1
|
Bertoli A, LoBue A, Quattrini L, Sartini S, Polini B, Carpi S, Frontini FP, Di Giuseppe G, Guella G, Nieri P, La Motta C. Complexing the Marine Sesquiterpene Euplotin C by Means of Cyclodextrin-Based Nanosponges: A Preliminary Investigation. Mar Drugs 2022; 20:682. [PMID: 36355005 PMCID: PMC9692710 DOI: 10.3390/md20110682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/22/2023] Open
Abstract
Euplotin C is a sesquiterpene of marine origin endowed with significant anti-microbial and anti-tumor properties. Despite the promising functional profile, its progress as a novel drug candidate has failed so far, due to its scarce solubility and poor stability in aqueous media, such as biological fluids. Therefore, overcoming these limits is an intriguing challenge for the scientific community. In this work, we synthesized β-cyclodextrin-based nanosponges and investigated their use as colloidal carriers for stably complex euplotin C. Results obtained proved the ability of the carrier to include the natural compound, showing remarkable values of both loading efficiency and capacity. Moreover, it also allowed us to preserve the chemical structure of the loaded compound, which was recovered unaltered once extracted from the complex. Therefore, the use of β-cyclodextrin-based nanosponges represents a viable option to vehiculate euplotin C, thus opening up its possible use as pharmacologically active compound.
Collapse
Affiliation(s)
- Alessandra Bertoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Marine Pharma Centre, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Universitätstraße 1, 40225 Düsseldorf, Germany
| | - Luca Quattrini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Stefania Sartini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Beatrice Polini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Via Paradisa 2, 56124 Pisa, Italy
| | - Sara Carpi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | | | - Graziano Di Giuseppe
- Marine Pharma Centre, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Department of Biology, University of Pisa, Via Luca Ghini 13, 56126 Pisa, Italy
| | - Graziano Guella
- Laboratory of Bioorganic Chemistry, Department of Physic, University of Trento, Via Sommarive 14, 38050 Povo Trento, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Marine Pharma Centre, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Marine Pharma Centre, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
2
|
Analysis of autapomorphic point mutations provides a key for the tangled taxonomic distinction of the closely related species, Euplotes crassus, E. minuta and E. vannus (Ciliophora, Euplotida). Eur J Protistol 2022; 86:125917. [DOI: 10.1016/j.ejop.2022.125917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
|
3
|
Alimenti C, Buonanno F, Di Giuseppe G, Guella G, Luporini P, Ortenzi C, Vallesi A. Bioactive Molecules from Ciliates: Structure, Activity, and Applicative Potential. J Eukaryot Microbiol 2022; 69:e12887. [PMID: 35014102 PMCID: PMC9542385 DOI: 10.1111/jeu.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
Ciliates are a rich source of molecules synthesized to socialize, compete ecologically, and interact with prey and predators. Their isolation from laboratory cultures is often straightforward, permitting the study of their mechanisms of action and their assessment for applied research. This review focuses on three classes of these bioactive molecules: (i) water‐borne, cysteine‐rich proteins that are used as signaling pheromones in self/nonself recognition phenomena; (ii) cell membrane‐associated lipophilic terpenoids that are used in interspecies competitions for habitat colonization; (iii) cortical granule‐associated molecules of various chemical nature that primarily serve offence/defense functions.
Collapse
Affiliation(s)
- C Alimenti
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, (MC), Italy
| | - F Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100, Macerata, Italy
| | - G Di Giuseppe
- Unit of Protistology, Department of Biology, University of Pisa, 56126 Pisa, Italy; MARinePHARMA Center, University of Pisa, Italy
| | - G Guella
- Bioorganic Chemistry Lab, Department of Physics, University of Trento, 38123, Povo, Trento, Italy
| | - P Luporini
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, (MC), Italy
| | - C Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100, Macerata, Italy
| | - A Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, (MC), Italy
| |
Collapse
|
4
|
Anti-leishmanial compounds from microbial metabolites: a promising source. Appl Microbiol Biotechnol 2021; 105:8227-8240. [PMID: 34625819 DOI: 10.1007/s00253-021-11610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Leishmania is a complex disease caused by the protozoan parasites and transmitted by female phlebotomine sandfly. The disease affects some of the poorest people on earth with an estimated 700,000 to 1 million new cases annually. The current treatment for leishmaniasis is toxic, long, and limited, in view of the high resistance rate presented by the parasite, necessitating new perspectives for treatment. The discovery of new compounds with different targets can be a hope to make the treatment more efficient. Microbial metabolites and their structural analogues with enormous scaffold diversity and structural complexity have historically played a key role in drug discovery. We found thirty-nine research articles published between 1999 and 2021 in the scientific database (PubMed, Science Direct) describing microbes and their metabolites with activity against leishmanial parasites which is the focus of this review. KEY POINTS: • Leishmania affects the poorest regions of the globe • Current treatments for leishmaniasis are toxic and of limited efficacy • Microbial metabolites are potential sources of antileishmania drugs.
Collapse
|
5
|
Fu J, Tsapy Takia IR, Chen P, Liu W, Jiang C, Yao W, Zeng X, Wang Y, Han X. Synthesis of 2-chromanone-fused [3.2.0] bicycles through a phosphine-mediated tandem [3 + 2] cyclization/intramolecular Wittig reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01013a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A phosphine-mediated tandem [3 + 2] cyclization/intramolecular Wittig reaction of alkynone is described. 2-Chromanone-fused bicyclo[3.2.0]heptenones were synthesized in moderate to high yields with remarkably high regio- and diastereoselectivities.
Collapse
Affiliation(s)
- Junfeng Fu
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Ingrid Rakielle Tsapy Takia
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Peng Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Wei Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Chengjun Jiang
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yongjiang Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Xiaoyu Han
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| |
Collapse
|
6
|
Buonanno F, Catalani E, Cervia D, Cimarelli C, Marcantoni E, Ortenzi C. Natural Function and Structural Modification of Climacostol, a Ciliate Secondary Metabolite. Microorganisms 2020; 8:E809. [PMID: 32471240 PMCID: PMC7356801 DOI: 10.3390/microorganisms8060809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
The review highlights the main results of two decades of research on climacostol (5-[(2Z)-non-2-en-1-yl]benzene-1,3-diol), the resorcinolic lipid produced and used by the ciliated protozoan Climacostomum virens for chemical defense against a wide range of predators, and to assist its carnivorous feeding. After the first studies on the physiological function of climacostol, the compound and some analogues were chemically synthesized, thus allowing us to explore both its effect on different prokaryotic and eukaryotic biological systems, and the role of its relevant structural traits. In particular, the results obtained in the last 10 years indicate climacostol is an effective antimicrobial and anticancer agent, bringing new clues to the attempt to design and synthesize additional novel analogues that can increase or optimize its pharmacological properties.
Collapse
Affiliation(s)
- Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy;
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (D.C.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (D.C.)
| | - Cristina Cimarelli
- School of Science and Technology, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy; (C.C.); (E.M.)
| | - Enrico Marcantoni
- School of Science and Technology, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy; (C.C.); (E.M.)
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy;
| |
Collapse
|
7
|
Hanif N, Murni A, Tanaka C, Tanaka J. Marine Natural Products from Indonesian Waters. Mar Drugs 2019; 17:md17060364. [PMID: 31248122 PMCID: PMC6627775 DOI: 10.3390/md17060364] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Natural products are primal and have been a driver in the evolution of organic chemistry and ultimately in science. The chemical structures obtained from marine organisms are diverse, reflecting biodiversity of genes, species and ecosystems. Biodiversity is an extraordinary feature of life and provides benefits to humanity while promoting the importance of environment conservation. This review covers the literature on marine natural products (MNPs) discovered in Indonesian waters published from January 1970 to December 2017, and includes 732 original MNPs, 4 structures isolated for the first time but known to be synthetic entities, 34 structural revisions, 9 artifacts, and 4 proposed MNPs. Indonesian MNPs were found in 270 papers from 94 species, 106 genera, 64 families, 32 orders, 14 classes, 10 phyla, and 5 kingdoms. The emphasis is placed on the structures of organic molecules (original and revised), relevant biological activities, structure elucidation, chemical ecology aspects, biosynthesis, and bioorganic studies. Through the synthesis of past and future data, huge and partly undescribed biodiversity of marine tropical invertebrates and their importance for crucial societal benefits should greatly be appreciated.
Collapse
Affiliation(s)
- Novriyandi Hanif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia.
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor 16128, Indonesia.
| | - Chiaki Tanaka
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Junichi Tanaka
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
8
|
Dysfunctional autophagy induced by the pro-apoptotic natural compound climacostol in tumour cells. Cell Death Dis 2018; 10:10. [PMID: 30584259 PMCID: PMC6315039 DOI: 10.1038/s41419-018-1254-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023]
Abstract
Autophagy occurs at a basal level in all eukaryotic cells and may support cell survival or activate death pathways. Due to its pathophysiologic significance, the autophagic machinery is a promising target for the development of multiple approaches for anti-neoplastic agents. We have recently described the cytotoxic and pro-apoptotic mechanisms, targeting the tumour suppressor p53, of climacostol, a natural product of the ciliated protozoan Climacostomum virens. We report here on how climacostol regulates autophagy and the involvement of p53-dependent mechanisms. Using both in vitro and in vivo techniques, we show that climacostol potently and selectively impairs autophagy in multiple tumour cells that are committed to die by apoptosis. In particular, in B16-F10 mouse melanomas climacostol exerts a marked and sustained accumulation of autophagosomes as the result of dysfunctional autophagic degradation. We also provide mechanistic insights showing that climacostol affects autophagosome turnover via p53-AMPK axis, although the mTOR pathway unrelated to p53 levels plays a role. In particular, climacostol activated p53 inducing the upregulation of p53 protein levels in the nuclei through effects on p53 stability at translational level, as for instance the phosphorylation at Ser15 site. Noteworthy, AMPKα activation was the major responsible of climacostol-induced autophagy disruption in the absence of a key role regulating cell death, thus indicating that climacostol effects on autophagy and apoptosis are two separate events, which may act independently on life/death decisions of the cell. Since the activation of p53 system is at the molecular crossroad regulating both the anti-autophagic action of climacostol and its role in the apoptosis induction, it might be important to explore the dual targeting of autophagy and apoptosis with agents acting on p53 for the selective killing of tumours. These findings also suggest the efficacy of ciliate bioactive molecules to identify novel lead compounds in drug discovery and development.
Collapse
|
9
|
Anticancer Activity of Euplotin C, Isolated from the Marine Ciliate Euplotes crassus, Against Human Melanoma Cells. Mar Drugs 2018; 16:md16050166. [PMID: 29772645 PMCID: PMC5983297 DOI: 10.3390/md16050166] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is the most serious type of skin cancer, so new cytotoxic weapons against novel targets in melanoma are of great interest. Euplotin C (EC), a cytotoxic secondary metabolite of the marine ciliate Euplotes crassus, was evaluated in the present study on human cutaneous melanoma cells to explore its anti-melanoma activity and to gain more insight into its mechanism of action. EC exerted a marked cytotoxic effect against three different human melanoma cell lines (A375, 501Mel and MeWo) with a potency about 30-fold higher than that observed in non-cancer cells (HDFa cells). A pro-apoptotic activity and a decrease in melanoma cell migration by EC were also observed. At the molecular level, the inhibition of the Erk and Akt pathways, which control many aspects of melanoma aggressiveness, was shown. EC cytotoxicity was antagonized by dantrolene, a ryanodine receptor (RyR) antagonist, in a concentration-dependent manner. A role of RyR as a direct target of EC was also suggested by molecular modelling studies. In conclusion, our data provide the first evidence of the anti-melanoma activity of EC, suggesting it may be a promising new scaffold for the development of selective activators of RyR to be used for the treatment of melanoma and other cancer types.
Collapse
|
10
|
Buonanno F, Anesi A, Guella G, Ortenzi C. Blepharismins used for chemical defense in two ciliate species of the genus Blepharisma, B. stoltei and B. undulans (Ciliophora: Heterotrichida). THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1353145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- F. Buonanno
- Laboratory of Protistology and Biology Education, Department of ECHT, University of Macerata , Italy
| | - A. Anesi
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento , Italy
| | - G. Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento , Italy
- Biophysical Institute, CNR , Italy
| | - C. Ortenzi
- Laboratory of Protistology and Biology Education, Department of ECHT, University of Macerata , Italy
| |
Collapse
|
11
|
Chalapala S, Bandi R, Bhumireddy Chinnachennaiahgari V, Perali RS. A convenient synthesis of carbohydrate derived furo/pyrano[2,3-b]pyrans from 2-hydroxymethyl glycals. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Buonanno F, Anesi A, Giuseppe GD, Guella G, Ortenzi C. Chemical Defense by Erythrolactones in the Euryhaline Ciliated Protist, Pseudokeronopsis erythrina. Zoolog Sci 2017; 34:42-51. [PMID: 28148211 DOI: 10.2108/zs160123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pseudokeronopsis erythrina produces three new secondary metabolites, erythrolactones A2, B2 and C2, and their respective sulfate esters (A1, B1, C1), the structures of which have been recently elucidated on the basis of NMR spectroscopic data coupled to high resolution mass measurements (HR-MALDI-TOF). An analysis of the discharge of the protozoan pigment granules revealed that the non-sulfonated erythrolactones are exclusively stored in these cortical organelles, which are commonly used by a number of ciliates as chemical weapons in offense/defense interactions with prey and predators. We evaluated the toxic activity of pigment granule discharge on a panel of free-living ciliates and micro-invertebrates, and the activity of each single purified erythrolactone on three ciliate species. We also observed predator-prey interactions of P. erythrina with unicellular and multicellular predators. Experimental results confirm that only P. erythrina cells with discharged pigment granules were preferentially or exclusively hunted and eaten by at least some of its predators, whereas almost all intact (fully pigmented) cells remained alive. Our results indicate that erythrolactones are very effective as a chemical defense in P. erythrina.
Collapse
Affiliation(s)
- Federico Buonanno
- 1 Laboratory of Protistology and Biology Education, Department of ECHT, University of Macerata, Piazzale Bertelli, 1, 62100 Macerata, Italy
| | - Andrea Anesi
- 2 Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy
| | - Graziano Di Giuseppe
- 3 Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy
| | - Graziano Guella
- 2 Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy.,4 Biophysical Institute, CNR, Via alla Cascata 56/C, 38123 Povo (Trento), Italy
| | - Claudio Ortenzi
- 1 Laboratory of Protistology and Biology Education, Department of ECHT, University of Macerata, Piazzale Bertelli, 1, 62100 Macerata, Italy
| |
Collapse
|
13
|
Catalani E, Proietti Serafini F, Zecchini S, Picchietti S, Fausto AM, Marcantoni E, Buonanno F, Ortenzi C, Perrotta C, Cervia D. Natural products from aquatic eukaryotic microorganisms for cancer therapy: Perspectives on anti-tumour properties of ciliate bioactive molecules. Pharmacol Res 2016; 113:409-420. [PMID: 27650755 DOI: 10.1016/j.phrs.2016.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 11/27/2022]
Abstract
Several modern drugs, including those for cancer therapy, have been isolated from natural sources, are based on natural products and its derivatives, or mime natural products. Some of them are in clinical use, others in clinical trials. The success of natural products in drug discovery is related to their biochemical characteristics and to the technologic methods used to study their feature. Natural compounds may acts as chemo-preventive agents and as factors that increase therapeutic efficacy of existing drugs, thus overcoming cancer cell drug resistance that is the main factor determining the failure in conventional chemotherapy. Water environment, because of its physical and chemical conditions, shows an extraordinary collection of natural biological substances with an extensive structural and functional diversity. The isolation of bioactive molecules has been reported from a great variety of aquatic organisms; however, the therapeutic application of molecules from eukaryotic microorganisms remains inadequately investigated and underexploited on a systematic basis. Herein we describe the biological activities in mammalian cells of selected substances isolated from ciliates, free-living protozoa common almost everywhere there is water, focusing on their anti-tumour actions and their possible therapeutic activity. In particular, we unveil the cellular and molecular machine mediating the effects of cell type-specific signalling protein pheromone Er-1 and secondary metabolites, i.e. euplotin C and climacostol, in cancer cells. To support the feasibility of climacostol-based approaches, we also present novel findings and report additional mechanisms of action using both in vitro and in vivo models of mouse melanomas, with the scope of highlighting new frontiers that can be explored also in a therapeutic perspective. The high skeletal chemical difference of ciliate compounds, their sustainability and availability, also through the use of new organic synthesis/modifications processes, and the results obtained so far in biological studies provide a rationale to consider some of them a potential resource for the design of new anti-cancer drugs.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Francesca Proietti Serafini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Silvia Zecchini
- Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, Milano, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Enrico Marcantoni
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, Italy
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Italy
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Italy.
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Italy.
| |
Collapse
|
14
|
Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms. Angew Chem Int Ed Engl 2016; 55:4156-86. [PMID: 26836448 PMCID: PMC4865016 DOI: 10.1002/anie.201507549] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022]
Abstract
Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information.
Collapse
Affiliation(s)
- Martin Büschleb
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C. P. 6128, Montréal, Qc, H3C 3J7, Canada
| | - Stéphane Dorich
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C. P. 6128, Montréal, Qc, H3C 3J7, Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C. P. 6128, Montréal, Qc, H3C 3J7, Canada.
| | - Daniel Tao
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| | - Kyle B Schenthal
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| | - Larry E Overman
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA, 92697-2025, USA
| |
Collapse
|
15
|
Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Strategien für die Synthese von Naturstoffen mit benachbarten stereogenen quartären Kohlenstoffatomen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201507549] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Büschleb
- Department of Chemistry; Université de Montréal, Station Centre-Ville; C. P. 6128 Montréal Qc H3C 3J7 Kanada
| | - Stéphane Dorich
- Department of Chemistry; Université de Montréal, Station Centre-Ville; C. P. 6128 Montréal Qc H3C 3J7 Kanada
| | - Stephen Hanessian
- Department of Chemistry; Université de Montréal, Station Centre-Ville; C. P. 6128 Montréal Qc H3C 3J7 Kanada
| | - Daniel Tao
- Department of Chemistry; University of California; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Kyle B. Schenthal
- Department of Chemistry; University of California; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - Larry E. Overman
- Department of Chemistry; University of California; 1102 Natural Sciences II Irvine CA 92697-2025 USA
| |
Collapse
|
16
|
Buonanno F, Ortenzi C. Cold-shock based method to induce the discharge of extrusomes in ciliated protists and its efficiency. J Basic Microbiol 2015; 56:586-90. [DOI: 10.1002/jobm.201500438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/25/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Federico Buonanno
- Laboratory of Protistology, Biology Education; University of Macerata; P. le Bertelli 1 62100 Macerata Italy
| | - Claudio Ortenzi
- Laboratory of Protistology, Biology Education; University of Macerata; P. le Bertelli 1 62100 Macerata Italy
| |
Collapse
|
17
|
Buonanno F, Anesi A, Guella G, Kumar S, Bharti D, La Terza A, Quassinti L, Bramucci M, Ortenzi C. Chemical Offense by Means of Toxicysts in the Freshwater Ciliate, Coleps hirtus. J Eukaryot Microbiol 2014; 61:293-304. [DOI: 10.1111/jeu.12106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Federico Buonanno
- Laboratory of Protistology and Biology Education; University of Macerata; P.le Bertelli 1 62100 Macerata Italy
| | - Andrea Anesi
- Department of Physics; Bioorganic Chemistry Laboratory; University of Trento; 38123 Povo Trento Italy
| | - Graziano Guella
- Department of Physics; Bioorganic Chemistry Laboratory; University of Trento; 38123 Povo Trento Italy
| | - Santosh Kumar
- School of Environmental Sciences; Section of Animal and Molecular Ecology; University of Camerino; Via Gentile III da Varano 62032 Camerino (MC) Italy
- Ciliate Biology Laboratory; Sri Guru Tegh Bahadur Khalsa College; University of Delhi; Delhi 110007 India
| | - Daizy Bharti
- School of Environmental Sciences; Section of Animal and Molecular Ecology; University of Camerino; Via Gentile III da Varano 62032 Camerino (MC) Italy
- Ciliate Biology Laboratory; Sri Guru Tegh Bahadur Khalsa College; University of Delhi; Delhi 110007 India
| | - Antonietta La Terza
- School of Environmental Sciences; Section of Animal and Molecular Ecology; University of Camerino; Via Gentile III da Varano 62032 Camerino (MC) Italy
| | - Luana Quassinti
- Section of Physiology; School of Pharmacy; University of Camerino; Via Gentile III da Varano 62032 Camerino (MC) Italy
| | - Massimo Bramucci
- Section of Physiology; School of Pharmacy; University of Camerino; Via Gentile III da Varano 62032 Camerino (MC) Italy
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education; University of Macerata; P.le Bertelli 1 62100 Macerata Italy
| |
Collapse
|
18
|
Lamari N, Ruggiero MV, d’Ippolito G, Kooistra WHCF, Fontana A, Montresor M. Specificity of lipoxygenase pathways supports species delineation in the marine diatom genus Pseudo-nitzschia. PLoS One 2013; 8:e73281. [PMID: 24014077 PMCID: PMC3754938 DOI: 10.1371/journal.pone.0073281] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/18/2013] [Indexed: 01/08/2023] Open
Abstract
Oxylipins are low-molecular weight secondary metabolites derived from the incorporation of oxygen into the carbon chains of polyunsaturated fatty acids (PUFAs). Oxylipins are produced in many prokaryotic and eukaryotic lineages where they are involved in a broad spectrum of actions spanning from stress and defense responses, regulation of growth and development, signaling, and innate immunity. We explored the diversity in oxylipin patterns in the marine planktonic diatom Pseudo-nitzschia. This genus includes several species only distinguishable with the aid of molecular markers. Oxylipin profiles of cultured strains were obtained by reverse phase column on a liquid chromatograph equipped with UV photodiode detector and q-ToF mass spectrometer. Lipoxygenase compounds were mapped on phylogenies of the genus Pseudo-nitzschia inferred from the nuclear encoded hyper-variable region of the LSU rDNA and the plastid encoded rbcL. Results showed that the genus Pseudo-nitzschia exhibits a rich and varied lipoxygenase metabolism of eicosapentaenoic acid (EPA), with a high level of specificity for oxylipin markers that generally corroborated the genotypic delineation, even among genetically closely related cryptic species. These results suggest that oxylipin profiles constitute additional identification tools for Pseudo-nitzschia species providing a functional support to species delineation obtained with molecular markers and morphological traits. The exploration of the diversity, patterns and plasticity of oxylipin production across diatom species and genera will also provide insights on the ecological functions of these secondary metabolites and on the selective pressures driving their diversification.
Collapse
Affiliation(s)
- Nadia Lamari
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Maria Valeria Ruggiero
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Napoli, Italy
- * E-mail:
| | - Giuliana d’Ippolito
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Wiebe H. C. F. Kooistra
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Marina Montresor
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
19
|
Cervia D, Catalani E, Belardinelli MC, Perrotta C, Picchietti S, Alimenti C, Casini G, Fausto AM, Vallesi A. The protein pheromone Er-1 of the ciliate Euplotes raikovi stimulates human T-cell activity: Involvement of interleukin-2 system. Exp Cell Res 2013; 319:56-67. [DOI: 10.1016/j.yexcr.2012.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/12/2012] [Accepted: 10/13/2012] [Indexed: 12/24/2022]
|
20
|
Guella G, Callone E, Mancini I, Dini F, Di Giuseppe G. Diterpenoids from Marine Ciliates: Chemical Polymorphism of Euplotes rariseta. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Abstract
Covering: 2010. Previous review: Nat. Prod. Rep., 2011, 28, 196. This review covers the literature published in 2010 for marine natural products, with 895 citations (590 for the period January to December 2010) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1003 for 2010), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
22
|
|