1
|
Wang S, Li X, Yang W, Huang R. Exploring the secrets of marine microorganisms: Unveiling secondary metabolites through metagenomics. Microb Biotechnol 2024; 17:e14533. [PMID: 39075735 PMCID: PMC11286668 DOI: 10.1111/1751-7915.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Marine microorganisms are increasingly recognized as primary producers of marine secondary metabolites, drawing growing research interest. Many of these organisms are unculturable, posing challenges for study. Metagenomic techniques enable research on these unculturable microorganisms, identifying various biosynthetic gene clusters (BGCs) related to marine microbial secondary metabolites, thereby unveiling their secrets. This review comprehensively analyses metagenomic methods used in discovering marine microbial secondary metabolites, highlighting tools commonly employed in BGC identification, and discussing the potential and challenges in this field. It emphasizes the key role of metagenomics in unveiling secondary metabolites, particularly in marine sponges and tunicates. The review also explores current limitations in studying these metabolites through metagenomics, noting how long-read sequencing technologies and the evolution of computational biology tools offer more possibilities for BGC discovery. Furthermore, the development of synthetic biology allows experimental validation of computationally identified BGCs, showcasing the vast potential of metagenomics in mining marine microbial secondary metabolites.
Collapse
Affiliation(s)
- Shaoyu Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdaoShandongChina
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission TechnologyShandong UniversityQingdaoChina
| | - Xinyan Li
- Institute of Marine Science and TechnologyShandong UniversityQingdaoShandongChina
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission TechnologyShandong UniversityQingdaoChina
| | - Weiqin Yang
- School of Computer Science and TechnologyShandong UniversityQingdaoShandongChina
| | - Ranran Huang
- Institute of Marine Science and TechnologyShandong UniversityQingdaoShandongChina
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission TechnologyShandong UniversityQingdaoChina
- Global Ocean Negative Carbon Emissions (ONCE) Program AllianceQingdaoChina
| |
Collapse
|
2
|
Anbarasu K. Marine sponges: a rich source of novel bioactive compounds for pharmaceutical applications. Nat Prod Res 2024:1-2. [PMID: 39010698 DOI: 10.1080/14786419.2024.2380011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Affiliation(s)
- Krishnan Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Yang P, Liu Y, Tong ZW, Huang QH, Xie XH, Mao SY, Ding JH, Lu M, Tan RX, Hu G. The marine-derived compound TAG alleviates Parkinson's disease by restoring RUBCN-mediated lipid metabolism homeostasis. Acta Pharmacol Sin 2024; 45:1366-1380. [PMID: 38538717 PMCID: PMC11192910 DOI: 10.1038/s41401-024-01259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/29/2024] [Indexed: 06/23/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its prevalence is increasing. Currently, no effective therapies for PD exist. Marine-derived natural compounds are considered important resources for the discovery of new drugs due to their distinctive structures and diverse activities. In this study, tetrahydroauroglaucin (TAG), a polyketide isolated from a marine sponge, was found to have notable neuroprotective effects on MPTP/MPP+-induced neurotoxicity. RNA sequencing analysis and metabolomics revealed that TAG significantly improved lipid metabolism disorder in PD models. Further investigation indicated that TAG markedly decreased the accumulation of lipid droplets (LDs), downregulated the expression of RUBCN, and promoted autophagic flux. Moreover, conditional knockdown of Rubcn notably attenuated PD-like symptoms and the accumulation of LDs, accompanied by blockade of the neuroprotective effect of TAG. Collectively, our results first indicated that TAG, a promising PD therapeutic candidate, could suppress the accumulation of LDs through the RUBCN-autophagy pathway, which highlighted a novel and effective strategy for PD treatment.
Collapse
Affiliation(s)
- Pei Yang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi-Wu Tong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qian-Hui Huang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xia-Hong Xie
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi-Yu Mao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China.
| | - Ren-Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211116, China.
| |
Collapse
|
4
|
Wang X, Yang C, Zhang X, Ye C, Liu W, Wang C. Marine natural products: potential agents for depression treatment. Acta Biochim Pol 2024; 71:12569. [PMID: 38812493 PMCID: PMC11135343 DOI: 10.3389/abp.2024.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/31/2024]
Abstract
Depression is a common psychiatric disorder. Due to the disadvantages of current clinical drugs, including poor efficacy and unnecessary side effects, research has shifted to novel natural products with minimal or no adverse effects as therapeutic alternatives. The ocean is a vast ecological home, with a wide variety of organisms that can produce a large number of natural products with unique structures, some of which have neuroprotective effects and are a valuable source for the development of new drugs for depression. In this review, we analyzed preclinical and clinical studies of natural products derived from marine organisms with antidepressant potential, including the effects on the pathophysiology of depression, and the underlying mechanisms of these effects. It is expected to provide a reference for the development of new antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengmin Wang
- Department of Psychiatry, Shenzhen Longgang Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
5
|
Vu Luu P, Minh Nguyen H, Minh Phan P, Duy Vo A, Ton-Nu HL. Testusterol, a new sterol of the sponge species Xestospongia testudinaria from Phu Quoc island, Vietnam. Nat Prod Res 2024:1-9. [PMID: 38600838 DOI: 10.1080/14786419.2024.2340757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
A new sterol, named testusterol (1), and five known compounds (2-6) were isolated from the n-hexane and dichloromethane extracts of the sponge species Xestospongia testudinaria. Their chemical structures were elucidated based on extensive spectroscopic analyses (1D, 2D NMR, ESIMS and HRESIMS) and comparison with published data. The results of in vitro test (utilizing brine shrimp Artemia salina LEACH) showed that three extracts ethanol, dichloromethane, and ethanol/water, significantly inhibited Artemia salina with LC50 values ranging from 6.09 to 16.83 µg/mL. Remarkably, the new compound 1 exhibited potent inhibition against both Gram-positive (Staphyloccocus aureus, Bacillus subtilis, Lactobacillus fermentum), and Gram-negative (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa) bacteria species, with IC50 values of less than 12.0 nM and MIC ranging from 4.70 to 75.23 nM as determined by the broth-microdilution assay.
Collapse
Affiliation(s)
- Phuong Vu Luu
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuc Minh Phan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - An Duy Vo
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Huong Lien Ton-Nu
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| |
Collapse
|
6
|
Rai T, Kaushik N, Malviya R, Sharma PK. A review on marine source as anticancer agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:415-451. [PMID: 37675579 DOI: 10.1080/10286020.2023.2249825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
This review investigates the potential of natural compounds obtained from marine sources for the treatment of cancer. The oceans are believed to contain physiologically active compounds, such as alkaloids, nucleosides, macrolides, and polyketides, which have shown promising effects in slowing human tumor cells both in vivo and in vitro. Various marine species, including algae, mollusks, actinomycetes, fungi, sponges, and soft corals, have been studied for their bioactive metabolites with diverse chemical structures. The review explores the therapeutic potential of various marine-derived substances and discusses their possible applications in cancer treatment.
Collapse
Affiliation(s)
- Tamanna Rai
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Niranjan Kaushik
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
7
|
Szabó D, Crowe A, Mamotte C, Strappe P. Natural products as a source of Coronavirus entry inhibitors. Front Cell Infect Microbiol 2024; 14:1353971. [PMID: 38449827 PMCID: PMC10915212 DOI: 10.3389/fcimb.2024.1353971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The COVID-19 pandemic has had a significant and lasting impact on the world. Four years on, despite the existence of effective vaccines, the continuous emergence of new SARS-CoV-2 variants remains a challenge for long-term immunity. Additionally, there remain few purpose-built antivirals to protect individuals at risk of severe disease in the event of future coronavirus outbreaks. A promising mechanism of action for novel coronavirus antivirals is the inhibition of viral entry. To facilitate entry, the coronavirus spike glycoprotein interacts with angiotensin converting enzyme 2 (ACE2) on respiratory epithelial cells. Blocking this interaction and consequently viral replication may be an effective strategy for treating infection, however further research is needed to better characterize candidate molecules with antiviral activity before progressing to animal studies and clinical trials. In general, antiviral drugs are developed from purely synthetic compounds or synthetic derivatives of natural products such as plant secondary metabolites. While the former is often favored due to the higher specificity afforded by rational drug design, natural products offer several unique advantages that make them worthy of further study including diverse bioactivity and the ability to work synergistically with other drugs. Accordingly, there has recently been a renewed interest in natural product-derived antivirals in the wake of the COVID-19 pandemic. This review provides a summary of recent research into coronavirus entry inhibitors, with a focus on natural compounds derived from plants, honey, and marine sponges.
Collapse
Affiliation(s)
- Dávid Szabó
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Andrew Crowe
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Cyril Mamotte
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Padraig Strappe
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| |
Collapse
|
8
|
Kim HJ, Park JG, Moon KS, Jung SB, Kwon YM, Kang NS, Kim JH, Nam SJ, Choi G, Baek YB, Park SI. Identification and characterization of a marine bacterium extract from Mameliella sp. M20D2D8 with antiviral effects against influenza A and B viruses. Arch Virol 2024; 169:41. [PMID: 38326489 PMCID: PMC10850258 DOI: 10.1007/s00705-024-05979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/24/2023] [Indexed: 02/09/2024]
Abstract
Despite significant improvements in vaccines and chemotherapeutic drugs, pathogenic RNA viruses continue to have a profound impact on the global economy and pose a serious threat to animal and human health through emerging and re-emerging outbreaks of diseases. To overcome the challenge of viral adaptation and evolution, increased vigilance is required. Particularly, antiviral drugs derived from new, natural sources provide an attractive strategy for controlling problematic viral diseases. In this antiviral study, we discovered a previously unknown bacterium, Mameliella sp. M20D2D8, by conducting an antiviral screening of marine microorganisms. An extract from M20D2D8 exhibited antiviral activity with low cytotoxicity and was found to be effective in vitro against multiple influenza virus strains: A/PR8 (IC50 = 2.93 µg/mL, SI = 294.85), A/Phil82 (IC50 = 1.42 µg/mL, SI = 608.38), and B/Yamagata (IC50 = 1.59 µg/mL, SI = 543.33). The antiviral action was found to occur in the post-entry stages of viral replication and to suppress viral replication by inducing apoptosis in infected cells. Moreover, it efficiently suppressed viral genome replication, protein synthesis, and infectivity in MDCK and A549 cells. Our findings highlight the antiviral capabilities of a novel marine bacterium, which could potentially be useful in the development of drugs for controlling viral diseases.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Zoonotic Diseases, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyeong-Seo Moon
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Bin Jung
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Yong Min Kwon
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Nam Seon Kang
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Jeong-Hyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Grace Choi
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea.
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
9
|
Ghosh S, Singha PS, Das LK, Ghosh D. Systematic Review on Major Antiviral Phytocompounds from Common Medicinal Plants against SARS-CoV-2. Med Chem 2024; 20:613-629. [PMID: 38317467 DOI: 10.2174/0115734064262843231120051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Viral infections are rising around the globe and with evolving virus types and increasing varieties of viral invasions; the human body is developing antimicrobial resistance continuously. This is making the fight of mankind against viruses weak and unsecured. On the other hand, changing lifestyle, globalization and human activities adversely affecting the environment are opening up risks for new viral predominance on human race. In this context the world has witnessed the pandemic of the human Coronavirus disease (COVID-19) recently. The disease is caused by the Coronavirus namely Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2). METHODS AND MATERIALS Developing potential and effective vaccine is also time consuming and challenging. The huge resource of plants around us has rich source of potent antiviral compounds. Some of these molecules may serve as tremendously potent lead molecules whose slight structural modifications may give us highly bioactive antiviral derivatives of phytocompounds. Every geographical region is rich in unique plant biodiversity and hence every corner of the world with rich plant biodiversity can serve as abode for potential magical phytocompounds most of which have not been extensively explored for development of antiviral drug formulations against various viruses like the HIV, HPV etc., and the Coronavirus, also known as SARS-CoV-2 which causes the disease COVID-19. RESULTS Several phytocompounds from various medicinal plants have already been screened using in silico tools and some of them have yielded promising results establishing themselves as potent lead molecules for development of drugs against the highly mutating SARS-CoV-2 virus and thus these phytocompounds may be beneficial in treating COVID-19 and help human to win the life threatening battle against the deadly virus. CONCLUSION The best advantage is that these phytocompounds being derived from nature in most of the cases, come with minimum or no side effects compared to that of chemically synthesized conventional bioactive compounds and are indigenously available hence are the source of cost effective drug formulations with strong therapeutic potentials.
Collapse
Affiliation(s)
- Suvendu Ghosh
- Department of Physiology, Hooghly Mohsin College, Chinsura, Hooghly 712 101, West Bengal, India
| | - Partha Sarathi Singha
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Lakshmi Kanta Das
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Debosree Ghosh
- Department of Physiology, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| |
Collapse
|
10
|
Li L, Zhang Y, Chen Z, Yao R, Xu Z, Xu C, He F, Pei H, Hao C. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of vidarabine against rotenone-induced neural cell injury. Heliyon 2023; 9:e21695. [PMID: 38027872 PMCID: PMC10643267 DOI: 10.1016/j.heliyon.2023.e21695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, which is distinguished by the loss of dopaminergic (DA) neurons in the substantia nigra and the formation of intraneuronal. Numerous studies showed that the damage and dysfunction of mitochondria may play key roles in DA neuronal loss. Thus, it is necessary to seek therapeutic measures for PD targeting mitochondrial function and biogenesis. In this study, through screening the purchased compound library, we found that marine derived vidarabine had significant neuroprotective effects against rotenone (ROT) induced SH-SY5Y cell injury. Further studies indicated that vidarabine pretreatment significantly protected ROT-treated SH-SY5Y cells from toxicity by preserving mitochondrial morphology, improving mitochondrial function, and reducing cell apoptosis. Vidarabine also reduced the oxidative stress and increased the expression levels of PGC-1α, NRF1, and TFAM proteins, which was accompanied by the increased mitochondrial biogenesis. However, the neuroprotective effects of vidarabine were counteracted in the presence of SIRT1-specific inhibitor Ex-527. Besides, vidarabine treatment attenuated the weight loss, alleviated the motor deficits and inhibited the neuronal injury in the MPTP induced mouse model. Thus, vidarabine may exert neuroprotective effects via a mechanism involving specific connections between the SIRT1-dependent mitochondrial biogenesis and its antioxidant capacity, suggesting that vidarabine has potential to be developed into a novel therapeutic agent for PD.
Collapse
Affiliation(s)
- Lanxin Li
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhengqian Chen
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Orthopedics, Qingdao Chengyang Guzhen Orthopaedic Hospital, Qingdao, 266107, China
| | - Ruyong Yao
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhongqiu Xu
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Can Xu
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Fujie He
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Haitao Pei
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Cui Hao
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
11
|
Eom SH, Hong GL, Kang HB, Lee NS, Kim DK, Jeong YG, Kim CS, Yoo YC, Lee BH, Jung JY, Kim DS, Han SY. Neuroprotective Effects of Water Extract from Brown Algae Petalonia binghamiae in an Experimental Model of Focal Cerebral Ischemia In Vitro and In Vivo. Curr Issues Mol Biol 2023; 45:8427-8443. [PMID: 37886974 PMCID: PMC10605114 DOI: 10.3390/cimb45100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Focal cerebral ischemia (fCI) can result in brain injury and sensorimotor deficits. Brown algae are currently garnering scientific attention as potential therapeutic candidates for fCI. This study investigated the therapeutic effects of the hot water extract of Petalonia binghamiae (wPB), a brown alga, in in vitro and in vivo models of fCI. The neuroprotective efficacy of wPB was evaluated in an in vitro excitotoxicity model established using HT-22 cells challenged with glutamate. Afterward, C57/BL6 mice were administered wPB for 7 days (10 or 100 mg/kg, intragastric) and subjected to middle cerebral artery occlusion and reperfusion (MCAO/R) operation, which was used as an in vivo fCI model. wPB co-incubation significantly inhibited cell death, oxidative stress, and apoptosis, as well as stimulated the expression of heme oxygenase-1 (HO-1), an antioxidant enzyme, and the nuclear translocation of its upstream regulator, nuclear factor erythroid 2-related factor 2 (Nrf2) in HT-22 cells challenged with glutamate-induced excitotoxicity. Pretreatment with either dose of wPB significantly attenuated infarction volume, neuronal death, and sensorimotor deficits in an in vivo fCI model. Furthermore, the attenuation of oxidative stress and apoptosis in the ischemic lesion accompanied the wPB-associated protection. This study suggests that wPB can counteract fCI via an antioxidative effect, upregulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Sun Ho Eom
- Healinnols Inc., Daejeon 34054, Republic of Korea; (S.H.E.); (H.B.K.)
| | - Geum-Lan Hong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea (N.-S.L.); (D.K.K.); (Y.G.J.)
| | - Hyun Bae Kang
- Healinnols Inc., Daejeon 34054, Republic of Korea; (S.H.E.); (H.B.K.)
| | - Nam-Seob Lee
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea (N.-S.L.); (D.K.K.); (Y.G.J.)
| | - Do Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea (N.-S.L.); (D.K.K.); (Y.G.J.)
| | - Young Gil Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea (N.-S.L.); (D.K.K.); (Y.G.J.)
| | - Chun-Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea;
| | - Yung Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea;
| | - Bong Ho Lee
- Department of Chemical Technology, Hanbat National University, Daejeon 34158, Republic of Korea;
| | - Ju-Young Jung
- Department of Histology & Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong-Sub Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 61473, Republic of Korea;
| | - Seung Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea (N.-S.L.); (D.K.K.); (Y.G.J.)
| |
Collapse
|
12
|
Islam F, Dehbia Z, Zehravi M, Das R, Sivakumar M, Krishnan K, Billah AAM, Bose B, Ghosh A, Paul S, Nainu F, Ahmad I, Emran TB. Indole alkaloids from marine resources: Understandings from therapeutic point of view to treat cancers. Chem Biol Interact 2023; 383:110682. [PMID: 37648047 DOI: 10.1016/j.cbi.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the leading cause of mortality all over the world. Scientific investigation has demonstrated that disruptions in the process of autophagy are frequently interrelated with the emergence of cancer. Hence, scientists are seeking permanent solutions to counter the deadly disease. Indole alkaloids have been extensively studied and are acknowledged to exhibit several bioactivities. The current state of disease necessitates novel pharmacophores development. In recent decades, indole alkaloids have become increasingly significant in cancer treatment and are also used as adjuvants. A substantial amount of pharmacologically active molecules come from indole alkaloids, which are widely distributed in nature. Indole alkaloids derived from marine organisms show immense potential for therapeutic applications and seem highly effective in cancer treatment. A couple of experiments have been conducted preclinically to investigate the possibility of indole alkaloids in cancer treatment. Marine-derived indole alkaloids possess the ability to exhibit anticancer properties through diverse antiproliferative mechanisms. Certain indole alkaloids, including vincristine and vinblastine, were verified in clinical trials or are presently undergoing clinical assessments for preventing and treating cancer. Indole alkaloids from marine resources hold a significant functionality in identifying new antitumor agents. The current literature highlights recent advancements in indole alkaloids that appear to be anticancer agents and the underlying mechanisms.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of Agro - Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - M Sivakumar
- Department of Pharmacognosy, Faculty of Pharmacy, Sree Balaji Medical College and Hospital BIHER (DU), Chromepet, Chennai, 600044, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, India
| | - Abdul Ajeed Mohathasim Billah
- Department of Pharmacy Practice, Sri Ramachandra Faculty of Pharmacy, SRIHER (DU), Porur, Chennai, Tamil Nadu, India
| | - Bharadhan Bose
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Avoy Ghosh
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
13
|
Jia Y, Sun C, Chen T, Zhu H, Wang T, Ye Y, Luo X, Zeng X, Yang Y, Zeng H, Zou Q, Liu E, Li J, Sun H. Recent advance in phytonanomedicine and mineral nanomedicine delivery system of the treatment for acute myeloid leukemia. J Nanobiotechnology 2023; 21:240. [PMID: 37491290 PMCID: PMC10369765 DOI: 10.1186/s12951-023-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/25/2023] [Indexed: 07/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is an invasive hematopoietic malignancy caused by excessive proliferation of myeloblasts. Classical chemotherapies and cell transplantation therapies have remarkable efficacy in AML treatment; however, 30-40% of patients relapsed or had refractory disease. The resistance of AML is closely related to its inherent cytogenetics or various gene mutations. Recently, phytonanomedicine are found to be effective against resistant AML cells and have become a research focus for nanotechnology development to improve their properties, such as increasing solubility, improving absorption, enhancing bioavailability, and maintaining sustained release and targeting. These novel phytonanomedicine and mineral nanomedicine, including nanocrystals, nanoemulsion, nanoparticles, nanoliposome, and nanomicelles, offer many advantages, such as flexible dosages or forms, multiple routes of administration, and curative effects. Therefore, we reviewed the application and progress of phytomedicine in AML treatment and discussed the limitations and future prospects. This review may provide a solid reference to guide future research on AML treatment.
Collapse
Affiliation(s)
- Yimin Jia
- Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Cun Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ting Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hui Zhu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Tianrui Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yan Ye
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xing Luo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoqiang Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yun Yang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Enqiang Liu
- Department of Hematology and Oncology, Qianjiang Central Hospital of Chongqing Municipality, Qian Jiang, Chonqing, 409000, China.
| | - Jieping Li
- Chongqing University Cancer Hospital, Chongqing, 400030, China.
- Department of Hematology and Oncology, Qianjiang Central Hospital of Chongqing Municipality, Qian Jiang, Chonqing, 409000, China.
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
14
|
Chellappan DK, Chellian J, Rahmah NSN, Gan WJ, Banerjee P, Sanyal S, Banerjee P, Ghosh N, Guith T, Das A, Gupta G, Singh SK, Dua K, Kunnath AP, Norhashim NA, Ong KH, Palaniveloo K. Hypoglycaemic Molecules for the Management of Diabetes Mellitus from Marine Sources. Diabetes Metab Syndr Obes 2023; 16:2187-2223. [PMID: 37521747 PMCID: PMC10386840 DOI: 10.2147/dmso.s390741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder recognized as a major health problem globally. A defective insulin activity contributes to the prevalence and expansion of DM. Treatment of DM is often hampered by limited options of conventional therapies and adverse effects associated with existing procedures. This has led to a spike in the exploration for potential therapeutic agents from various natural resources for clinical applications. The marine environment is a huge store of unexplored diversity of chemicals produced by a multitude of organisms. To date, marine microorganisms, microalgae, macroalgae, corals, sponges, and fishes have been evaluated for their anti-diabetic properties. The structural diversity of bioactive metabolites discovered has shown promising hypoglycaemic potential through in vitro and in vivo screenings via various mechanisms of action, such as PTP1B, α-glucosidase, α-amylase, β-glucosidase, and aldose reductase inhibition as well as PPAR alpha/gamma dual agonists activities. On the other hand, hypoglycaemic effect is also shown to be exerted through the balance of antioxidants and free radicals. This review highlights marine-derived chemicals with hypoglycaemic effects and their respective mechanisms of action in the management of DM in humans.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | | | - Wee Jin Gan
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Priyanka Banerjee
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | - Saptarshi Sanyal
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | | | - Nandini Ghosh
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tanner Guith
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amitava Das
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, 302017, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Nur Azeyanti Norhashim
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Technology Facility, The University of Manchester, Manchester, M13 9NT, UK
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kuan Hung Ong
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
15
|
Barazorda-Ccahuana HL, Ranilla LG, Candia-Puma MA, Cárcamo-Rodriguez EG, Centeno-Lopez AE, Davila-Del-Carpio G, Medina-Franco JL, Chávez-Fumagalli MA. PeruNPDB: the Peruvian Natural Products Database for in silico drug screening. Sci Rep 2023; 13:7577. [PMID: 37165197 PMCID: PMC10170056 DOI: 10.1038/s41598-023-34729-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023] Open
Abstract
Since the number of drugs based on natural products (NPs) represents a large source of novel pharmacological entities, NPs have acquired significance in drug discovery. Peru is considered a megadiverse country with many endemic species of plants, terrestrial, and marine animals, and microorganisms. NPs databases have a major impact on drug discovery development. For this reason, several countries such as Mexico, Brazil, India, and China have initiatives to assemble and maintain NPs databases that are representative of their diversity and ethnopharmacological usage. We describe the assembly, curation, and chemoinformatic evaluation of the content and coverage in chemical space, as well as the physicochemical attributes and chemical diversity of the initial version of the Peruvian Natural Products Database (PeruNPDB), which contains 280 natural products. Access to PeruNPDB is available for free ( https://perunpdb.com.pe/ ). The PeruNPDB's collection is intended to be used in a variety of tasks, such as virtual screening campaigns against various disease targets or biological endpoints. This emphasizes the significance of biodiversity protection both directly and indirectly on human health.
Collapse
Affiliation(s)
- Haruna L Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Lena Gálvez Ranilla
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, 04000, Arequipa, Peru
- Escuela Profesional de Ingeniería de Industria Alimentaria, Facultad de Ciencias e Ingenierías Biológicas y Químicas, Universidad Catolica de Santa Maria, 04000, Arequipa, Peru
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Eymi Gladys Cárcamo-Rodriguez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Angela Emperatriz Centeno-Lopez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Gonzalo Davila-Del-Carpio
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru.
| |
Collapse
|
16
|
Zwygart ACA, Medaglia C, Huber R, Poli R, Marcourt L, Schnee S, Michellod E, Mazel-Sanchez B, Constant S, Huang S, Bekliz M, Clément S, Gindro K, Queiroz EF, Tapparel C. Antiviral properties of trans-δ-viniferin derivatives against enveloped viruses. Biomed Pharmacother 2023; 163:114825. [PMID: 37148860 PMCID: PMC10158552 DOI: 10.1016/j.biopha.2023.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023] Open
Abstract
Over the last century, the number of epidemics caused by RNA viruses has increased and the current SARS-CoV-2 pandemic has taught us about the compelling need for ready-to-use broad-spectrum antivirals. In this scenario, natural products stand out as a major historical source of drugs. We analyzed the antiviral effect of 4 stilbene dimers [1 (trans-δ-viniferin); 2 (11',13'-di-O-methyl-trans-δ-viniferin), 3 (11,13-di-O-methyl-trans-δ-viniferin); and 4 (11,13,11',13'-tetra-O-methyl-trans-δ-viniferin)] obtained from plant substrates using chemoenzymatic synthesis against a panel of enveloped viruses. We report that compounds 2 and 3 display a broad-spectrum antiviral activity, being able to effectively inhibit several strains of Influenza Viruses (IV), SARS-CoV-2 Delta and, to some extent, Herpes Simplex Virus 2 (HSV-2). Interestingly, the mechanism of action differs for each virus. We observed both a direct virucidal and a cell-mediated effect against IV, with a high barrier to antiviral resistance; a restricted cell-mediated mechanism of action against SARS-CoV-2 Delta and a direct virustatic activity against HSV-2. Of note, while the effect was lost against IV in tissue culture models of human airway epithelia, the antiviral activity was confirmed in this relevant model for SARS-CoV-2 Delta. Our results suggest that stilbene dimer derivatives are good candidate models for the treatment of enveloped virus infections.
Collapse
Affiliation(s)
- Arnaud Charles-Antoine Zwygart
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Chiara Medaglia
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Romain Poli
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Sylvain Schnee
- Agroscope, Plant Protection Research Division, Mycology Group, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Emilie Michellod
- Agroscope, Plant Protection Research Division, Mycology Group, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Beryl Mazel-Sanchez
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Samuel Constant
- Epithelix Sarl, Chemin des Aulx 18, 1228 Plan-les-Ouates, Switzerland
| | - Song Huang
- Epithelix Sarl, Chemin des Aulx 18, 1228 Plan-les-Ouates, Switzerland
| | - Meriem Bekliz
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Katia Gindro
- Agroscope, Plant Protection Research Division, Mycology Group, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
17
|
Hesp K, van der Heijden JME, Munroe S, Sipkema D, Martens DE, Wijffels RH, Pomponi SA. First continuous marine sponge cell line established. Sci Rep 2023; 13:5766. [PMID: 37031251 PMCID: PMC10082835 DOI: 10.1038/s41598-023-32394-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
The potential of sponge-derived chemicals for pharmaceutical applications remains largely unexploited due to limited available biomass. Although many have attempted to culture marine sponge cells in vitro to create a scalable production platform for such biopharmaceuticals, these efforts have been mostly unsuccessful. We recently showed that Geodia barretti sponge cells could divide rapidly in M1 medium. In this study we established the first continuous marine sponge cell line, originating from G. barretti. G. barretti cells cultured in OpM1 medium, a modification of M1, grew more rapidly and to a higher density than in M1. Cells in OpM1 reached 1.74 population doublings after 30 min, more than twofold higher than the already rapid growth rate of 0.74 population doublings in 30 min in M1. The maximum number of population doublings increased from 5 doublings in M1 to at least 98 doublings in OpM1. Subcultured cells could be cryopreserved and used to inoculate new cultures. With these results, we have overcome a major obstacle that has blocked the path to producing biopharmaceuticals with sponge cells at industrial scale for decades.
Collapse
Affiliation(s)
- Kylie Hesp
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands.
| | | | - Stephanie Munroe
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Shirley A Pomponi
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| |
Collapse
|
18
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
19
|
Abstract
In the design and development of therapeutic agents, macromolecules with restricted structures have stronger competitive edges than linear biological entities since cyclization can overcome the limitations of linear structures. The common issues of linear peptides include susceptibility to degradation of the peptidase enzyme, off-target effects, and necessity of routine dosing, leading to instability and ineffectiveness. The unique conformational constraint of cyclic peptides provides a larger surface area to interact with the target at the same time, improving the membrane permeability and in vivo stability compared to their linear counterparts. Currently, cyclic peptides have been reported to possess various activities, such as antifungal, antiviral and antimicrobial activities. To date, there is emerging interest in cyclic peptide therapeutics, and increasing numbers of clinically approved cyclic peptide drugs are available on the market. In this review, the medical significance of cyclic peptides in the defence against viral infections will be highlighted. Except for chikungunya virus, which lacks specific antiviral treatment, all the viral diseases targeted in this review are those with effective treatments yet with certain limitations to date. Thus, strategies and approaches to optimise the antiviral effect of cyclic peptides will be discussed along with their respective outcomes. Apart from isolated naturally occurring cyclic peptides, chemically synthesized or modified cyclic peptides with antiviral activities targeting coronavirus, herpes simplex viruses, human immunodeficiency virus, Ebola virus, influenza virus, dengue virus, five main hepatitis viruses, termed as type A, B, C, D and E and chikungunya virus will be reviewed herein. Graphical Abstract
Collapse
|
20
|
Ali HSHM, Altayb HN, Firoz A, Bayoumi AAM, El Omri A, Chaieb K. Inhibitory activity of marine sponge metabolites on SARS-CoV-2 RNA dependent polymerase: virtual screening and molecular dynamics simulation. J Biomol Struct Dyn 2022; 40:10191-10202. [PMID: 34151745 DOI: 10.1080/07391102.2021.1940283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Marine species are known as rich sources of metabolites involved mainly in the pharmaceutical industry. This study aimed to evaluate the effect of biologically active compounds in the marine sponge on the SARS-CoV-2 RNA-dependent-RNA polymerase protein (RdRp) using the in-silico method. A total of 51 marine compounds were checked for their possible interaction with SARS-CoV-2 RdRp using Maestro interface for molecular docking, molecular dynamic (MD) simulation, and MM/GBSA method to estimate compounds binding affinities. Among the 51 compounds screened in this study, two (mycalamide A, and nakinadine B) exhibited the lowest docking energy and best interaction. Among these compounds, mycalamide A was identified as a potent inhibitor of SARS-CoV-2 RdRp that showed the best and stable interaction during molecular dynamic simulation, with residues (Asp760 and Asp761) found in the catalytic domain of RdRp. The analysis through MM/GBSA for molecular dynamic simulation results revealed binding energy -59.7 ± 7.18 for Mycalamide A and -56 ± 10.55 for Nakinadine B. These results elucidate the possible use of mycalamide A for treating coronavirus disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hani S H Mohammed Ali
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham N Altayb
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Firoz
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Abdelfatteh El Omri
- Center of Excellence in Bio-nanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Science, Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamel Chaieb
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory of Analysis, Treatment, and valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| |
Collapse
|
21
|
Frejborg F, Kalke K, Hukkanen V. Current landscape in antiviral drug development against herpes simplex virus infections. SMART MEDICINE 2022; 1:e20220004. [PMID: 39188739 PMCID: PMC11235903 DOI: 10.1002/smmd.20220004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 08/28/2024]
Abstract
Herpes simplex viruses (HSV) are common human pathogens with a combined global seroprevalence of 90% in the adult population. HSV-1 causes orofacial herpes but can cause severe diseases, such as the potentially fatal herpes encephalitis and herpes keratitis, a prevalent cause of infectious blindness. The hallmark of HSV is lifelong latent infections and viral reactivations, leading to recurrent lesions or asymptomatic shedding. HSV-1 and HSV-2 can cause recurrent, painful, and socially limiting genital lesions, which predispose to human immunodeficiency virus infections, and can lead to neonatal herpes infections, a life-threatening condition for the newborn. Despite massive efforts, there is no vaccine against HSV, as both viruses share the capability to evade the antiviral defenses of human and to establish lifelong latency. Recurrent and primary HSV infections are treated with nucleoside analogs, but the treatments do not completely eliminate viral shedding and transmission. Drug-resistant HSV strains can emerge in relation to long-term prophylactic treatment. Such strains are likely to be resistant to other chemotherapies, justifying the development of novel antiviral treatments. The importance of developing new therapies against HSV has been recognized by the World Health Organization. In this review, we discuss the current approaches for developing novel antiviral therapies against HSV, such as small molecule inhibitors, biopharmaceuticals, natural products, gene editing, and oligonucleotide-based therapies. These approaches may have potential in the future to answer the unmet medical need. Furthermore, novel approaches are presented for potential eradication of latent HSV.
Collapse
Affiliation(s)
- Fanny Frejborg
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Institute of BiomedicineFaculty of MedicineUniversity of TurkuTurkuFinland
| | - Kiira Kalke
- Institute of BiomedicineFaculty of MedicineUniversity of TurkuTurkuFinland
| | - Veijo Hukkanen
- Institute of BiomedicineFaculty of MedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
22
|
Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12:4011-4039. [PMID: 36386472 PMCID: PMC9643300 DOI: 10.1016/j.apsb.2022.08.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.
Collapse
Affiliation(s)
- Yuyu Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Jiaojiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haiyan Sun
- Institute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
23
|
Morais SR, K C, Jeyabalan S, Wong LS, Sekar M, Chidambaram K, Gan SH, Begum MY, Izzati Mat Rani NN, Subramaniyan V, Fuloria S, Fuloria NK, Safi SZ, Sathasivam KV, Selvaraj S, Sharma VK. Anticancer potential of Spirastrella pachyspira (marine sponge) against SK-BR-3 human breast cancer cell line and in silico analysis of its bioactive molecule sphingosine. FRONTIERS IN MARINE SCIENCE 2022; 9. [DOI: 10.3389/fmars.2022.950880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
The rate of breast cancer is rapidly increasing and discovering medications with therapeutic effects play a significant role in women’s health. Drugs derived from marine sponges have recently received FDA approval for the treatment of malignant tumors, including metastatic breast cancer. Spirastrella pachyspira (marine sponge) is mainly obtained from the western coastal region of India, and its anticancer potential has not been explored. Hence, the present study aimed to evaluate the anticancer potential of Spirastrella pachyspira extracts and its bioactive molecule sphingosine. The extracts were prepared using hexane, chloroform, ethyl acetate, and ethanol. The cytotoxic potential of the extracts were determined by an in-vitro MTT assay using SK-BR-3 cancer cell line. Subsequently, acute toxicity investigation was conducted in Swiss albino mice. Then, the anticancer effects of the extract was investigated in a xenograft model of SK-BR-3 caused breast cancer. DAPI staining was used to assess the extract’s ability to induce apoptosis. In addition, in-silico study was conducted on sphingosine with extracellular site of HER2. The ethyl acetate extract of Spirastrella pachyspira (IC50: 0.04 µg/ml) showed comparable anticancer effects with standard doxorubicin (IC50: 0.054 µg/ml). The LD50 of the extracts in acute toxicity testing was fund to be 2000 mg/kg b.wt. The survival index of mice in ethanol extract was 83.33%, whereas that of standard doxirubicin was 100%, indicating that ethyl acetate extract Spirastrella pachyspira has good antiproliferative/cytotoxic properties. The results were well comparable with standard doxorubicin. Further, the docking studies of sphingosine against HER2 demonstrated that the bioactive molecule engage with the extracellular region of HER2 and block the protein as also shown by standard trastuzumab. The findings of this research suggest that Spirastrella pachyspira and sphingosine may be potential candidate for the treatments of breast cancer, particularly for HER2 positive cells. Overall, the present results demonstrate that sphingosine looks like a promising molecule for the development of new drugs for the treatment of cancer. However, in order to carefully define the sphingosine risk-benefit ratio, future research should focus on evaluating in-vivo and clinical anticancer studies. This will involve balancing both their broad-spectrum effectiveness and their toxicity.
Collapse
|
24
|
Bioactive Compounds from Marine Sponges and Algae: Effects on Cancer Cell Metabolome and Chemical Structures. Int J Mol Sci 2022; 23:ijms231810680. [PMID: 36142592 PMCID: PMC9502410 DOI: 10.3390/ijms231810680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics represent the set of small organic molecules generally called metabolites, which are located within cells, tissues or organisms. This new “omic” technology, together with other similar technologies (genomics, transcriptomics and proteomics) is becoming a widely used tool in cancer research, aiming at the understanding of global biology systems in their physiologic or altered conditions. Cancer is among the most alarming human diseases and it causes a considerable number of deaths each year. Cancer research is one of the most important fields in life sciences. In fact, several scientific advances have been made in recent years, aiming to illuminate the metabolism of cancer cells, which is different from that of healthy cells, as suggested by Otto Warburg in the 1950s. Studies on sponges and algae revealed that these organisms are the main sources of the marine bioactive compounds involved in drug discovery for cancer treatment and prevention. In this review, we analyzed these two promising groups of marine organisms to focus on new metabolomics approaches for the study of metabolic changes in cancer cell lines treated with chemical extracts from sponges and algae, and for the classification of the chemical structures of bioactive compounds that may potentially prove useful for specific biotechnological applications.
Collapse
|
25
|
Sun H, Li X, Chen M, Zhong M, Li Y, Wang K, Du Y, Zhen X, Gao R, Wu Y, Shi Y, Yu L, Che Y, Li Y, Jiang JD, Hong B, Si S. Multi-Omics-Guided Discovery of Omicsynins Produced by Streptomyces sp. 1647: Pseudo-Tetrapeptides Active Against Influenza A Viruses and Coronavirus HCoV-229E. ENGINEERING (BEIJING, CHINA) 2022; 16:176-186. [PMID: 35309096 PMCID: PMC8916927 DOI: 10.1016/j.eng.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 06/14/2023]
Abstract
Many microorganisms have mechanisms that protect cells against attack from viruses. The fermentation components of Streptomyces sp. 1647 exhibit potent anti-influenza A virus (IAV) activity. This strain was isolated from soil in southern China in the 1970s, but the chemical nature of its antiviral substance(s) has remained unknown until now. We used an integrated multi-omics strategy to identify the antiviral agents from this streptomycete. The antibiotics and Secondary Metabolite Analysis Shell (antiSMASH) analysis of its genome sequence revealed 38 biosynthetic gene clusters (BGCs) for secondary metabolites, and the target BGCs possibly responsible for the production of antiviral components were narrowed down to three BGCs by bioactivity-guided comparative transcriptomics analysis. Through bioinformatics analysis and genetic manipulation of the regulators and a biosynthetic gene, cluster 36 was identified as the BGC responsible for the biosynthesis of the antiviral compounds. Bioactivity-based molecular networking analysis of mass spectrometric data from different recombinant strains illustrated that the antiviral compounds were a class of structural analogues. Finally, 18 pseudo-tetrapeptides with an internal ureido linkage, omicsynins A1-A6, B1-B6, and C1-C6, were identified and/or isolated from fermentation broth. Among them, 11 compounds (omicsynins A1, A2, A6, B1-B3, B5, B6, C1, C2, and C6) are new compounds. Omicsynins B1-B4 exhibited potent antiviral activity against IAV with the 50% inhibitory concentration (IC50) of approximately 1 µmol∙L-1 and a selectivity index (SI) ranging from 100 to 300. Omicsynins B1-B4 also showed significant antiviral activity against human coronavirus HCoV-229E. By integrating multi-omics data, we discovered a number of novel antiviral pseudo-tetrapeptides produced by Streptomyces sp. 1647, indicating that the secondary metabolites of microorganisms are a valuable source of novel antivirals.
Collapse
Affiliation(s)
- Hongmin Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Minghua Chen
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming Zhong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yihua Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Kun Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu Du
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xin Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rongmei Gao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yexiang Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuanyuan Shi
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liyan Yu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yongsheng Che
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuhuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
26
|
Duraisamy GS, Jo E, Huvarova I, Park KHP, Heger Z, Adam V, Růžek D, Windisch MP, Miller AD. Selected ginsenosides interfere efficiently with hepatitis B virus mRNA expression levels and suppress viral surface antigen secretion. Heliyon 2022; 8:e10465. [PMID: 36110238 PMCID: PMC9468399 DOI: 10.1016/j.heliyon.2022.e10465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Ginsenosides are a class of natural steroid glycosides and triterpene saponins found in Panax ginseng. After screening of a commercial ginsenoside compound library for low cellular cytotoxicity and the ability to mediate efficient reductions in hepatitis B virus (HBV) mRNA expression levels in HepG2.2.15 cells, three ginsenosides (Rg6, Rh4, and Rb3) are selected. Thereafter, using the same cellular model, all three ginsenosides are shown to mediate efficient, selective inhibition of HBV mRNA expression levels, and also interfere with the secretion of both HBV particles and hepatitis B surface antigen (HBsAg). Drug combination studies are performed in both HepG2.2.15 and HBV-infected HepG2-NTCPsec+ cell models with the selected ginsenosides and lamivudine (LMV), a nucleoside analogue used to treat chronic hepatitis B (CHB) infections. These studies, involving RT-qPCR and ELISA, suggest that Rh4/LMV combinations in particular act synergistically to inhibit the secretion of HBV particles and HBsAg. Therefore, on the assumption that appropriate in vivo data are in future agreement, Rh4, in particular, might be used in combination with nucleoside/nucleotide analogues (NUCs) to devise an effective, cost-efficient combination therapy for the treatment of patients with CHB infections.
Collapse
|
27
|
Antimicrobial Alkaloids from Marine-Derived Fungi as Drug Leads versus COVID-19 Infection: A Computational Approach to Explore their Anti-COVID-19 Activity and ADMET Properties. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5403757. [PMID: 35911157 PMCID: PMC9325633 DOI: 10.1155/2022/5403757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
Abstract
Therapeutic strategies based upon enzyme inhibition have recently gained higher attention in treating hazardous ailments. Herein, the potential use of seventy-two antimicrobial alkaloids isolated from marine-derived fungi to fight COVID-19 infection via inhibition of SARS-CoV-2 lethal virus was performed using in silico analyses. Molecular modelling was performed to assess their enzyme inhibitory potential on the main protease SARS-CoV-2 MPro, 3-chymotrypsin-like protease SARS-CoV-2 3CLpro, and papain-like protease SARS-CoV-2 PLpro using Discovery Studio 4.5. Validation of the docking experiments was done by determination of RMSD (root mean square deviation) after redocking the superimposition of the cocrystalized ligands. Results showed that gymnastatin Z (72) showed the best fitting score in SARS-CoV-2 MPro and SARS-CoV-2 3CLpr active sites with ∆G equal −34.15 and −34.28 Kcal/mol, respectively. Meanwhile, scalusamide C (62) displayed the highest fitting within SARS-CoV-2 PLpro active sites (∆G = −26.91 Kcal/mol) followed by eutypellazine M (57). ADMET/TOPKAT prediction displayed that eutypellazine M and scalusamide C showed better pharmacokinetic and pharmacodynamic properties. Gymnastatin Z is safer showing better toxicity criteria and higher rat oral LD50 and rat chronic LOAEL (lowest observed adverse effect level). Chemometric analysis using principle component analysis (PCA) based on the binding energies observed for the compounds with respect to the three tested enzymes revealed the clustering of the compounds into different clusters. Eutypellazine M, scalusamide C, and gymnastatin Z appear in one cluster due to their closeness in activity. Thus, these compounds could serve as promising SARS-CoV-2 enzymes inhibitors that could help in alleviation of COVID-19 infection. Further investigations are recommended to confirm the results of molecular modelling.
Collapse
|
28
|
Zou J, Wu J, Ding L, Wang W, Liu Y, Feng Y, Lai Q, Lin W, Wang T, He S. Guignardones Y-Z, antiviral meroterpenes from Penicillium sp. NBUF154 associated with a Crella sponge from the marine mesophotic zone. Chem Biodivers 2022; 19:e202200475. [PMID: 35766362 DOI: 10.1002/cbdv.202200475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Guignardones Y-Z (1-2), two new meroterpenoids, and six known metabolites involving guignardone A-H (3-4), gyorgy-isoflavone (5), daidzein (6), blumenol A (7) and guignardianone A (8) were isolated from the fungus Penicillium sp. NBUF154, which was obtained from a 60 m deep Crella sponge. Their structures including absolute configurations were unambiguously elucidated by exhaustive spectroscopic analysis and ECD calculations. A putative biosynthetic pathway toward guignardones (1-4) is here proposed. Biological evaluation of compounds 1-8 showed that 1 and 7 exert potent inhibitory effects towards human enterovirus 71 (EV71).
Collapse
Affiliation(s)
- Jiabin Zou
- Ningbo University, College of Food and Pharmaceutical Sciences, Fenghua road 818,Ningbo, Ningbo, CHINA
| | - Jialing Wu
- Ningbo University, College of Food and Pharmaceutical Sciences, Fenghua road 818,Ningbo, Ningbo, CHINA
| | - Lijian Ding
- Ningbo University, College of Food and Pharmaceutical Sciences, Fenghua road 818,Ningbo, Ningbo, CHINA
| | - Weiyi Wang
- Third Institute of Oceanography Ministry of Natural Resources, Key Laboratory of Marine Biogenetic Resources, 178 University Road, Xiamen, CHINA
| | - Yinghui Liu
- Ningbo University, College of Food and Pharmaceutical Sciences, Fenghua road 818,Ningbo, Ningbo, CHINA
| | - Yunping Feng
- Ningbo University, College of Food and Pharmaceutical Sciences, Fenghua road 818,Ningbo, Ningbo, CHINA
| | - Qiliang Lai
- Third Institute of Oceanography Ministry of Natural Resources, Key Laboratory of Marine Biogenetic Resources, 178 University Road, Xiamen, CHINA
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs: Peking University School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191,China, China, CHINA
| | - Tingting Wang
- Ningbo University, College of Food and Pharmaceutical Sciences, Fenghua road 818, Ningbo, CHINA
| | - Shan He
- Ningbo University, Department of marine drugs, Fenghua road 818,Ningbo, 315832, Ningbo, CHINA
| |
Collapse
|
29
|
Multi-Step In Silico Discovery of Natural Drugs against COVID-19 Targeting Main Protease. Int J Mol Sci 2022; 23:ijms23136912. [PMID: 35805916 PMCID: PMC9266348 DOI: 10.3390/ijms23136912] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
In continuation of our antecedent work against COVID-19, three natural compounds, namely, Luteoside C (130), Kahalalide E (184), and Streptovaricin B (278) were determined as the most promising SARS-CoV-2 main protease (Mpro) inhibitors among 310 naturally originated antiviral compounds. This was performed via a multi-step in silico method. At first, a molecular structure similarity study was done with PRD_002214, the co-crystallized ligand of Mpro (PDB ID: 6LU7), and favored thirty compounds. Subsequently, the fingerprint study performed with respect to PRD_002214 resulted in the election of sixteen compounds (7, 128, 130, 156, 157, 158, 180, 184, 203, 204, 210, 237, 264, 276, 277, and 278). Then, results of molecular docking versus Mpro PDB ID: 6LU7 favored eight compounds (128, 130, 156, 180, 184, 203, 204, and 278) based on their binding affinities. Then, in silico toxicity studies were performed for the promising compounds and revealed that all of them have good toxicity profiles. Finally, molecular dynamic (MD) simulation experiments were carried out for compounds 130, 184, and 278, which exhibited the best binding modes against Mpro. MD tests revealed that luteoside C (130) has the greatest potential to inhibit SARS-CoV-2 main protease.
Collapse
|
30
|
Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022; 39:45-84. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human cancer remains a cause of high mortality throughout the world. The conventional methods and therapies currently employed for treatment are followed by moderate-to-severe side effects. They have not generated curative results due to the ineffectiveness of treatments. Besides, the associated high costs, technical requirements, and cytotoxicity further characterize their limitations. Due to relatively higher presidencies, bioactive peptides with anti-cancer attributes have recently become treatment choices within the therapeutic arsenal. The peptides act as potential anti-cancer agents explicitly targeting tumor cells while being less toxic to normal cells. The anti-cancer peptides are isolated from various natural sources, exhibit high selectivity and high penetration efficiency, and could be quickly restructured. The therapeutic benefits of compatible anti-cancer peptides have contributed to the significant expansion of cancer treatment; albeit, the mechanisms by which bioactive peptides inhibit the proliferation of tumor cells remain unclear. This review will provide a framework for assessing anti-cancer peptides' structural and functional aspects. It shall provide appropriate information on their mode of action to support and strengthen efforts to improve cancer prevention. The article will mention the therapeutic health benefits of anti-cancer peptides. Their importance in clinical studies is elaborated for reducing cancer incidences and developing sustainable treatment models.
Collapse
Affiliation(s)
- Amit Lath
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Nameet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Poonam Kumari
- Sophisticated Analytical Instrumentation Facility, CIL and UCIM, Punjab University, Chandigarh, Inida
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
31
|
Sukmarini L. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092619. [PMID: 35565968 PMCID: PMC9101517 DOI: 10.3390/molecules27092619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
32
|
Unique Mode of Antiviral Action of a Marine Alkaloid against Ebola Virus and SARS-CoV-2. Viruses 2022; 14:v14040816. [PMID: 35458549 PMCID: PMC9028129 DOI: 10.3390/v14040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.
Collapse
|
33
|
Esposito R, Federico S, Bertolino M, Zupo V, Costantini M. Marine Demospongiae: A Challenging Treasure of Bioactive Compounds. Mar Drugs 2022; 20:244. [PMID: 35447918 PMCID: PMC9032870 DOI: 10.3390/md20040244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In the last decades, it has been demonstrated that marine organisms are a substantial source of bioactive compounds with possible biotechnological applications. Marine sponges, in particular those belonging to the class of Demospongiae, have been considered among the most interesting invertebrates for their biotechnological potential. In this review, particular attention is devoted to natural compounds/extracts isolated from Demospongiae and their associated microorganisms with important biological activities for pharmacological applications such as antiviral, anticancer, antifouling, antimicrobial, antiplasmodial, antifungal and antioxidant. The data here presented show that this class of sponges is an exciting source of compounds, which are worth developing into new drugs, such as avarol, a hydroquinone isolated from the marine sponge Disidea avara, which is used as an antitumor, antimicrobial and antiviral drug.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (S.F.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cin-thia 21, 80126 Naples, Italy
| | - Serena Federico
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (S.F.)
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Valerio Zupo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (S.F.)
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (S.F.)
| |
Collapse
|
34
|
Dactylospongia elegans—A Promising Drug Source: Metabolites, Bioactivities, Biosynthesis, Synthesis, and Structural-Activity Relationship. Mar Drugs 2022; 20:md20040221. [PMID: 35447894 PMCID: PMC9033123 DOI: 10.3390/md20040221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Marine environment has been identified as a huge reservoir of novel biometabolites that are beneficial for medical treatments, as well as improving human health and well-being. Sponges have been highlighted as one of the most interesting phyla as new metabolites producers. Dactylospongia elegans Thiele (Thorectidae) is a wealth pool of various classes of sesquiterpenes, including hydroquinones, quinones, and tetronic acid derivatives. These metabolites possessed a wide array of potent bioactivities such as antitumor, cytotoxicity, antibacterial, and anti-inflammatory. In the current work, the reported metabolites from D. elegans have been reviewed, including their bioactivities, biosynthesis, and synthesis, as well as the structural-activity relationship studies. Reviewing the reported studies revealed that these metabolites could contribute to new drug discovery, however, further mechanistic and in vivo studies of these metabolites are needed.
Collapse
|
35
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
36
|
Wu J, Power H, Miranda-Saksena M, Valtchev P, Schindeler A, Cunningham AL, Dehghani F. Identifying HSV-1 Inhibitors from Natural Compounds via Virtual Screening Targeting Surface Glycoprotein D. Pharmaceuticals (Basel) 2022; 15:361. [PMID: 35337158 PMCID: PMC8955139 DOI: 10.3390/ph15030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus (HSV) infections are a worldwide health problem in need of new effective treatments. Of particular interest is the identification of antiviral agents that act via different mechanisms compared to current drugs, as these could interact synergistically with first-line antiherpetic agents to accelerate the resolution of HSV-1-associated lesions. For this study, we applied a structure-based molecular docking approach targeting the nectin-1 and herpesvirus entry mediator (HVEM) binding interfaces of the viral glycoprotein D (gD). More than 527,000 natural compounds were virtually screened using Autodock Vina and then filtered for favorable ADMET profiles. Eight top hits were evaluated experimentally in African green monkey kidney cell line (VERO) cells, which yielded two compounds with potential antiherpetic activity. One active compound (1-(1-benzofuran-2-yl)-2-[(5Z)-2H,6H,7H,8H-[1,3] dioxolo[4,5-g]isoquinoline-5-ylidene]ethenone) showed weak but significant antiviral activity. Although less potent than antiherpetic agents, such as acyclovir, it acted at the viral inactivation stage in a dose-dependent manner, suggesting a novel mode of action. These results highlight the feasibility of in silico approaches for identifying new antiviral compounds, which may be further optimized by medicinal chemistry approaches.
Collapse
Affiliation(s)
- Jiadai Wu
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Helen Power
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and The Westmead Institute for Medical Research, Westmead 2145, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and The Westmead Institute for Medical Research, Westmead 2145, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
37
|
Naqvi SAR, Sherazi TA, Hassan SU, Shahzad SA, Faheem Z. Anti-inflammatory, anti-infectious and anti-cancer potential of marine algae and sponge: A review. EUR J INFLAMM 2022. [DOI: 10.1177/20587392221075514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Marine organisms are potentially a pretty good source of highly bioactive secondary metabolites that are best known for their anti-inflammation, anti-infection, and anti-cancer potential. The growing threat of bacterial resistance to synthetic antibiotics, is a potential source to screen terrestrial and marine natural organisms to discover promising anti-inflammatory and antimicrobial agents which can synergistically overcome the inflammatory and infectious disases. Algae and sponge have been studied enormously to evaluate their medicinal potential to fix variety of diseases, especially inflammation, infections, cancers, and diabetes. Cytarabine is the first isolated biomolecule from marine organism which was successfully practiced in clinical setup as chemotherapeutic agent against xylogenous leukemia both in acute and chronic conditions. This discovery opened the horizon for systematic evaluation of broad range of human disorders. This review is designed to look into the literature reported on anti-inflammatory, anti-infectious, and anti-cancerous potential of algae and sponge to refine the isolated compounds for value addition process.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Sadaf U Hassan
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Pakistan
| | - Sohail A Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Zahra Faheem
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
38
|
Karthikeyan A, Joseph A, Nair BG. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J Genet Eng Biotechnol 2022; 20:14. [PMID: 35080679 PMCID: PMC8790952 DOI: 10.1186/s43141-021-00290-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Background The marine environment hosts a wide variety of species that have evolved to live in harsh and challenging conditions. Marine organisms are the focus of interest due to their capacity to produce biotechnologically useful compounds. They are promising biocatalysts for new and sustainable industrial processes because of their resistance to temperature, pH, salt, and contaminants, representing an opportunity for several biotechnological applications. Encouraged by the extensive and richness of the marine environment, marine organisms’ role in developing new therapeutic benefits is heading as an arable field. Main body of the abstract There is currently much interest in biologically active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Studies are focused on bacteria and fungi, isolated from sediments, seawater, fish, algae, and most marine invertebrates such as sponges, mollusks, tunicates, coelenterates, and crustaceans. In addition to marine macro-organisms, such as sponges, algae, or corals, marine bacteria and fungi have been shown to produce novel secondary metabolites (SMs) with specific and intricate chemical structures that may hold the key to the production of novel drugs or leads. The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae, including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity, and neuronal death inhibition. Conclusion The application of marine-derived bioactive compounds has gained importance because of their therapeutic uses in several diseases. Marine natural products (MNPs) display various pharmaceutically significant bioactivities, including antibiotic, antiviral, neurodegenerative, anticancer, or anti-inflammatory properties. The present review focuses on the importance of critical marine bioactive compounds and their role in different diseases and highlights their possible contribution to humanity.
Collapse
Affiliation(s)
- Akash Karthikeyan
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Abey Joseph
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Baiju G Nair
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India. .,Nanomedical Engineering Laboratory, Riken, Wako, Saitama, Japan.
| |
Collapse
|
39
|
Singh KS, Tilvi S. Chemical Diversity and Bioactivity of Marine Sponges of the Genus
Oceanapia: A Review. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x18666210225120944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The marine sponges of the genus Oceanapia sp. is comprised of more than 50 species and are distributed in the seas around the tropical and subtropical regions. They are mainly found in the northern Indian oceans, Japan, and the south pacific coast. They are highly colored and known to be a rich source of various secondary metabolites, particularly, alkaloids. Several other secondary metabolites were also reported from this genus which include terpenes, sphingolipids, ceramides, cerebrosides, acetylenic acids, and thiocyanatins, etc. Many of these compounds isolated from this genus exhibited various biological properties including anticancer, antimicrobial, anti-HIV, ichthyotoxicity and nematocidal activities. Although several secondary metabolites have been reported from this genus, a dedicated review of the chemicals and biological activities of this genus is so far lacking. Keeping this in mind this review describes the various chemical entities isolated from the sponges of the genus Oceanapia detailing their chemical structures along with their reported biological properties.
Collapse
Affiliation(s)
- Keisham S. Singh
- Bioorganic Chemistry Laboratory, CSIR-National Institute of Oceanography, Dona Paula-403004, Goa,India
| | - Supriya Tilvi
- Bioorganic Chemistry Laboratory, CSIR-National Institute of Oceanography, Dona Paula-403004, Goa,India
| |
Collapse
|
40
|
Mostafa O, Al-Shehri M, Moustafa M. Promising antiparasitic agents from marine sponges. Saudi J Biol Sci 2022; 29:217-227. [PMID: 35002412 PMCID: PMC8716901 DOI: 10.1016/j.sjbs.2021.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
Parasitic diseases especially those prevail in tropical and subtropical regions severely threaten the lives of people due to available drugs found to be ineffective as several resistant strains have been emerged. Due to the complexity of the marine environment, researchers considered it as a new field to search for compounds with therapeutic efficacy, marine sponges represents the milestone in the discovery of unique compounds of potent activities against parasitic infections. In the present article, literatures published from 2010 until March 2021 were screened to review antiparasitic potency of bioactive compounds extracted from marine sponges. 45 different genera of sponges have been studied for their antiparasitic activities. The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of antiparastic compounds extracted from marine sponges were related to alkaloids and peroxides represent the second important group of antiparasitic compounds extracted from sponges followed by terpenoids. Some substances have been extracted and used as antiparasitic agents to a lesser extent like steroids, amino acids, lipids, polysaccharides and isonitriles. The activities of these isolated compounds against parasites were screened using in vitro techniques. Compounds' potent activity in screened papers was classified in three categories according to IC50: low active or inactive, moderately active and good potent active.
Collapse
Affiliation(s)
- Osama Mostafa
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
41
|
Rauf A, Khalil AA, Khan M, Anwar S, Alamri A, Alqarni AM, Alghamdi A, Alshammari F, Rengasamy KRR, Wan C. Can be marine bioactive peptides (MBAs) lead the future of foodomics for human health? Crit Rev Food Sci Nutr 2022; 62:7072-7116. [PMID: 33840324 DOI: 10.1080/10408398.2021.1910482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine organisms are considered a cache of biologically active metabolites with pharmaceutical, functional, and nutraceutical properties. Among these, marine bioactive peptides (MBAs) present in diverse marine species (fish, sponges, cyanobacteria, fungi, ascidians, seaweeds, & mollusks) have acquired attention owing to their broad-spectrum health-promoting benefits. Nowadays, scientists are keener exploring marine bioactive peptides precisely due to their unique structural and biological properties. These MBAs have reported ameliorating potential against different diseases like hypertension, diabetes, obesity, HIV, cancer, oxidation, and inflammation. Furthermore, MBAs isolated from various marine organisms may also have a beneficial role in the cosmetic, nutraceutical, and food industries. Few marine peptides and their derivative are approved for commercial use, while many MBAs are in various pre-clinical and clinical trials. This review mainly focuses on the diversity of marine bioactive peptides in marine organisms and their production procedures, such as chemical and enzymatic hydrolysis. Moreover, MBAs' therapeutic and biological potential has also been critically discussed herein, along with their status in drug discovery, pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adel Alghamdi
- Pharmaceutical Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Farhan Alshammari
- Department Of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
42
|
Pedler RL, Speck PG. Marine mollusc extracts-Potential source of SARS-CoV-2 antivirals. Rev Med Virol 2021; 32:e2310. [PMID: 34726308 PMCID: PMC8646538 DOI: 10.1002/rmv.2310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a novel human coronavirus and the causative agent of coronavirus disease 2019 (Covid‐19). There is an urgent need for effective antivirals to treat current Covid‐19 cases and protect those unable to be vaccinated against SARS‐CoV‐2. Marine molluscs live in an environment containing high virus densities (>107 virus particles per ml), and there are an estimated 100,000 species in the phylum Mollusca, demonstrating the success of their innate immune system. Mollusc‐derived antivirals are yet to be used clinically despite the activity of many extracts, including against human viruses, being demonstrated in vitro. Hemolymph of the Pacific oyster (Crassostrea gigas) has in vitro antiviral activity against herpes simplex virus and human adenovirus, while antiviral action against SARS‐CoV‐2 has been proposed by in silico studies. Such evidence suggests that molluscs, and in particular C. gigas hemolymph, may represent a source of antivirals for human coronaviruses.
Collapse
Affiliation(s)
- Rebecca L Pedler
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Peter G Speck
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
43
|
Asif M, Saleem M, Yaseen HS, Yehya AH, Saadullah M, Zubair HM, Oon CE, Khaniabadi PM, Khalid SH, Khan IU, Mahrukh. Potential role of marine species-derived bioactive agents in the management of SARS-CoV-2 infection. Future Microbiol 2021; 16:1289-1301. [PMID: 34689597 PMCID: PMC8592065 DOI: 10.2217/fmb-2021-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Punjab, Pakistan
| | - Hafiza Sidra Yaseen
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Ashwaq Hs Yehya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Malik Saadullah
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Hafiz Muhammad Zubair
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Chern E Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology & Molecular Imaging, College of Medicine & Health Sciences, Sultan Qaboos University, PO. Box 35, 123, Al Khod, Muscat, Oman
| | - Syed Haroon Khalid
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Ikram Ullah Khan
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Mahrukh
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| |
Collapse
|
44
|
Srinivasan R, Kannappan A, Shi C, Lin X. Marine Bacterial Secondary Metabolites: A Treasure House for Structurally Unique and Effective Antimicrobial Compounds. Mar Drugs 2021; 19:md19100530. [PMID: 34677431 PMCID: PMC8539464 DOI: 10.3390/md19100530] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of antimicrobial resistance reduces the effectiveness of antimicrobial drugs in preventing and treating infectious diseases caused by pathogenic organisms, such as bacteria, fungi, and viruses. Because of the burgeoning growth of microbes with antimicrobial-resistant traits, there is a dire need to identify and develop novel and effective antimicrobial agents to treat infections from antimicrobial-resistant strains. The marine environment is rich in ecological biodiversity and can be regarded as an untapped resource for prospecting novel bioactive compounds. Therefore, exploring the marine environment for antimicrobial agents plays a significant role in drug development and biomedical research. Several earlier scientific investigations have proven that bacterial diversity in the marine environment represents an emerging source of structurally unique and novel antimicrobial agents. There are several reports on marine bacterial secondary metabolites, and many are pharmacologically significant and have enormous promise for developing effective antimicrobial drugs to combat microbial infections in drug-resistant pathogens. In this review, we attempt to summarize published articles from the last twenty-five years (1996–2020) on antimicrobial secondary metabolites from marine bacteria evolved in marine environments, such as marine sediment, water, fauna, and flora.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| | - Arunachalam Kannappan
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Chunlei Shi
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| |
Collapse
|
45
|
Riccio G, Nuzzo G, Zazo G, Coppola D, Senese G, Romano L, Costantini M, Ruocco N, Bertolino M, Fontana A, Ianora A, Verde C, Giordano D, Lauritano C. Bioactivity Screening of Antarctic Sponges Reveals Anticancer Activity and Potential Cell Death via Ferroptosis by Mycalols. Mar Drugs 2021; 19:459. [PMID: 34436298 PMCID: PMC8400861 DOI: 10.3390/md19080459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023] Open
Abstract
Sponges are known to produce a series of compounds with bioactivities useful for human health. This study was conducted on four sponges collected in the framework of the XXXIV Italian National Antarctic Research Program (PNRA) in November-December 2018, i.e., Mycale (Oxymycale) acerata, Haliclona (Rhizoniera) dancoi, Hemimycale topsenti, and Hemigellius pilosus. Sponge extracts were fractioned and tested against hepatocellular carcinoma (HepG2), lung carcinoma (A549), and melanoma cells (A2058), in order to screen for antiproliferative or cytotoxic activity. Two different chemical classes of compounds, belonging to mycalols and suberitenones, were identified in the active fractions. Mycalols were the most active compounds, and their mechanism of action was also investigated at the gene and protein levels in HepG2 cells. Of the differentially expressed genes, ULK1 and GALNT5 were the most down-regulated genes, while MAPK8 was one of the most up-regulated genes. These genes were previously associated with ferroptosis, a programmed cell death triggered by iron-dependent lipid peroxidation, confirmed at the protein level by the down-regulation of GPX4, a key regulator of ferroptosis, and the up-regulation of NCOA4, involved in iron homeostasis. These data suggest, for the first time, that mycalols act by triggering ferroptosis in HepG2 cells.
Collapse
Affiliation(s)
- Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (G.R.); (D.C.); (M.C.); (N.R.); (A.I.); (C.V.); (D.G.)
| | - Genoveffa Nuzzo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.N.); (G.S.); (L.R.); (A.F.)
| | - Gianluca Zazo
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (G.R.); (D.C.); (M.C.); (N.R.); (A.I.); (C.V.); (D.G.)
| | - Giuseppina Senese
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.N.); (G.S.); (L.R.); (A.F.)
| | - Lucia Romano
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.N.); (G.S.); (L.R.); (A.F.)
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (G.R.); (D.C.); (M.C.); (N.R.); (A.I.); (C.V.); (D.G.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (G.R.); (D.C.); (M.C.); (N.R.); (A.I.); (C.V.); (D.G.)
| | - Marco Bertolino
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.N.); (G.S.); (L.R.); (A.F.)
- Laboratory of Bio-Organic Chemistry and Chemical Biology, Department of Biology, Università di Napoli “Federico II”, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (G.R.); (D.C.); (M.C.); (N.R.); (A.I.); (C.V.); (D.G.)
| | - Cinzia Verde
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (G.R.); (D.C.); (M.C.); (N.R.); (A.I.); (C.V.); (D.G.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Daniela Giordano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (G.R.); (D.C.); (M.C.); (N.R.); (A.I.); (C.V.); (D.G.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (G.R.); (D.C.); (M.C.); (N.R.); (A.I.); (C.V.); (D.G.)
| |
Collapse
|
46
|
Marcella S, Afoullouss S, Thomas OP, Allcock AL, Murphy PV, Loffredo S. Immunomodulatory properties of characellide A on human peripheral blood mononuclear cells. Inflammopharmacology 2021; 29:1201-1210. [PMID: 34241784 PMCID: PMC8298336 DOI: 10.1007/s10787-021-00836-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022]
Abstract
Marine sponges and their associated microbiota are multicellular animals known to produce metabolites with interesting pharmacological properties playing a pivotal role against a plethora of pathologic disorders such as inflammation, cancer and infections. Characellide A and B belong to a novel class of glycolipopeptides isolated from the deep sea marine sponge Characella pachastrelloides. In this study, we have evaluated the effects of characellide A and B on cytokine and chemokine release from human peripheral blood mononuclear cells (PBMC). Characellide A induces a concentration- and time-dependent CXCL8, IL-6 and TNF-α release from PBMC. This production is mediated by the induction of gene transcription. Moreover, cytokine/chemokine release induced by characellide A from PBMC is CD1d-dependent because a CD1d antagonist, 1,2-bis(diphenylphosphino)ethane [DPPE]-polyethylene glycolmonomethylether [PEG], specifically inhibits characellide A-induced activation of PBMC. In conclusion, characellide A is a novel modulator of adaptative/innate immune responses. Further studies are needed to understand its potential pharmacological application.
Collapse
Affiliation(s)
- Simone Marcella
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Sam Afoullouss
- Marine Biodiscovery, School of Chemistry, Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91TK33, Ireland
- Zoology Department, School of Natural Sciences, Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91TK33, Ireland
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry, Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91TK33, Ireland
| | - A Louise Allcock
- Zoology Department, School of Natural Sciences, Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, Galway, H91TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Stefania Loffredo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy.
| |
Collapse
|
47
|
Abdallah MS, Mustafa M, Nallappan MA, Choi S, Paik JH, Rusea G. Determination of Phenolics and Flavonoids of Some Useful Medicinal Plants and Bioassay-Guided Fractionation Substances of Sclerocarya birrea (A. Rich) Hochst Stem (Bark) Extract and Their Efficacy Against Salmonella typhi. Front Chem 2021; 9:670530. [PMID: 34386478 PMCID: PMC8353516 DOI: 10.3389/fchem.2021.670530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Gallic acid and catechin are the most abundant phenolic and flavonoid contents found in all plant extracts. The contents and the bioassay-guided fractionating substances of the Sclerocarya birrea (A. Rich) Hochst (Anacardiaceae) fraction played vital roles. The goals of the study were to determine the contents of some useful medicinal plants and the bioassay-guided fractionation substances of S. birrea fraction compounds capable of acting against Salmonella isolate using LC-MS/LC-HRMS (Dionex ultimate 3000 RS UPLC with Thermo Scientific Q Exactive Orbitrap Hybrid Tandem Mass Spectrometer). The Folin-Ciocalteu reagent procedure and flavonoid content determination were conducted spectrophotometrically. Bioassay-guided fractionation, chronological partitioning, and screening of the antibacterial action against Salmonella typhi were performed. The ethyl acetate fraction extracts of S. birrea stem (bark) extract were analyzed using LC-MS/LC-HRMS. The gallic acid content increased tremendously in Vachellia nilotica (L.) P.J.H. Hurter and Mabb (Fabaceae) pod extracts with curve fitting (R 2 = 0.9958). Catechin content increase was significantly increased in S. birrea stem (bark) extracts followed by that of V. nilotica pod extracts with curve fitting (R 2 = 0.9993); they were all significantly different in the Guiera senegalensis J.F. Gmel. and the Leptadenia lanceolata (Poir.) Goyder leaves extracts at p value <0.0001. Subsequently, 10 mg/ml of S. birrea stem (bark) ethyl acetate fraction extract was the MIC, where no MBC was recorded and susceptible to the positive control with the highest inhibition zone, followed by the ethyl acetate fraction extract at 10 mg/ml (9.7 ± 0.0) at Turkey's p < 0.0001. Vidarabine is one of the novel compounds, specifically having antimicrobial actions, found in the S. birrea stem (bark). Reasonable amounts of phenolic and flavonoid contents determined the actions of the individual plant extract.
Collapse
Affiliation(s)
- Muhammad Salihu Abdallah
- Department of Biology, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Yobe State University, Damaturu, Nigeria
| | | | | | - Sangho Choi
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jin-Hyub Paik
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Go Rusea
- Department of Biology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
48
|
Geahchan S, Ehrlich H, Rahman MA. The Anti-Viral Applications of Marine Resources for COVID-19 Treatment: An Overview. Mar Drugs 2021; 19:409. [PMID: 34436248 PMCID: PMC8402008 DOI: 10.3390/md19080409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing pandemic has led to an urgent need for novel drug discovery and potential therapeutics for Sars-CoV-2 infected patients. Although Remdesivir and the anti-inflammatory agent dexamethasone are currently on the market for treatment, Remdesivir lacks full efficacy and thus, more drugs are needed. This review was conducted through literature search of PubMed, MDPI, Google Scholar and Scopus. Upon review of existing literature, it is evident that marine organisms harbor numerous active metabolites with anti-viral properties that serve as potential leads for COVID-19 therapy. Inorganic polyphosphates (polyP) naturally found in marine bacteria and sponges have been shown to prevent viral entry, induce the innate immune response, and downregulate human ACE-2. Furthermore, several marine metabolites isolated from diverse sponges and algae have been shown to inhibit main protease (Mpro), a crucial protein required for the viral life cycle. Sulfated polysaccharides have also been shown to have potent anti-viral effects due to their anionic properties and high molecular weight. Likewise, select marine sponges produce bromotyrosines which have been shown to prevent viral entry, replication and protein synthesis. The numerous compounds isolated from marine resources demonstrate significant potential against COVID-19. The present review for the first time highlights marine bioactive compounds, their sources, and their anti-viral mechanisms of action, with a focus on potential COVID-19 treatment.
Collapse
Affiliation(s)
- Sarah Geahchan
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; (S.G.); (H.E.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Hermann Ehrlich
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; (S.G.); (H.E.)
- A.R. Environmental Solutions, University of Toronto, ICUBE-UTM, Mississauga, ON L5L 1C6, Canada
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| | - M. Azizur Rahman
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; (S.G.); (H.E.)
- A.R. Environmental Solutions, University of Toronto, ICUBE-UTM, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
49
|
Shan T, Ye J, Jia J, Wang Z, Jiang Y, Wang Y, Wang Y, Zheng K, Ren Z. Viral UL8 Is Involved in the Antiviral Activity of Oleanolic Acid Against HSV-1 Infection. Front Microbiol 2021; 12:689607. [PMID: 34354687 PMCID: PMC8329587 DOI: 10.3389/fmicb.2021.689607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can cause severe diseases, especially in immunocompromised adults and newborns, such as keratitis and herpes simplex encephalitis. At present, the clinical therapeutic drug against HSV-1 infection is acyclovir (ACV), and its extensive usage has led to the emergence of ACV-resistant strains. Therefore, it is urgent to explore novel therapeutic targets and anti-HSV-1 drugs. This study demonstrated that Oleanolic acid, a pentacyclic triterpenoid widely existing in natural product, had strong antiviral activity against both ACV-sensitive and -resistant HSV-1 strains in different cells. Mechanism studies showed that Oleanolic acid exerted its anti-HSV-1 activity in the immediate early stage of infection, which involved the dysregulation of viral UL8, a component of viral helicase-primase complex critical for viral replication. In addition, Oleanolic acid significantly ameliorated the skin lesions in an HSV-1 infection mediated zosteriform model. Together, our study suggested that Oleanolic acid could be a potential candidate for clinical therapy of HSV-1 infection-related diseases.
Collapse
Affiliation(s)
- Tianhao Shan
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ju Ye
- Key Laboratory of Plant Chemistry in Qinghai-Tibet Plateau, Qinghai University for Nationalities, Xining, China
| | - Jiaoyan Jia
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuzhou Jiang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
50
|
Khan MT, Ali A, Wang Q, Irfan M, Khan A, Zeb MT, Zhang YJ, Chinnasamy S, Wei DQ. Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2-a molecular dynamic study. J Biomol Struct Dyn 2021; 39:3627-3637. [PMID: 32410504 PMCID: PMC7284144 DOI: 10.1080/07391102.2020.1769733] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
Sever acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA (ssRNA) virus, responsible for severe acute respiratory disease (COVID-19). A large number of natural compounds are under trial for screening compounds, possessing potential inhibitory effect against the viral infection. Keeping in view the importance of marine compounds in antiviral activity, we investigated the potency of some marine natural products to target SARS-CoV-2 main protease (Mpro) (PDB ID 6MO3). The crystallographic structure of Mpro in an apo form was retrieved from Protein Data Bank and marine compounds from PubChem. These structures were prepared for docking and the complex with good docking score was subjected to molecular dynamic (MD) simulations for a period of 100 ns. To measure the stability, flexibility, and average distance between the target and compounds, root mean square deviations (RMSD), root mean square fluctuation (RMSF), and the distance matrix were calculated. Among five marine compounds, C-1 (PubChem CID 11170714) exhibited good activity, interacting with the active site and surrounding residues, forming many hydrogen and hydrophobic interactions. The C-1 also attained a stable dynamic behavior, and the average distance between compound and target remains constant. In conclusion, marine natural compounds may be used as a potential inhibitor against SARS-CoV-2 for better management of COVID-19.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Pakistan
| | - Arif Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, China Shanghai
| | - Qiankun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, China Shanghai
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, China Shanghai
| | - Muhammad Tariq Zeb
- Senior Research Officer, In-charge Genomic Laboratory, Veterinary Research Institute, Peshawar, Peshawar, Pakistan
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, China
| | - Sathishkumar Chinnasamy
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, China Shanghai
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, China Shanghai
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|