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/11/2010] [Accepted: 03/18/2010] [Indexed: 11/17/2022] Open
Abstract
The proposed biosynthetic pathways to ladder polyethers of polyketide origin and oxasqualenoids of terpenoid origin share a dramatic epoxide-opening cascade as a key step. Polycyclic structures generated in these biosynthetic pathways display biological effects ranging from potentially therapeutic properties to extreme lethality. Much of the structural complexity of ladder polyether and oxasqualenoid natural products can be traced to these hypothesized cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of ladder polyethers and oxasqualenoid natural products.
Collapse
Affiliation(s)
- Ivan Vilotijevic
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; E-Mail:
(I.V.)
| | - Timothy F. Jamison
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; E-Mail:
(I.V.)
| |
Collapse
|
10
|
Manning SR, La Claire JW. Prymnesins: toxic metabolites of the golden alga, Prymnesium parvum Carter (Haptophyta). Mar Drugs 2010; 8:678-704. [PMID: 20411121 PMCID: PMC2857367 DOI: 10.3390/md8030678] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 11/16/2022] Open
Abstract
Increasingly over the past century, seasonal fish kills associated with toxic blooms of Prymnesium parvum have devastated aquaculture and native fish, shellfish, and mollusk populations worldwide. Protracted blooms of P. parvum can result in major disturbances to the local ecology and extensive monetary losses. Toxicity of this alga is attributed to a collection of compounds known as prymnesins, which exhibit potent cytotoxic, hemolytic, neurotoxic and ichthyotoxic effects. These secondary metabolites are especially damaging to gill-breathing organisms and they are believed to interact directly with plasma membranes, compromising integrity by permitting ion leakage. Several factors appear to function in the activation and potency of prymnesins including salinity, pH, ion availability, and growth phase. Prymnesins may function as defense compounds to prevent herbivory and some investigations suggest that they have allelopathic roles. Since the last extensive review was published, two prymnesins have been chemically characterized and ongoing investigations are aimed at the purification and analysis of numerous other toxic metabolites from this alga. More information is needed to unravel the mechanisms of prymnesin synthesis and the significance of these metabolites. Such work should greatly improve our limited understanding of the physiology and biochemistry of P. parvum and how to mitigate its blooms.
Collapse
Affiliation(s)
- Schonna R Manning
- Section of MCD Biology, The University of Texas at Austin, 1 University Station, A6700, Austin, Texas 78712, USA.
| | | |
Collapse
|
11
|
An T, Winshell J, Scorzetti G, Fell JW, Rein KS. Identification of okadaic acid production in the marine dinoflagellate Prorocentrum rhathymum from Florida Bay. Toxicon 2010; 55:653-7. [PMID: 19735671 PMCID: PMC2813983 DOI: 10.1016/j.toxicon.2009.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 11/17/2022]
Abstract
Extracts of fifty-seven newly isolated strains of dinoflagellates and raphidophytes were screened for protein phosphatase (PP2A) inhibition. Five strains, identified by rDNA sequence analysis as Prorocentrum rhathymum, tested positive and the presence of okadaic acid was confirmed in one strain by HPLC-MS/MS and by HPLC with fluorescence detection and HPLC-MS of the okadaic acid ADAM derivative. Quantitation of the ADAM derivative indicated that the concentration of okadaic acid in the culture medium is 0.153 microg/L.
Collapse
Affiliation(s)
- Tianying An
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8St., Miami, FL 33199, USA
- Center for Oceans and Human Health, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
| | - Jamie Winshell
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8St., Miami, FL 33199, USA
- Center for Oceans and Human Health, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
| | - Gloria Scorzetti
- Center for Oceans and Human Health, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
| | - Jack W. Fell
- Center for Oceans and Human Health, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
| | - Kathleen S. Rein
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8St., Miami, FL 33199, USA
- Center for Oceans and Human Health, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
| |
Collapse
|
12
|
Vilotijevic I, Jamison T. Epoxidöffnungskaskaden zur Synthese polycyclischer Polyether-Naturstoffe. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900600] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
|
14
|
Vilotijevic I, Jamison TF. Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. Angew Chem Int Ed Engl 2009; 48:5250-81. [PMID: 19572302 PMCID: PMC2810545 DOI: 10.1002/anie.200900600] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structural features of polycyclic polyether natural products can, in some cases, be traced to their biosynthetic origin. However in case that are less well understood, only biosynthetic pathways that feature dramatic, yet speculative, epoxide-opening cascades are proposed. We summarize how such epoxide-opening cascade reactions have been used in the synthesis of polycyclic polyethers (see scheme) and related natural products.The group of polycyclic polyether natural products is of special interest owing to the fascinating structure and biological effects displayed by its members. The latter includes potentially therapeutic antibiotic, antifungal, and anticancer properties, and extreme lethality. The polycyclic structural features of this class of compounds can, in some cases, be traced to their biosynthetic origin, but in others that are less well understood, only to proposed biosynthetic pathways that feature dramatic, yet speculative, epoxide-opening cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of polycyclic polyethers and related natural products.
Collapse
Affiliation(s)
- Ivan Vilotijevic
- Department of Chemistry, Massachusettes Institute of Technology, Cambridge, MA 02139 (USA), Fax: (+1) 617-324-0253, , , Homepage: http://web.mit.edu/chemistry/jamison
| | - Timothy F. Jamison
- Department of Chemistry, Massachusettes Institute of Technology, Cambridge, MA 02139 (USA), Fax: (+1) 617-324-0253, , , Homepage: http://web.mit.edu/chemistry/jamison
| |
Collapse
|