1
|
Zhang X, Xu Y, Shi L, Chen X, Hu M, Zhang M, Nie M, Liu X. FGF6 inhibits oral squamous cell carcinoma progression by regulating PI3K/AKT and MAPK pathways. Sci Rep 2024; 14:26877. [PMID: 39506091 PMCID: PMC11542074 DOI: 10.1038/s41598-024-78552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
To explore diagnostic and prognostic biomarkers in the progression of oral squamous cell carcinoma (OSCC) and to reveal their regulatory mechanisms in key pathways. A RayBiotech protein chip was used to screen differentially expressed serum proteins in OSCC, oral leukoplakia (OLK), and healthy participants. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to determine the pathways enriched by characteristic differential proteins. Immunohistochemical analysis and western blotting were used to verify the expression of characteristic differential proteins and key regulatory factors in human tissues and in a nude mouse model. Fibroblast growth factor 6 (FGF6) was identified as a key differential protein and was weakly expressed in OSCC tissues. The mitogen-activated protein kinases (MAPK) and PI3K-AKT pathways were identified as key signaling pathways. The results showed that pERK, Cyclin D1, pAKT, and BCL2 were highly expressed in OSCC, Caspase9 was lowly expressed in OSCC. With an increase in FGF6 expression in nude mice, the expression of FGFR4, pERK, Cyclin D1, pAKT, BCL2, GPX4, and ACSL4 increased, and the expression of Caspase9 decreased. FGF6 may change the expression of apoptosis-related proteins and proliferation factors by binding to FGFR4 in the PI3K-AKT/MAPK pathway and may inhibit the ferroptosis of OSCC, thereby possibly participating in the process of inhibiting OSCC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Oral Basic Medicine, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Southwest Medical University, Sichuan, 646000, China
| | - Yingjiao Xu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Southwest Medical University, Sichuan, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lijuan Shi
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Southwest Medical University, Sichuan, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medcine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Miaoling Hu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Southwest Medical University, Sichuan, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Mengxue Zhang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Southwest Medical University, Sichuan, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Minhai Nie
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Southwest Medical University, Sichuan, 646000, China.
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xuqian Liu
- Department of Oral Basic Medicine, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
2
|
Wu H, Jin M, Liu Y, Wang S, Liu C, Quan X, Jin M, Gao Z, Jin Y. A self-targeting MOFs nanoplatform for treating metastatic triple-negative breast cancer through tumor microenvironment remodeling and chemotherapy potentiation. Int J Pharm 2024; 664:124625. [PMID: 39182743 DOI: 10.1016/j.ijpharm.2024.124625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and fatal subtype of breast cancer with disappointing treatment and high mortality. Tumor microenvironment (TME) plays an important role in the invasion and metastasis of TNBC through multiple complex processes. Most anti-metastatic therapies only focus on cancer cells themselves or interfering with single factors of the metastasis process, which is often related to poor outcomes. Thus, effective TNBC treatment relies on regulating multiple key metastasis-related aspects of the TME. Herein, a self-targeting Metal-Organic Frameworks (MOFs) nanoplatform (named as MTX-PEG@TPL@ZIF-8) was designed to improve treatment of TNBC through tumor microenvironment remodeling and chemotherapy potentiation. The self-targeting MOF nanoplatform is consist of ZIF-8 nanoparticles loaded triptolide (TPL) and followed by the coating with methotrexate-polyethylene glycol conjugates (MTX-PEG). Due to MTX's affinity for the overexpressed folate receptor on tumor cell surfaces, MTX-PEG@TPL@ZIF-8 enables effective accumulation and deep penetration in the tumor area by an MTX-mediated self-targeting strategy. This MOF nanoplatform could promptly release the medication after penetrating the tumor cell, due to pH-triggered degradation. Its anti-metastasis mechanism is to inhibit tumor invasion and metastasis by down-regulating the expression of Vimentin, MMP-2 and MMP-9 and increasing the expression of E-cadherin, upregulation of cleaved caspase-3 and cleaved caspase-9 protein expression promote the apoptosis of tumor cells, thereby reducing their migration. It also downregulated the expression of VEGF and CD31 protein to inhibit the generation of neovascularization. Overall, these findings suggest the self-targeting MOF nanoplatform offers new insights into the treatment of metastatic TNBC by TME remodeling and potentiating chemotherapy.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Jin
- Department of Orthopedic Surgery, Yanbian University Hospital, Yanji, Jilin Province 133000, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiuquan Quan
- Department of Orthopedic Surgery, Yanbian University Hospital, Yanji, Jilin Province 133000, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ying Jin
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, China.
| |
Collapse
|
3
|
Wen ZH, Chang L, Yang SN, Yu CL, Tung FY, Kuo HM, Lu IC, Wu CY, Shih PC, Chen WF, Chen NF. The anti-angiogenic and anti-vasculogenic mimicry effects of GN25 in endothelial and glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119799. [PMID: 39043304 DOI: 10.1016/j.bbamcr.2024.119799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND PURPOSE Scientists have been exploring anti-angiogenic strategies to inhibit angiogenesis and prevent tumor growth. Vasculogenic mimicry (VM) in glioblastoma multiforme (GBM) poses a challenge, complicating anti-angiogenesis therapy. A novel drug, GN25 (3-[{1,4-dihydro-5,8-dimethoxy-1,4-dioxo-2-naphthalenyl}thio]-propanoic acid), can inhibit tumor formation. This study aims to investigate the microenvironmental effects and molecular mechanisms of GN25 in anti-angiogenesis and anti-VM. EXPERIMENTAL APPROACH MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cell viability of different concentrations of GN25 in human umbilical vein endothelial cells (HUVEC) and Uppsala 87 malignant glioma (U87MG) cells. Functional assays were used to investigate the effects of GN25 on angiogenesis-related processes, whereas gelatin zymography, enzyme-linked immunosorbent assays, and Western blotting were utilized to assess the influence on matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF) secretion and related signaling pathways. KEY RESULTS GN25 suppressed migration, wound healing, and tube formation in HUVECs and disrupted angiogenesis in a rat aorta ring and zebrafish embryo model. GN25 dose-dependently reduced phosphatidylinositol 3-kinase/AKT and inhibited MMP-2/VEGF secretion in HUVECs. In U87MG cells, GN25 inhibited migration, wound healing, and VM, accompanied by a decrease in MMP-2 and VEGF secretion. The results indicate that GN25 effectively inhibits angiogenesis and VM formation in HUVECs and U87MG cells without affecting preexisting vascular structures. CONCLUSION AND IMPLICATIONS This study elaborated GN25's potential as an anti-angiogenic agent by elucidating its inhibitory effects on classical angiogenesis. VM provides valuable insights for developing novel therapeutic strategies against tumor progression and angiogenesis-related diseases. These results indicate the potential of GN25 as a promising candidate for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Long Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - San-Nan Yang
- Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chen-Ling Yu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fang-Yu Tung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan
| | - I-Chen Lu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chang Shih
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan.
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
| |
Collapse
|
4
|
Tsujimoto M, Moon S, Ito Y. Effect of conditioned media on the angiogenic activity of mesenchymal stem cells. J Biosci Bioeng 2024; 138:163-170. [PMID: 38821758 DOI: 10.1016/j.jbiosc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/02/2024]
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for use in novel cell therapies, although such live cell products are highly complex compared with traditional drugs. For example, difficulties such as the control of manufacturing conditions hinder the manufacture of stable cell populations that maintain their therapeutic potency. Here, assuming that medium selection significantly affects cell potency, we focused on the culture media as a critical manufacturing factor influencing the therapeutic efficacy of MSCs. We therefore performed a tube formation assay to quantify the angiogenic activities of conditioned media used to culture human umbilical vein endothelial cells compared with unconditioned media. Comprehensive molecular genetic analysis using microarrays was applied to determine the effects of these media on signal transduction pathways. We found that activation of the vascular endothelial growth factor (VEGF) signaling pathway differed, and that VEGF concentration was dependent on the composition of the conditioned media. These results indicate that the activation level of cell signaling pathways which contribute to therapeutic efficacy may vary depending on the media components affecting MSCs during their cultivation. Moreover, they indicate that therapeutic efficacy will likely depend on how cells are handled during manufacture. These findings will enhance our understanding of the quality control measures required to ensure the efficacy and safety of cell therapy products.
Collapse
Affiliation(s)
- Mami Tsujimoto
- Faculty of Life and Environmental Sciences (Bioindustrial Sciences), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8972, Japan
| | - SongHo Moon
- Faculty of Life and Environmental Sciences (Bioindustrial Sciences), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8972, Japan
| | - Yuzuru Ito
- Faculty of Life and Environmental Sciences (Bioindustrial Sciences), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8972, Japan; Life Science Development Department, Frontier Business Division, Chiyoda Corporation, 13 Moriya-cho 3-chome, Kanagawa-ku, Yokohama 221-0022, Japan.
| |
Collapse
|
5
|
Kaur G, Roy B. Decoding Tumor Angiogenesis for Therapeutic Advancements: Mechanistic Insights. Biomedicines 2024; 12:827. [PMID: 38672182 PMCID: PMC11048662 DOI: 10.3390/biomedicines12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
6
|
Thakkar AB, Subramanian RB, Thakkar SS, Thakkar VR, Thakor P. Biochanin A - A G6PD inhibitor: In silico and in vitro studies in non-small cell lung cancer cells (A549). Toxicol In Vitro 2024; 96:105785. [PMID: 38266663 DOI: 10.1016/j.tiv.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Secondary metabolites from medicinal plants have a well-established therapeutic potential, with many of these chemicals having specialized medical uses. Isoflavonoids, a type of secondary metabolite, have little cytotoxicity against healthy human cells, making them interesting candidates for cancer treatment. Extensive research has been conducted to investigate the chemo-preventive benefits of flavonoids in treating various cancers. Biochanin A (BA), an isoflavonoid abundant in plants such as red clover, soy, peanuts, and chickpeas, was the subject of our present study. This study aimed to determine how BA affected glucose-6-phosphate dehydrogenase (G6PD) in human lung cancer cells. The study provides meaningful insight and a significant impact of BA on the association between metastasis, inflammation, and G6PD inhibition in A549 cells. Comprehensive in vitro tests revealed that BA has anti-inflammatory effects. Molecular docking experiments shed light on BA's high binding affinity for the G6PD receptor. BA substantially decreased the expression of G6PD and other inflammatory and metastasis-related markers. In conclusion, our findings highlight the potential of BA as a therapeutic agent in cancer treatment, specifically by targeting G6PD and related pathways. BA's varied effects, which range from anti-inflammatory capabilities to metastasis reduction, make it an appealing option for future investigation in the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Anjali B Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India; P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Ramalingam B Subramanian
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Sampark S Thakkar
- AKASHGANGA, Shree Kamdhenu Electronics Pvt. Ltd., Vallabh Vidyanagar, Gujarat, India
| | - Vasudev R Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India.
| |
Collapse
|
7
|
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int J Mol Sci 2023; 25:436. [PMID: 38203605 PMCID: PMC10779198 DOI: 10.3390/ijms25010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in endocrine and non-endocrine tissues, immune cells and the central nervous system (CNS). Post-release from secretory or immune cells, the first most appreciated role that SST exhibits is the antiproliferative effect in target tissue that served as a potential therapeutic intervention in various tumours of different origins. The SST-mediated in vivo and/or in vitro antiproliferative effect in the tumour is considered direct via activation of five different somatostatin receptor subtypes (SSTR1-5), which are well expressed in most tumours and often more than one receptor in a single cell. Second, the indirect effect is associated with the regulation of growth factors. SSTR subtypes are crucial in tumour diagnosis and prognosis. In this review, with the recent development of new SST analogues and receptor-specific agonists with emerging functional consequences of signaling pathways are promising therapeutic avenues in tumours of different origins that are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
8
|
Benayad S, Wahnou H, El Kebbaj R, Liagre B, Sol V, Oudghiri M, Saad EM, Duval RE, Limami Y. The Promise of Piperine in Cancer Chemoprevention. Cancers (Basel) 2023; 15:5488. [PMID: 38001748 PMCID: PMC10670142 DOI: 10.3390/cancers15225488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, characterized by the unregulated growth and dissemination of malignantly transformed cells, presents a significant global health challenge. The multistage process of cancer development involves intricate biochemical and genetic alterations within target cells. Cancer chemoprevention has emerged as a vital strategy to address this complex issue to mitigate cancer's impact on healthcare systems. This approach leverages pharmacologically active agents to block, suppress, prevent, or reverse invasive cancer development. Among these agents, piperine, an active alkaloid with a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and immunomodulatory effects, has garnered attention for its potential in cancer prevention and treatment. This comprehensive review explores piperine's multifaceted role in inhibiting the molecular events and signaling pathways associated with various stages of cancer development, shedding light on its promising prospects as a versatile tool in cancer chemoprevention. Furthermore, the review will also delve into how piperine enhances the effectiveness of conventional treatments such as UV-phototherapy and TRAIL-based therapy, potentially synergizing with existing therapeutic modalities to provide more robust cancer management strategies. Finally, a crucial perspective of the long-term safety and potential side effects of piperine-based therapies and the need for clinical trials is also discussed.
Collapse
Affiliation(s)
- Salma Benayad
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
| | - Bertrand Liagre
- Le Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS), University Limoges, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Vincent Sol
- Le Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS), University Limoges, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - El Madani Saad
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
| | - Raphaël Emmanuel Duval
- The Franch Center for Scientific Research (CNRS), Université de Lorraine, L2CM, F-54000 Nancy, France
| | - Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco; (H.W.); (M.O.)
| |
Collapse
|
9
|
Chen Y, Xu X, Wang Y, Zhang Y, Zhou T, Jiang W, Wang Z, Chang J, Liu S, Chen R, Shan J, Wang J, Wang Y, Li C, Li X. Hypoxia-induced SKA3 promoted cholangiocarcinoma progression and chemoresistance by enhancing fatty acid synthesis via the regulation of PAR-dependent HIF-1a deubiquitylation. J Exp Clin Cancer Res 2023; 42:265. [PMID: 37821935 PMCID: PMC10565972 DOI: 10.1186/s13046-023-02842-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Spindle and kinetochore-associated complex subunit 3 (SKA3) plays an important role in cell proliferation by regulating the separation of chromosomes and their division into daughter cells. Previous studies demonstrated that SKA3 was strongly implicated in tumor development and progression. However, the roles of SKA3 in cholangiocarcinoma (CCA) and the underlying mechanisms remain unclear. METHODS Next-generation sequencing (NGS) was performed with paired CCA tissues and normal adjacent tissues (NATs). SKA3 was chose to be the target gene because of its remarkably upregulation and unknown function in cholangiocarcinoma in TCGA datasets, GSE107943 datasets and our sequencing results. RT-PCR and immunohistochemistry staining were used to detect the expression of SKA3 in paired CCA tissues and normal adjacent tissues. The SKA3 knockdown and overexpression cell line were constructed by small interfering RNA and lentivirus vector transfection. The effect of SKA3 on the proliferation of cholangiocarcinoma under hypoxic conditions was detected by experiments in vitro and in vivo. RNA-seq was used to find out the differentially expressed pathways in cholangiocarcinoma proliferation under hypoxia regulated by SKA3. IP/MS analysis and Western blot assays were used to explore the specific mechanism of SKA3 in regulating the expression of HIF-1a under hypoxia. RESULTS SKA3 was up-regulated in NGS, TCGA and GSE107943 databases and was associated with poor prognosis. Functional experiments in vitro and in vivo showed that hypoxia-induced SKA3 promoted cholangiocarcinoma cell proliferation. RNA-sequencing was performed and verified that SKA3 enhanced fatty acid synthesis by up-regulating the expression of key fatty acid synthase, thus promoting cholangiocarcinoma cell proliferation under hypoxic conditions. Further studies indicated that under hypoxic conditions, SKA3 recruited PARP1 to bind to HIF-1a, thus enhancing the poly ADP-ribosylation (PARylation) of HIF-1a. This PARylation enhanced the binding between HIF-1a and USP7, which triggered the deubiquitylation of HIF-1a under hypoxic conditions. Additionally, PARP1 and HIF-1a were upregulated in CCA and promoted CCA cell proliferation. SKA3 promoted CCA cell proliferation and fatty acid synthesis via the PARP1/HIF-1a axis under hypoxic conditions. High SKA3 and HIF-1a expression levels were associated with poor prognosis after surgery. CONCLUSION Hypoxia-induced SKA3 promoted CCA progression by enhancing fatty acid synthesis via the regulation of PARylation-dependent HIF-1a deubiquitylation. Furthermore, increased SKA3 level enhanced chemotherapy-resistance to gemcitabine-based regimen under hypoxic conditions. SKA3 and HIF-1a could be potential oncogenes and significant biomarkers for the analysis of CCA patient prognosis.
Collapse
Affiliation(s)
- Yananlan Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xiao Xu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yirui Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Tao Zhou
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Ziyi Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jiang Chang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Shuochen Liu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Ruixiang Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jijun Shan
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jifei Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yuming Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laoratory for Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiangcheng Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laoratory for Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing Medical University), Nanjing, Jiangsu Province, China.
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
10
|
Rajasegaran T, How CW, Saud A, Ali A, Lim JCW. Targeting Inflammation in Non-Small Cell Lung Cancer through Drug Repurposing. Pharmaceuticals (Basel) 2023; 16:ph16030451. [PMID: 36986550 PMCID: PMC10051080 DOI: 10.3390/ph16030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths. Lung cancers can be classified as small-cell (SCLC) or non-small cell (NSCLC). About 84% of all lung cancers are NSCLC and about 16% are SCLC. For the past few years, there have been a lot of new advances in the management of NSCLC in terms of screening, diagnosis and treatment. Unfortunately, most of the NSCLCs are resistant to current treatments and eventually progress to advanced stages. In this perspective, we discuss some of the drugs that can be repurposed to specifically target the inflammatory pathway of NSCLC utilizing its well-defined inflammatory tumor microenvironment. Continuous inflammatory conditions are responsible to induce DNA damage and enhance cell division rate in lung tissues. There are existing anti-inflammatory drugs which were found suitable for repurposing in non-small cell lung carcinoma (NSCLC) treatment and drug modification for delivery via inhalation. Repurposing anti-inflammatory drugs and their delivery through the airway is a promising strategy to treat NSCLC. In this review, suitable drug candidates that can be repurposed to treat inflammation-mediated NSCLC will be comprehensively discussed together with their administration via inhalation from physico-chemical and nanocarrier perspectives.
Collapse
Affiliation(s)
- Thiviyadarshini Rajasegaran
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Anoosha Saud
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azhar Ali
- Cancer Science Institute Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
11
|
Lebsir N, Zoulim F, Grigorov B. Heparanase-1: From Cancer Biology to a Future Antiviral Target. Viruses 2023; 15:237. [PMID: 36680276 PMCID: PMC9860851 DOI: 10.3390/v15010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are a major constituent of the extracellular matrix (ECM) and are found to be implicated in viral infections, where they play a role in both cell entry and release for many viruses. The enzyme heparanase-1 is the only known endo-beta-D-glucuronidase capable of degrading heparan sulphate (HS) chains of HSPGs and is thus important for regulating ECM homeostasis. Heparanase-1 expression is tightly regulated as the uncontrolled cleavage of HS may result in abnormal cell activation and significant tissue damage. The overexpression of heparanase-1 correlates with pathological scenarios and is observed in different human malignancies, such as lymphoma, breast, colon, lung, and hepatocellular carcinomas. Interestingly, heparanase-1 has also been documented to be involved in numerous viral infections, e.g., HSV-1, HPV, DENV. Moreover, very recent reports have demonstrated a role of heparanase-1 in HCV and SARS-CoV-2 infections. Due to the undenied pro-carcinogenic role of heparanase-1, multiple inhibitors have been developed, some reaching phase II and III in clinical studies. However, the use of heparanase inhibitors as antivirals has not yet been proposed. If it can be assumed that heparanase-1 is implicated in numerous viral life cycles, its inhibition by specific heparanase-acting compounds should result in a blockage of viral infection. This review addresses the perspectives of using heparanase inhibitors, not only for cancer treatment, but also as antivirals. Eventually, the development of a novel class antivirals targeting a cellular protein could help to alleviate the resistance problems seen with some current antiretroviral therapies.
Collapse
Affiliation(s)
- Nadjet Lebsir
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69434 Lyon, France
- Confluence: Sciences et Humanités (EA 1598), UCLy, 10 Place des Archives, 69002 Lyon, France
| | - Fabien Zoulim
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69434 Lyon, France
- Hospices Civils de Lyon, 69002 Lyon, France
| | - Boyan Grigorov
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69434 Lyon, France
| |
Collapse
|
12
|
The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers (Basel) 2023; 15:cancers15020376. [PMID: 36672326 PMCID: PMC9856874 DOI: 10.3390/cancers15020376] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation.
Collapse
|
13
|
Wang X, Huang D, Wu J, Li Z, Yi X, Zhong T. The Biological Effect of Small Extracellular Vesicles on Colorectal Cancer Metastasis. Cells 2022; 11:cells11244071. [PMID: 36552835 PMCID: PMC9777375 DOI: 10.3390/cells11244071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is a malignancy that seriously threatens human health, and metastasis from CRC is a major cause of death and poor prognosis for patients. Studying the potential mechanisms of small extracellular vesicles (sEVs) in tumor development may provide new options for early and effective diagnosis and treatment of CRC metastasis. In this review, we systematically describe how sEVs mediate epithelial mesenchymal transition (EMT), reconfigure the tumor microenvironment (TME), modulate the immune system, and alter vascular permeability and angiogenesis to promote CRC metastasis. We also discuss the current difficulties in studying sEVs and propose new ideas.
Collapse
Affiliation(s)
- Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: ; Tel.: +86-07978266042
| |
Collapse
|
14
|
Konopka J, Kołodziejek D, Flont M, Żuchowska A, Jastrzębska E, Brzózka Z. Exploring Endothelial Expansion on a Chip. SENSORS (BASEL, SWITZERLAND) 2022; 22:9414. [PMID: 36502120 PMCID: PMC9741423 DOI: 10.3390/s22239414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Angiogenesis is the development of new blood vessels from the existing vasculature. Its malfunction leads to the development of cancers and cardiovascular diseases qualified by the WHO as a leading cause of death worldwide. A better understanding of mechanisms regulating physiological and pathological angiogenesis will potentially contribute to developing more effective treatments for those urgent issues. Therefore, the main goal of the following study was to design and manufacture an angiogenesis-on-a-chip microplatform, including cylindrical microvessels created by Viscous Finger Patterning (VFP) technique and seeded with HUVECs. While optimizing the VFP procedure, we have observed that lumen's diameter decreases with a diminution of the droplet's volume. The influence of Vascular Endothelial Growth Factor (VEGF) with a concentration of 5, 25, 50, and 100 ng/mL on the migration of HUVECs was assessed. VEGF's solution with concentrations varying from 5 to 50 ng/mL reveals high angiogenic potential. The spatial arrangement of cells and their morphology were visualized by fluorescence and confocal microscopy. Migration of HUVECs toward loaded angiogenic stimuli has been initiated after overnight incubation. This research is the basis for developing more complex vascularized multi-organ-on-a-chip microsystems that could potentially be used for drug screening.
Collapse
Affiliation(s)
- Joanna Konopka
- Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland
| | - Dominik Kołodziejek
- Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland
| | - Magdalena Flont
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warszawa, Poland
| | - Agnieszka Żuchowska
- Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland
| | - Elżbieta Jastrzębska
- Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warszawa, Poland
| | - Zbigniew Brzózka
- Faculty of Chemistry, Warsaw University of Technology, 00-661 Warszawa, Poland
| |
Collapse
|
15
|
Liu SX, Zhou Y, Zhao L, Zhou LS, Sun J, Liu GJ, Du YS, Zhou YN. Thiostrepton confers protection against reactive oxygen species-related apoptosis by restraining FOXM1-triggerred development of gastric cancer. Free Radic Biol Med 2022; 193:385-404. [PMID: 36152915 DOI: 10.1016/j.freeradbiomed.2022.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
Abstract
Gastric cancer is a leading cause of tumor-associated death worldwide. Metastasis and chemoresistance are crucial barriers for gastric cancer treatment. The Forkhead Box M1 (FOXM1) transcription factor has been reported as a promising treatment target for various types of tumors, but its effects on gastric cancer progression are not fully understood. In the present study, we found that FOXM1 expression levels were significantly up-regulated in human gastric cancer cell lines and tissues, and its expression was much higher in patients with metastasis. We then found that suppressing FOXM1 with its inhibitor thiostrepton (THIO) significantly reduced the proliferation of gastric cancer cells, while induced G0/G1 and apoptosis. Moreover, reactive oxygen species (ROS) production, mitochondrial impair and autophagy were remarkably provoked in gastric cancer cells treated with THIO, which were required for the regulation of apoptotic cell death. Furthermore, THIO exposure considerably suppressed the migration, invasion and angiogenesis in gastric cancer cells. The inhibitory effects of THIO on tumor growth and metastasis were confirmed in an established gastric cancer xenograft mouse model without detectable toxicity. Intriguingly, our in vitro studies showed that the anti-cancer effects of THIO on gastric cancer were almost abolished upon FOXM1 over-expression, indicating the necessity of FOXM1 suppression in THIO-inhibited tumor growth. In addition, higher FOXM1 expression was detected in gastric cancer cells with chemoresistance. Both in vitro and in vivo studies illustrated that THIO strongly promoted the drug-resistant gastric cancer cells to chemotherapies, proved by the considerably decreased cell proliferation and epithelial-mesenchymal transition (EMT) process. Together, these findings revealed that FOXM1 was a promising therapeutic target for gastric cancer treatment, and THIO exerted potential as an therapeutic agent for the disease.
Collapse
Affiliation(s)
- Shi-Xiong Liu
- Department of Geriatrics (II), The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yun Zhou
- Department of Geriatrics (II), The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Li Zhao
- Department of Medical Ultrasound, The Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, 730020, China
| | - Ling-Shan Zhou
- Department of Geriatrics (II), The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jie Sun
- Department of Geriatrics (I), The First Hospital of Lanzhou University, Lanzho, 730000, China
| | - Ge-Jing Liu
- Department of Geriatrics (I), The First Hospital of Lanzhou University, Lanzho, 730000, China
| | - Ying-Shi Du
- Department of Geriatrics (I), The First Hospital of Lanzhou University, Lanzho, 730000, China
| | - Yong-Ning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
16
|
Peptide Lv augments intermediate-conductance calcium-dependent potassium channels (KCa3.1) in endothelial cells to promote angiogenesis. PLoS One 2022; 17:e0276744. [PMID: 36282858 PMCID: PMC9595550 DOI: 10.1371/journal.pone.0276744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Peptide Lv is a small endogenous secretory peptide that is expressed in various tissues and conserved across different species. Patients with diabetic retinopathy, an ocular disease with pathological angiogenesis, have upregulated peptide Lv in their retinas. The pro-angiogenic activity of peptide Lv is in part through promoting vascular endothelial cell (EC) proliferation, migration, and sprouting, but its molecular mechanism is not completely understood. This study aimed to decipher how peptide Lv promotes EC-dependent angiogenesis by using patch-clamp electrophysiological recordings, Western immunoblotting, quantitative PCR, and cell proliferation assays in cultured ECs. Endothelial cells treated with peptide Lv became significantly hyperpolarized, an essential step for EC activation. Treatment with peptide Lv augmented the expression and current densities of the intermediate-conductance calcium-dependent potassium (KCa3.1) channels that contribute to EC hyperpolarization but did not augment other potassium channels. Blocking KCa3.1 attenuated peptide Lv-elicited EC proliferation. These results indicate that peptide Lv-stimulated increases of functional KCa3.1 in ECs contributes to EC activation and EC-dependent angiogenesis.
Collapse
|
17
|
Yehya AHS, Subramaniam AV, Asif M, Kaur G, Abdul Majid AMS, Oon CE. Anti-tumour activity and toxicological studies of combination treatment of Orthosiphon stamineus and gemcitabine on pancreatic xenograft model. World J Gastroenterol 2022; 28:4620-4634. [PMID: 36157930 PMCID: PMC9476872 DOI: 10.3748/wjg.v28.i32.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/26/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is the most aggressive cancer type. Gemcitabine is the first line chemo-drug used for pancreatic cancer but exerts a broad spectrum of organ toxicities and adverse effects in patients. AIM To evaluate the anti-tumour activity and toxicological effects of Orthosiphon stamineus extract formulation (ID: C5EOSEW5050ESA trademarked as Nuva-staticTM), and gemcitabine combination on pancreatic xenograft model. METHODS Mice were randomly divided into six groups of 6 mice each (n = 6) and given different treatments for 28 d. The study design consisted of a 2 x 3 factorial treatment structure, with gemcitabine (yes/no) by oral (at 1200 and 400 mg/kg per day). Human pancreatic cancer cells were injected subcutaneously into the flanks of athymic nude mice. C5EOSEW5050ESA (200 or 400 mg/kg per day) was administered orally, while gemcitabine (10 mg/kg per 3 d) was given intraperitoneally either alone or in combination treatment. Histopathological analyses of vital organs, tumour tissues, and incidence of lethality were analysed. Analyses of tumour necrosis and proliferation were determined by haematoxylin-eosin staining and immunohistochemistry for Ki-67, respectively. RESULTS No signs of toxicity or damage to vital organs were observed in all treatment groups compared to the untreated group. C5EOSEW5050ESA at 200 mg/kg and gemcitabine combination had no additive antitumor effects compared to a single treatment. Remarkably, a comparably greater response in a reduction in tumour growth, Ki-67 protein expression, and necrosis was demonstrated by 400 mg/kg of C5EOSEW5050ESA and gemcitabine combination than that of the individual agents. CONCLUSION These results highlighted the synergistic activity of C5EOSEW5050ESA with gemcitabine to reduce pancreatic tumour growth in mice compared to a single treatment. Thus, this study provides valuable insights into using C5EOSEW5050ESA as a complementary treatment with gemcitabine for pancreatic cancer.
Collapse
Affiliation(s)
- Ashwaq Hamid Salem Yehya
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
- Cancer Research, Eman Biodiscoveries, Kedah 08000, Malaysia
| | - Ayappa V Subramaniam
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Amin M S Abdul Majid
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australia 2601, Australia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
18
|
Gallardo-Fernández M, Gonzalez-Ramirez M, Cerezo AB, Troncoso AM, Garcia-Parrilla MC. Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses. Foods 2022; 11:foods11152355. [PMID: 35954121 PMCID: PMC9368174 DOI: 10.3390/foods11152355] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hydroxytyrosol (HT) is a phenolic compound with proven biological properties present in a limited number of foods such as table olives, virgin olive oil (VOO) and wines. The present work aims to evaluate the dietary intake of HT in the European (EU) population by compiling scattered literature data on its concentration in foods. The consumption of the involved foods was estimated based on the EFSA Comprehensive European Food Consumption Database. The updated average contents of HT are as follows: 629.1, 5.2 and 2.1 µg/g for olives, olive oil and wine, respectively. The HT estimated intake in the European Union (EU) adult population falls within 0.13–6.82 mg/day/person, with table olives and wine being the main contributors. The estimated mean dietary intake of HT in EU countries is 1.97 ± 2.62 mg/day. Greece showed the highest HT intake (6.82 mg/day), while Austria presented the lowest (0.13 mg/day). Moreover, HT is an authorized novel food ingredient in the EU that can be added to different foods. Since the estimated HT intake is substantially low, the use of HT as a food ingredient seems feasible. This opens new possibilities for revalorizing waste products from olive oil and olive production which are rich HT sources.
Collapse
|
19
|
Ünver H, Dıkmen G, Kiyan HT. Synthesis, X-ray characterization and evaluation of potent anti-angiogenic activity of a novel copper(II)-imidazole-bipyridyl complex. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.1963279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hakan Ünver
- Faculty of Science, Department of Chemistry, Eskişehir Technical University, Eskişehir, Turkey
- Medicinal Plants and Medicine Research Center, Anadolu University, Eskişehir, Turkey
| | - Gökhan Dıkmen
- Central Research Laboratory Application and Research Center (ARUM), Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Hülya Tuba Kiyan
- Faculty of Pharmacy, Department of Pharmacognosy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
20
|
Feng C, Lyu Y, Gong L, Wang J. Therapeutic Potential of Natural Products in the Treatment of Renal Cell Carcinoma: A Review. Nutrients 2022; 14:nu14112274. [PMID: 35684073 PMCID: PMC9182762 DOI: 10.3390/nu14112274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is a common cancer of the urinary system. The potential therapeutic effects of certain natural products against renal cell carcinoma have been reported both in vivo and in vitro, but no reviews have been published classifying and summarizing the mechanisms of action of various natural products. In this study, we used PubMed and Google Scholar to collect and screen the recent literature on natural products with anti-renal-cancer effects. The main mechanisms of action of these products include the induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis and reduction of drug resistance. In total, we examined more than 30 natural products, which include kahweol acetate, honokiol, englerin A and epigallocatechin-3-gallate, among others, have demonstrated a variety of anti-renal-cancer effects. In conclusion, natural products may have a wider application in kidney cancer than previously believed and are potential candidates for treatment in RCC.
Collapse
Affiliation(s)
- Chenchen Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yinfeng Lyu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Lingxiao Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
- Correspondence:
| |
Collapse
|
21
|
In Vitro and In Vivo Evaluation of a Cyclic LyP-1-Modified Nanosystem for Targeted Endostatin Delivery in a KYSE-30 Cell Xenograft Athymic Nude Mice Model. Pharmaceuticals (Basel) 2022; 15:ph15030353. [PMID: 35337150 PMCID: PMC8955112 DOI: 10.3390/ph15030353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
This work investigated the use of LyP-1 as a homing peptide for p32 receptor targeting on the surface of an endostatin (ENT)-loaded chitosan-grafted nanosystem intended for intracellular delivery of ENT and mitochondrial targeting in a squamous cell carcinoma (SCC) cell line (KYSE-30) model. The angiogenic factors for VEGF-C and MMP2 were assessed with in vivo evaluation of the nanosystem upon ENT release and tumor necrosis in nude mice with a KYSE-30 cell xenograft. The LyP-1-modified nanosystem revealed a three-fold decrease in proliferation at 1000 µg/mL compared with the control and facilitated receptor-mediated cellular uptake and internalization. In addition, targeting of the Lyp-1-functionalized nanosystem to mitochondrial and nuclear proteins in vitro and in vivo was achieved. Up to 60% inhibition of KYSE-30 cell migration was observed and the expressions of VEGF-C and MMP-2 as angiogenic markers were reduced 3- and 2-fold, respectively. A marked reduction in tumor mass was recorded (43.25%) with the control, a 41.36% decrease with the nanoparticles and a 61.01% reduction with the LyP-1-modified nanosystem following treatment in mice. The LyP-1-functionalized nanosystem targeted tumor lymphatics, instigated nuclear rupture and mitochondrial distortion, and decreased cell proliferation and migration with inhibition of VEGF-C and MMP2 expression.
Collapse
|
22
|
González-Ballesteros MM, Mejía C, Ruiz-Azuara L. Metallodrugs, an approach against invasion and metastasis in cancer treatment. FEBS Open Bio 2022; 12:880-899. [PMID: 35170871 PMCID: PMC9063434 DOI: 10.1002/2211-5463.13381] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a heterogeneous and multifactorial disease that causes high mortality throughout the world; therefore, finding the most effective therapies is a major research challenge. Currently, most anticancer drugs present a limited number of well‐established targets, such as cell proliferation or death; however, it is important to consider that the worse progression of cancer toward pathological stages implies invasion and metastasis processes. Medicinal Inorganic Chemistry (MIC) is a young area that deals with the design, synthesis, characterization, preclinical evaluation, and mechanism of action of new inorganic compounds, called metallodrugs. The properties of metallic ions allow enriching of strategies for the design of new drugs, enabling the adjustment of physicochemical and stereochemical properties. Metallodrugs can adopt geometries, such as tetrahedral, octahedral, square planar, and square planar pyramid, which adjusts their arrangement and facilitates binding with a wide variety of targets. The redox properties of some metal ions can be modulated by the presence of the bound ligands to adjust their interaction, thereby opening a range of mechanisms of action. In this regard, the mechanisms of action that trigger the biological activity of metallodrugs have been generally identified by: (a) coordination of the metal to biomolecules (for instance, cisplatin binds to the N7 in DNA guanine, as Pt‐N via coordination of the inhibition of enzymes); (b) redox‐active; and (c) ROS production. For this reason, a series of metallodrugs can interact with several specific targets in the anti‐invasive processes of cancer and can prevent metastasis. The structural base of several metal compounds shows great anticancer potential by inhibiting the signaling pathways related to cancer progression. In this minireview, we present the advances in the field of antimetastatic effects of metallodrugs.
Collapse
Affiliation(s)
- Mauricio M González-Ballesteros
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP, 04510, Mexico
| | - Carmen Mejía
- Laboratorio de Biología Celular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, C.P, 76230, México
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP, 04510, Mexico
| |
Collapse
|
23
|
Anti-VEGF Effect of Bioactive Indolic Compounds and Hydroxytyrosol Metabolites. Foods 2022; 11:foods11040526. [PMID: 35206003 PMCID: PMC8871452 DOI: 10.3390/foods11040526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis is a key process involved in both cancer and cardiovascular diseases, the vascular endothelial growth factor (VEGF) and its VEGF receptor-2 (VEGFR-2) being the main triggers. The aim of this study was to determine the molecular mechanism underlying the potent inhibition of VEGF signaling by hydroxytyrosol (HT) metabolites and indolic compounds and establish a relation between their structure and bioactivity. Experiments involved the evaluation of their potential to inhibit VEGF on human umbilical vein endothelial cells (HUVECs) by ELISA assay and their subsequent effect on the downstream signaling pathway (PLCγ1, Akt, and endothelial nitric oxide synthetase (eNOS)) by Western blot. Respectively, 3,4-dihydroxyphenylacetaldehyde (DOPAL) (100 µM) and indole pyruvic acid (IPy) (1 mM) were capable of inhibiting VEGFR-2 activation with an IC50 value of 119 µM and 1.037 mM. The anti-angiogenic effect of DOPAL and IPy is mediated via PLCγ1. Additionally, DOPAL significantly increases eNOS phosphorylation, while IPy maintained it. These data provide for the first time evidence of the anti-angiogenic effect of DOPAL and IPy for future use as potential bioactive food ingredients.
Collapse
|
24
|
Metformin as a Potential Treatment Option for Endometriosis. Cancers (Basel) 2022; 14:cancers14030577. [PMID: 35158846 PMCID: PMC8833654 DOI: 10.3390/cancers14030577] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a common disease in women of reproductive age, and its pathogenesis seems to be largely affected by hormone imbalance, inflammation, oxidative stress, and autophagy dysregulation. These pathophysiological disturbances interact with one another through mechanisms that are still awaiting elucidation. The aim of this article is to present current knowledge regarding the possibilities of using metformin in the pharmacological treatment of endometriosis. Metformin is an insulin sensitizer widely used for the treatment of type 2 diabetes mellitus. The pleiotropic effects of metformin are mainly exerted through the activation of AMP-activated protein kinase, which is the key cellular energy homeostasis regulator that inhibits mTOR, a major autophagy suppressor. Metformin regresses endometriotic implants by increasing the activity of superoxide dismutase. It is also an inhibitor of metalloproteinase-2, decreasing the levels of the vascular endothelial growth factor and matrix metalloproteinase-9 in animal studies. In endometriosis, metformin might modify the stroma-epithelium communication via Wnt2/β-catenin. With its unique therapeutic mechanisms and no serious side effects, metformin seems to be a helpful anti-inflammatory and anti-proliferative agent in the treatment of endometriosis. It could be a missing link for the successful treatment of this chronic disease.
Collapse
|
25
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
26
|
Mauro A, Berardinelli P, Russo V, Bernabò N, Martelli A, Nardinocchi D, Di Giacinto O, Turriani M, Barboni B. Effects of P 4 Antagonist RU486 on VEGF and Its Receptors' Signaling during the In Vivo Transition from the Preovulatory to Periovulatory Phase of Ovarian Follicles. Int J Mol Sci 2021; 22:13520. [PMID: 34948315 PMCID: PMC8706603 DOI: 10.3390/ijms222413520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
The development of an adequate blood vessel network is crucial for the accomplishment of ovarian follicle growth and ovulation, which is necessary to support the proliferative and endocrine functions of the follicular cells. Although the Vascular Endothelial Growth Factor (VEGF) through gonadotropins guides ovarian angiogenesis, the role exerted by the switch on of Progesterone (P4) during the periovulatory phase remains to be clarified. The present research aimed to investigate in vivo VEGF-mediated mechanisms by inducing the development of periovulatory follicles using a pharmacologically validated synchronization treatment carried out in presence or absence of P4 receptor antagonist RU486. Spatio-temporal expression profiles of VEGF, FLT1, and FLK1 receptors and the two major MAPK/ERKs and PI3K/AKT downstream pathways were analyzed on granulosa and on theca compartment. For the first time, the results demonstrated that in vivo administration of P4 antagonist RU486 inhibits follicular VEGF receptors' signaling mainly acting on the theca layer by downregulating the activation of ERKs and AKTs. Under the effect of RU486, periovulatory follicles' microarchitecture did not move towards the periovulatory stage. The present evidence provides new insights on P4 in vivo biological effects in driving vascular and tissue remodeling during the periovulatory phase.
Collapse
Affiliation(s)
- Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Paolo Berardinelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, Via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Alessandra Martelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Delia Nardinocchi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Oriana Di Giacinto
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Maura Turriani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| |
Collapse
|
27
|
Kaur D, Behl T, Chigurupati S, Sehgal A, Singh S, Sharma N, Badavath VN, Vargas-De-La-Cruz C, Bhatia S, Al-Harrasi A, Dey A, Aleya L, Bungau S. Deciphering the focal role of endostatin in Alzheimer's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61998-62011. [PMID: 34561808 DOI: 10.1007/s11356-021-16567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a paramount chronic neurodegenerative condition that has been affecting elderly people since the 1900s. It causes memory loss, disorientation, and poor mental function. AD is considered to be one of the most serious problems that dementia sufferers face. Despite extensive investigation, the pathological origin of Alzheimer's disease remains a mystery. The amyloid cascade theory and the vascular hypothesis, which stresses the buildup of Aβ plaques, have dominated research into dementia and aging throughout history. However, research into this task failed to yield the long-awaited therapeutic miracle lead for Alzheimer's disease. Perhaps a hypothetical fragility in the context of Alzheimer's disease was regarded as a state distinct from aging in general, as suggested by the angiogenesis hypothesis, which suggests that old age is one state associated with upregulation of angiogenic growth factors, resulting in decreased microcirculation throughout the body. There has also been evidence that by controlling or inhibiting the components involved in the sequence of events that cause angiogenesis, there is a visible progression in AD patients. In Alzheimer's disease, one such antiangiogenic drug is being used.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
28
|
Bezel P, Valaperti A, Steiner U, Scholtze D, Wieser S, Vonow-Eisenring M, Widmer A, Kowalski B, Kohler M, Franzen DP. Evaluation of cytokines in the tumor microenvironment of lung cancer using bronchoalveolar lavage fluid analysis. Cancer Immunol Immunother 2021; 70:1867-1876. [PMID: 33394095 PMCID: PMC8195789 DOI: 10.1007/s00262-020-02798-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Lung cancer is the leading cause of death by cancer. In recent years, immunotherapy with checkpoint inhibitors (ICI) emerged as a promising new therapeutic approach. However, a deeper understanding of the immunologic responses adjacent to the tumor known as tumor microenvironment (TME) is needed. Our study investigated TME of lung cancer by analyzing cytokines in bronchoalveolar lavage fluid (BALF). MATERIALS AND METHODS Between January 2018 and June 2019, 119 patients were prospectively enrolled in this study. For each cancer patient, levels of 16 cytokines (fractalkine, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukins (IL): IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17A, and IL-23) were measured in BALF and serum and compared to healthy individuals and patients with other lung diseases. RESULTS There were several significant differences of cytokine levels of patients with lung cancer compared to healthy individuals. However, none of them remained in the multivariate analysis compared to other lung diseases in either BALF or serum. Furthermore, there were no significant differences between the groups in cell differentiation of either BALF or serum. Cytokine levels in BALF were generally near the lower detection limit and showed almost no correlation with their respective levels measured in serum of the same individual. CONCLUSIONS Cytokines in BALF and serum of lung cancer patients may indicate unspecific inflammation. BAL is not recommendable as a tool to investigate TME of lung cancer. Therefore, cytokines measured in BALF are probably not appropriate as predictors in patients treated with ICIs.
Collapse
Affiliation(s)
- Pascal Bezel
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Alan Valaperti
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zurich, Switzerland
| | - Urs Steiner
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zurich, Switzerland
| | - Dieter Scholtze
- Department of Pulmonology, City Hospital Triemli, Birmensdorferstrasse 497, 8063, Zurich, Switzerland
| | - Stephan Wieser
- Department of Pulmonology, City Hospital Waid, Tièchestrasse 99, 8037, Zurich, Switzerland
| | - Maya Vonow-Eisenring
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zurich, Switzerland
| | - Andrea Widmer
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Benedikt Kowalski
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Daniel P Franzen
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
29
|
Bakr NM, Mahmoud MS, Nabil R, Boushnak H, Swellam M. Impact of circulating miRNA-373 on breast cancer diagnosis through targeting VEGF and cyclin D1 genes. J Genet Eng Biotechnol 2021; 19:84. [PMID: 34089425 PMCID: PMC8179880 DOI: 10.1186/s43141-021-00174-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/28/2021] [Indexed: 01/07/2023]
Abstract
Background Breast cancer (BC) is the common primary tumor among females. Hence, there is an urgent need to improve the early prediction and diagnosis of BC. For that reason, the object of the current study is to analyze the expression levels of miRNA-373 and its target genes including vascular endothelial growth factor (VEGF) and cyclin D1 in women with BC. Results Upregulation of miRNA-373 and its target genes was observed in BC patients followed by patients with benign breast lesions compared to downregulation in controls. There was a significant association between the expression level of miRNA-373 and all clinical features. The same associations were observed between its target genes and all clinico-pathological features except hormonal status. The correlation between miRNA-373 and both genes was significant. Conclusions Our results prove that miRNA-373, as an oncomir, would be a vital biomarker for BC diagnosis and prognosis by targeting both VEGF and cyclin D1.
Collapse
Affiliation(s)
- Noha M Bakr
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, 12622, Egypt. .,High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Magda Sayed Mahmoud
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.,High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Reem Nabil
- Clinical Pathology Department, National Cancer Institute, Cairo, Egypt
| | - Hussein Boushnak
- Surgery Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, 12622, Egypt.,High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
30
|
Martí JM, Garcia-Diaz A, Delgado-Bellido D, O'Valle F, González-Flores A, Carlevaris O, Rodríguez-Vargas JM, Amé JC, Dantzer F, King GL, Dziedzic K, Berra E, de Álava E, Amaral AT, Hammond EM, Oliver FJ. Selective modulation by PARP-1 of HIF-1α-recruitment to chromatin during hypoxia is required for tumor adaptation to hypoxic conditions. Redox Biol 2021; 41:101885. [PMID: 33581682 PMCID: PMC7878192 DOI: 10.1016/j.redox.2021.101885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The adaptation to hypoxia is mainly controlled by the HIF transcription factors. Increased expression/activity of HIF-1α correlates with poor prognosis in cancer patients. PARP-1 inhibitors are used in the clinic to treat BRCAness breast/ovarian cancer and have been shown to regulate the hypoxic response; therefore, their use could be expanded. METHODS In this work by integrating molecular/cell biology approaches, genome-wide ChIP-seq, and patient samples, we elucidate the extent to which PARP-1 exerts control over HIF-1-regulated genes. RESULTS In human melanoma, PARP-1 and HIF-1α expression are strongly associated. In response to a hypoxic challenge poly(ADP-ribose) (PAR) is synthesized, HIF-1α is post-transcriptionally modified (PTM) and stabilized by PARylation at specific K/R residues located at its C-terminus. Using an unbiased ChIP-seq approach we demonstrate that PARP-1 dictates hypoxia-dependent HIF-recruitment to chromatin in a range of HIF-regulated genes while analysis of HIF-binding motifs (RCGTG) reveals a restriction on the recognition of hypoxia responsive elements in the absence of PARP-1. Consequently, the cells are poorly adapted to hypoxia, showing a reduced fitness during hypoxic induction. CONCLUSIONS These data characterize the fine-tuning regulation by PARP-1/PARylation of HIF activation and suggest that PARP inhibitors might have therapeutic potential against cancer types displaying HIF-1α over-activation.
Collapse
Affiliation(s)
- Juan Manuel Martí
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, and CIBERONC, 18100, Granada, Spain
| | - Angel Garcia-Diaz
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, and CIBERONC, 18100, Granada, Spain
| | - Daniel Delgado-Bellido
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, and CIBERONC, 18100, Granada, Spain
| | - Francisco O'Valle
- Pathology Department, School of Medicine, IBIMER, CIBM, University of Granada, Spain and Biosanitary Research Institute (IBS. GRANADA), University of Granada, Granada, Spain
| | - Ariannys González-Flores
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, and CIBERONC, 18100, Granada, Spain
| | - Onintza Carlevaris
- CIC BioGUNE, Parque Tecnológico de Bizkaia- Ed. 801A, 48160, Derio, Spain, CIBERONC
| | - José Manuel Rodríguez-Vargas
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire D'Excellence Medalis, UMR7242, Centre National de La Recherche Scientifique/Université de Strasbourg, Institut de Recherche de L'Ecole de Biotechnologie de Strasbourg, Boulevard S. Brant, BP10413, 67412, Illkirch, France
| | - Jean Christophe Amé
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire D'Excellence Medalis, UMR7242, Centre National de La Recherche Scientifique/Université de Strasbourg, Institut de Recherche de L'Ecole de Biotechnologie de Strasbourg, Boulevard S. Brant, BP10413, 67412, Illkirch, France
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire D'Excellence Medalis, UMR7242, Centre National de La Recherche Scientifique/Université de Strasbourg, Institut de Recherche de L'Ecole de Biotechnologie de Strasbourg, Boulevard S. Brant, BP10413, 67412, Illkirch, France
| | - George L King
- Section of Vascular Cell Biology and Complications, Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Klaudia Dziedzic
- CIC BioGUNE, Parque Tecnológico de Bizkaia- Ed. 801A, 48160, Derio, Spain, CIBERONC
| | - Edurne Berra
- CIC BioGUNE, Parque Tecnológico de Bizkaia- Ed. 801A, 48160, Derio, Spain, CIBERONC
| | - E de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen Del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - A T Amaral
- Institute of Biomedicine of Sevilla (IBiS), Virgen Del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - F Javier Oliver
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, and CIBERONC, 18100, Granada, Spain.
| |
Collapse
|
31
|
Shahik SM, Salauddin A, Hossain MS, Noyon SH, Moin AT, Mizan S, Raza MT. Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach. Genomics Inform 2021; 19:e6. [PMID: 33840170 PMCID: PMC8042301 DOI: 10.5808/gi.20068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/11/2021] [Indexed: 12/26/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is expressed at elevated levels by most cancer cells, which can stimulate vascular endothelial cell growth, survival, proliferation as well as trigger angiogenesis modulated by VEGF and VEGFR (a tyrosine kinase receptor) signaling. The angiogenic effects of the VEGF family are thought to be primarily mediated through the interaction of VEGF with VEGFR-2. Targeting this signaling molecule and its receptor is a novel approach for blocking angiogenesis. In recent years virtual high throughput screening has emerged as a widely accepted powerful technique in the identification of novel and diverse leads. The high-resolution X-ray structure of VEGF has paved the way to introduce new small molecular inhibitors by structure-based virtual screening. In this study using different alkaloid molecules as potential novel inhibitors of VEGF, we proposed three alkaloid candidates for inhibiting VEGF and VEGFR mediated angiogenesis. As these three alkaloid compounds exhibited high scoring functions, which also highlights their high binding ability, it is evident that these alkaloids can be taken to further drug development pipelines for use as novel lead compounds to design new and effective drugs against cancer.
Collapse
Affiliation(s)
- Shah Md Shahik
- Molecular Biology Department, AFC Agro Biotech Ltd., Dhaka 1212, Bangladesh.,Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group (dBme), Chattogram 4202, Bangladesh
| | - Asma Salauddin
- Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group (dBme), Chattogram 4202, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Shakhawat Hossain
- Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group (dBme), Chattogram 4202, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sajjad Hossain Noyon
- Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group (dBme), Chattogram 4202, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Shagufta Mizan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Thosif Raza
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
32
|
A single nucleotide mutation drastically increases the expression of tumor-homing NGR-TNFα in the E. coli M15-pQE30 system by improving gene transcription. Appl Microbiol Biotechnol 2021; 105:1447-1460. [PMID: 33528691 PMCID: PMC7852052 DOI: 10.1007/s00253-021-11136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
Due to their potent immune stimulation, tumor necrosis factor alpha (TNFα) variants with tumor-homing activity are attractive as novel antitumor drugs. The promising antitumor effect of NGR-TNFα in clinical trials triggered extensive interest in developing novel tumor-homing TNFα variants in recent years. Owing to its promising antitumor effect, NGR-TNFα is usually used as a control for newly developed tumor-homing TNFα variants. In our previous works, we produced a pericyte-targeting Z-TNFα at high levels using the Escherichia coli (E. coli) M15-pQE30 system. To further compare Z-TNFα and NGR-TNFα, we attempted to express NGR-TNFα using the same system. Surprisingly, native NGR-TNFα was expressed at a low (~ 0.2 mg/L) level in E. coli M15 containing the pQE30 plasmid. However, a single nucleotide mutation of C to G, resulting in a substitution of leucine (L) with valine (V) at the start of TNFα, increased the expression of NGR-TNFα by ~ 100 times through improving transcription. In addition, the amino acid substitution showed a little impact on the receptor binding, in vitro cytotoxicity, and in vivo antitumor effect of NGR-TNFα. As fusing NGR to the N-terminus of TNFα with a valine substitution did not reduce the protein yield, the TNFα gene with a C > G mutation might be used to prepare novel tumor-homing TNFα when the native TNFα-based variant is expressed at an extremely low level in E. coli. Notably, in addition to the mutated valine, the impact of N-terminal additional amino acids provided by pQE30 vector on the function of TNFα variant must be carefully evaluated. KEY POINTS : • A single nucleotide mutation increased the expression of NGR-TNFα by two orders. • Nucleotide mutation-induced amino acid substitution did not reduce NGR-TNFα activity.
Collapse
|
33
|
Makarova E, Senchukova M, Volchenko N. Tumor microvessels in Stage I-IIA cervical cancer and their clinical significance. ONKOLOGIYA. ZHURNAL IMENI P.A.GERTSENA 2021; 10:35. [DOI: 10.17116/onkolog20211006135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
|
34
|
Shahraki S, Moghaddam Matin M, Ebrahimzadeh Bideskan A, Aslzare M, Bahrami AR, Hosseinian S, Iranpour S, Samadi Noshahr Z, Khajavi Rad A. Kidney tissue engineering using a well-preserved acellular rat kidney scaffold and mesenchymal stem cells. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:339-348. [PMID: 34815846 PMCID: PMC8576151 DOI: 10.30466/vrf.2019.104640.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/14/2019] [Indexed: 11/29/2022]
Abstract
The aim of this study was to acquire an effective method for preparation of rat decellularized kidney scaffolds capable of supporting proliferation and differentiation of human adipose tissue derived mesenchymal stem cells (AD-MSCs) into kidney cells. We compared two detergents, the sodium dodecyl sulfate (SDS) and triton X-100 for decellularization. The efficiency of these methods was assessed by Hematoxylin and Eosin (H&E), 4', 6 diamidino-2-phenylindole and immunohistochemistry (IHC) staining. In the next step, AD-MSCs were seeded into the SDS-treated scaffolds and assessed after three weeks of culture. Proliferation and differentiation of AD-MSCs into kidney-specific cell types were then analyzed by H&E and IHC staining. The histological examinations revealed that SDS was more efficient in removing kidney cells at all-time points compared to triton X-100. Also, in the SDS-treated sections the native extracellular matrix was more preserved than the triton-treated samples. Laminin was completely preserved during decellularization procedure using SDS. Cell attachment in the renal scaffold was observed after recellularization. Furthermore, differentiation of AD-MSCs into epithelial and endothelial cells was confirmed by expression of Na-K ATPase and vascular endothelial growth factor receptor 2 (VEGFR-2) in seeded rat renal scaffolds, respectively. Our findings illustrated that SDS was more effective for decellularization of rat kidney compared to triton X-100. We presented an optimized method for decellularization and recellularization of rat kidneys to create functional renal natural scaffolds. These natural scaffolds supported the growth of AD-MSCs and could also induce differentiation of these cells into epithelial and endothelial cells.
Collapse
Affiliation(s)
- Samira Shahraki
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; ,Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Maryam Moghaddam Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; ,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; ,Correspondence Abolfazl Khajavi Rad. MD, PhD , Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran . E-mail: . Maryam Moghaddam Matin. PhD , Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, E-mail:
| | | | - Mohammad Aslzare
- Urology and Nephrology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; ,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran;
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; ,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran;
| | - Zahra Samadi Noshahr
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Abolfazl Khajavi Rad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; ,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. ,Correspondence Abolfazl Khajavi Rad. MD, PhD , Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran . E-mail: . Maryam Moghaddam Matin. PhD , Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, E-mail:
| |
Collapse
|
35
|
Wang X, Bove AM, Simone G, Ma B. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front Cell Dev Biol 2020; 8:599281. [PMID: 33304904 PMCID: PMC7701214 DOI: 10.3389/fcell.2020.599281] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) play crucial roles in vasculogenesis and angiogenesis. Angiogenesis is an important mechanism in many physiological and pathological processes, and is involved in endothelial cell proliferation, migration, and survival, then leads to further tubulogenesis, and finally promotes formation of vessels. This series of signaling cascade pathways are precisely mediated by VEGF/VEGFR-2 system. The VEGF binding to the IgD2 and IgD3 of VEGFR-2 induces the dimerization of the receptor, subsequently the activation and trans-autophosphorylation of the tyrosine kinase, and then the initiation of the intracellular signaling cascades. Finally the VEGF-activated VEGFR-2 stimulates and mediates variety of signaling transduction, biological responses, and pathological processes in angiogenesis. Several crucial phosphorylated sites Tyr801, Try951, Try1175, and Try1214 in the VEGFR-2 intracellular domains mediate several key signaling processes including PLCγ-PKC, TSAd-Src-PI3K-Akt, SHB-FAK-paxillin, SHB-PI3K-Akt, and NCK-p38-MAPKAPK2/3 pathways. Based on the molecular structure and signaling pathways of VEGFR-2, the strategy of the VEGFR-2-targeted therapy should be considered to employ in the treatment of the VEGF/VEGFR-2-associated diseases by blocking the VEGF/VEGFR-2 signaling pathway, inhibiting VEGF and VEGFR-2 gene expression, blocking the binding of VEGF and VEGFR-2, and preventing the proliferation, migration, and survival of vascular endothelial cells expressing VEGFR-2.
Collapse
Affiliation(s)
- Xinrong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | | | | | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
36
|
Assessment of anti-cancer potential of Hyalomma dromedarii salivary glands extract: in vitro study. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Morphological Characteristics and Clinical Significance of Different Types of Tumor Vessels in Patients with Stages I-IIA of Squamous Cervical Cancer. JOURNAL OF ONCOLOGY 2020; 2020:3818051. [PMID: 32849870 PMCID: PMC7441445 DOI: 10.1155/2020/3818051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 02/05/2023]
Abstract
The determination of factors associated with progression of cervical cancer is important, both for a recurrence risk assessment and for determining optimal treatment tactics. Previously, we showed the prognostic value of different types of tumor microvessels (MVs) in gastric and breast cancer. The object of this research was to study the morphology and clinical significance of different tumor microvessels in early cervical cancer. A total of 65 archived paraffin blocks of patients with I-IIA stages of squamous cervical cancer were investigated. Samples were stained with Mayer hematoxylin and immunohistochemically using antibodies to CD34, podoplanin, HIF-1a, and Snail. The eight types of tumor MVs differed in morphology were identified. It was established that only the dilated capillaries (DСs) with weak expression of CD34, the contact type DCs, the capillaries in tumor solid component, and the lymphatic vessels in the lymphoid and polymorphic cell infiltrates of tumor stroma are associated with clinical and pathological characteristics of early cervical cancer. Preliminary results also suggest that a combination of fragmentation in tumor solid component and the contact type DCs may predict a recurrence of early cervical cancer. Given the small number of cervical cancer recurrences, the predictive significance of the described markers requires a more thorough examination.
Collapse
|
38
|
Martí JM, Fernández-Cortés M, Serrano-Sáenz S, Zamudio-Martinez E, Delgado-Bellido D, Garcia-Diaz A, Oliver FJ. The Multifactorial Role of PARP-1 in Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12030739. [PMID: 32245040 PMCID: PMC7140056 DOI: 10.3390/cancers12030739] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/03/2020] [Accepted: 03/15/2020] [Indexed: 02/08/2023] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs), represent a family of 17 proteins implicated in a variety of cell functions; some of them possess the enzymatic ability to synthesize and attach poly (ADP-ribose) (also known as PAR) to different protein substrates by a post-translational modification; PARPs are key components in the cellular response to stress with consequences for different physiological and pathological events, especially during neoplasia. In recent years, using PARP inhibitors as antitumor agents has raised new challenges in understanding their role in tumor biology. Notably, the function of PARPs and PAR in the dynamic of tumor microenvironment is only starting to be understood. In this review, we summarized the conclusions arising from recent studies on the interaction between PARPs, PAR and key features of tumor microenvironment such as hypoxia, autophagy, tumor initiating cells, angiogenesis and cancer-associated immune response.
Collapse
|
39
|
Kim JH, Hwang J, Jung JH, Lee HJ, Lee DY, Kim SH. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer 2019; 18:180. [PMID: 31815635 PMCID: PMC6900861 DOI: 10.1186/s12943-019-1110-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Though Forkhead box P (FOXP) transcription factors comprising of FOXP1, FOXP2, FOXP3 and FOXP4 are involved in the embryonic development, immune disorders and cancer progression, the underlying function of FOXP3 targeting CD4 + CD25+ regulatory T (Treg) cells and the dual roles of FOXP proteins as an oncogene or a tumor suppressor are unclear and controversial in cancers to date. Thus, the present review highlighted research history, dual roles of FOXP proteins as a tumor suppressor or an oncogene, their molecular networks with other proteins and noncoding RNAs, cellular immunotherapy targeting FOXP3, and clinical implications in cancer progression.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ji Hoon Jung
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
40
|
Sosnin DY, Gileva OS, Sivak EY, Daurova FY, Gibadullina NV, Korotin SV. [The content of vascular endothelial grow factor in saliva and serum in patients with periodontitis.]. Klin Lab Diagn 2019; 64:663-668. [PMID: 31747494 DOI: 10.18821/0869-2084-2019-64-11-663-668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
To study the concentration of vasculoendothelial growth factor (VEGF) in mixed saliva and serum of patients in normal conditions and with generalized periodontitis. The main group (n = 42) was represented by patients with generalized periodontitis. The comparison group (n = 36) consisted of patients without periodontal tissue diseases. The concentration of VEFR was determined by the method of enzyme-linked immunosorbent assay (ELISA) using a commercial test-system "VEGF - IFA - BEST" (A-8784) ("Vector - Best", Russia). The median values VEFR in saliva were 5.49 times higher than the values for serum in the main group (p = 0.000000) and 7.01 times in the comparison group (p = 0.000000). The concentration of VEFR in the saliva of the examined main group exceeded the similar values of the comparison group (p = 0,014857); the median and interquartile range for the main group was 1098.45 (925.5; 1291) pg/ml, and for the comparison group 1360.5 (998.9; 2062) pg/ml. There were no differences in the serum VEFR concentration (p = 0.775124). No significant correlation was found between the serum VEFR content and the mixed saliva. The Spearman's rank correlation coefficient for the main group was R = 0,0184358, and for the comparison group, respectively, R = 0.188932. The source of VEFR in saliva are the glands and cells of the oral mucosa, and not the process of exudation from blood serum. The high content of VEFR in the saliva of healthy people and a decrease in its level during periodontitis indicates the important role of this protein in the processes of maintaining the normal state of periodontal tissues and reparation of tissues of the oral mucosa.
Collapse
Affiliation(s)
- D Y Sosnin
- Federal State Budgetary Educational Institution of Higher Education «Academician Ye.A. Vagner Perm State Medical University» of the Ministry of Healthcare of the Russian Federation, 614990, Perm, Russian Federation
| | - O S Gileva
- Federal State Budgetary Educational Institution of Higher Education «Academician Ye.A. Vagner Perm State Medical University» of the Ministry of Healthcare of the Russian Federation, 614990, Perm, Russian Federation
| | - E Y Sivak
- Federal State Budgetary Educational Institution of Higher Education «Academician Ye.A. Vagner Perm State Medical University» of the Ministry of Healthcare of the Russian Federation, 614990, Perm, Russian Federation
| | - F Y Daurova
- Peoples Friendship University of Russia, 117198, Moscow, Russian Federation
| | - N V Gibadullina
- Federal State Budgetary Educational Institution of Higher Education «Academician Ye.A. Vagner Perm State Medical University» of the Ministry of Healthcare of the Russian Federation, 614990, Perm, Russian Federation
| | - S V Korotin
- Federal State Budgetary Educational Institution of Higher Education «Academician Ye.A. Vagner Perm State Medical University» of the Ministry of Healthcare of the Russian Federation, 614990, Perm, Russian Federation
| |
Collapse
|
41
|
Shi L, Zhao M, Abbey CA, Tsai SH, Xie W, Pham D, Chapman S, Bayless KJ, Hein TW, Rosa RH, Ko ML, Kuo L, Ko GYP. Newly Identified Peptide, Peptide Lv, Promotes Pathological Angiogenesis. J Am Heart Assoc 2019; 8:e013673. [PMID: 31698979 PMCID: PMC6915261 DOI: 10.1161/jaha.119.013673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background We recently discovered a small endogenous peptide, peptide Lv, with the ability to activate vascular endothelial growth factor receptor 2 and its downstream signaling. As vascular endothelial growth factor through vascular endothelial growth factor receptor 2 contributes to normal development, vasodilation, angiogenesis, and pathogenesis of various diseases, we investigated the role of peptide Lv in vasodilation and developmental and pathological angiogenesis in this study. Methods and Results The endothelial cell proliferation, migration, and 3-dimensional sprouting assays were used to test the abilities of peptide Lv in angiogenesis in vitro. The chick chorioallantoic membranes and early postnatal mice were used to examine its impact on developmental angiogenesis. The oxygen-induced retinopathy and laser-induced choroidal neovascularization mouse models were used for in vivo pathological angiogenesis. The isolated porcine retinal and coronary arterioles were used for vasodilation assays. Peptide Lv elicited angiogenesis in vitro and in vivo. Peptide Lv and vascular endothelial growth factor acted synergistically in promoting endothelial cell proliferation. Peptide Lv-elicited vasodilation was not completely dependent on nitric oxide, indicating that peptide Lv had vascular endothelial growth factor receptor 2/nitric oxide-independent targets. An antibody against peptide Lv, anti-Lv, dampened vascular endothelial growth factor-elicited endothelial proliferation and laser-induced vascular leakage and choroidal neovascularization. While the pathological angiogenesis in mouse eyes with oxygen-induced retinopathy was enhanced by exogenous peptide Lv, anti-Lv dampened this process. Furthermore, deletion of peptide Lv in mice significantly decreased pathological neovascularization compared with their wild-type littermates. Conclusions These results demonstrate that peptide Lv plays a significant role in pathological angiogenesis but may be less critical during development. Peptide Lv is involved in pathological angiogenesis through vascular endothelial growth factor receptor 2-dependent and -independent pathways. As anti-Lv dampened the pathological angiogenesis in the eye, anti-Lv may have a therapeutic potential to treat pathological angiogenesis.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX
| | - Min Zhao
- Department of Medical Physiology Ophthalmic Vascular Research Program College of Medicine Texas A&M University Health Science Center Bryan TX
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine College of Medicine Texas A&M University Health Science Center Bryan TX
| | - Shu-Huai Tsai
- Department of Medical Physiology Ophthalmic Vascular Research Program College of Medicine Texas A&M University Health Science Center Bryan TX
| | - Wankun Xie
- Department of Medical Physiology Ophthalmic Vascular Research Program College of Medicine Texas A&M University Health Science Center Bryan TX
| | - Dylan Pham
- Department of Veterinary Integrative Biosciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX
| | - Samantha Chapman
- Department of Veterinary Integrative Biosciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine College of Medicine Texas A&M University Health Science Center Bryan TX
| | - Travis W Hein
- Department of Medical Physiology Ophthalmic Vascular Research Program College of Medicine Texas A&M University Health Science Center Bryan TX
| | - Robert H Rosa
- Department of Medical Physiology Ophthalmic Vascular Research Program College of Medicine Texas A&M University Health Science Center Bryan TX.,Department of Ophthalmology Baylor Scott & White Eye Institute Temple TX
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX.,Department of Biology Blinn College Bryan TX
| | - Lih Kuo
- Department of Medical Physiology Ophthalmic Vascular Research Program College of Medicine Texas A&M University Health Science Center Bryan TX
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX.,Texas A&M Institute for Neuroscience Texas A&M University College Station TX
| |
Collapse
|
42
|
Yang F, Faulkner D, Yao R, Ozturk MS, Qu Q, Intes X. System configuration optimization for mesoscopic fluorescence molecular tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:5660-5674. [PMID: 31799038 PMCID: PMC6865091 DOI: 10.1364/boe.10.005660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 05/04/2023]
Abstract
Tissue engineering applications demand 3D, non-invasive, and longitudinal assessment of bioprinted constructs. Current emphasis is on developing tissue constructs mimicking in vivo conditions; however, these are increasingly challenging to image as they are typically a few millimeters thick and turbid, limiting the usefulness of classical fluorescence microscopic techniques. For such applications, we developed a Mesoscopic Fluorescence Molecular Tomography methodology that collects high information content data to enable high-resolution tomographic reconstruction of fluorescence biomarkers at millimeters depths. This imaging approach is based on an inverse problem; hence, its imaging performances are dependent on critical technical considerations including optode sampling, forward model design and inverse solver parameters. Herein, we investigate the impact of the optical system configuration parameters, including detector layout, number of detectors, combination of detector and source numbers, and scanning mode with uncoupled or coupled source and detector array, on the 3D imaging performances. Our results establish that an MFMT system with a 2D detection chain implemented in a de-scanned mode provides the optimal imaging reconstruction performances.
Collapse
Affiliation(s)
- Fugang Yang
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China
| | - Denzel Faulkner
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Ruoyang Yao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Mehmet S Ozturk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Qinglan Qu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, 264000, China
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
43
|
Xue C, Lin X, Zhang J, Zeng Y, Chen X. β‐Elemene suppresses the proliferation of human airway granulation fibroblasts via attenuation of TGF‐β/Smad signaling pathway. J Cell Biochem 2019; 120:16553-16566. [PMID: 31104326 DOI: 10.1002/jcb.28915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Cheng Xue
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
- Department of Pulmonary Medicine The First Affiliated Hospital of Xiamen University Xiamen Fujian China
| | - Xiao‐Ping Lin
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| | - Jia‐Min Zhang
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| | - Yi‐Ming Zeng
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| | - Xiao‐Yang Chen
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| |
Collapse
|
44
|
Zhang L, Chen Y, Li F, Bao L, Liu W. Atezolizumab and Bevacizumab Attenuate Cisplatin Resistant Ovarian Cancer Cells Progression Synergistically via Suppressing Epithelial-Mesenchymal Transition. Front Immunol 2019; 10:867. [PMID: 31105696 PMCID: PMC6498972 DOI: 10.3389/fimmu.2019.00867] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The AURELIA trial demonstrated that adding Bevacizumab to chemotherapy significantly improved progression-free survival (PFS) for platinum resistant recurrent ovarian cancer. Recently, immunotherapy also presented potential anti-tumor effects in several malignant solid tumors. This study aimed to investigate whether combining anti-PD-L1 Atezolizumab with BEV may have a synergistic effect and enhance the efficacy of both treatments in cisplatin resistant epithelial ovarian cancer (CREOC). We retrospectively analyzed 124 epithelial ovarian cancer (EOC) patients from Gynecologic Oncology Department of Tianjin Cancer Hospital between January 2013 and June 2018, who all were diagnosed with cisplatin resistance due to progressing <6 months after completing platinum-based therapy. Based on responding to at least 2 cycles of Bevacizumab-containing chemotherapy (BC), these Patients were divided into BC response group and BC non-response group. Immunohistochemistry was used to detect that PD-L1 expression and tumor angiogenesis-related proteins (VEGF and Semaphorin4D) in tissues from 124 patients with CREOC. The positive expressions of PD-L1, VEGF, and Semaphorin4D (SEMA4D) were found in 58.73, 50.79, and 71.43% of the 63 cases CREOC tissues with BC response, respectively, which were significantly higher than that in the 61 cases BC non-response group (P < 0.05). PD-L1 expression correlated with SEMA4D and VEGF positively (r = 0.344 and 0.363, P < 0.001). Over-expressions of PD-L1, VEGF and SEMA4D are associated with more malignant clinicopathologic characteristics of CREOC Patients. In survival analysis, patients' response to BC was the independent factor for evaluation of PFS and overall survival (OS). Cell functional assays showed that Atezolizumab in combination with Bevacizumab inhibited the proliferation, migration, and invasion of cisplatin resistant ovarian cancer cell line A2780cis in vitro synergistically, which maybe associate with Bevacizumab suppressing the epithelial-mesenchymal transition (EMT) and PD-L1 expression by targeting STAT3. Furthermore, Bevacizumab and Atezolizumab induced synergistic anti-tumor effect in vivo. These findings suggest a novel therapeutic strategy for cisplatin resistant recurrent EOC and its mechanism warrants further study.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ying Chen
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,National Clinical Research Centre of Cancer, Tianjin, China
| | - Fangxuan Li
- Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lewen Bao
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenxin Liu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
45
|
Senchukova MA, Makarova EV, Kalinin EA, Tkachev VV. Modern ideas about the origin, features of morphology, prognostic and predictive significance of tumor vessels. RUSSIAN JOURNAL OF BIOTHERAPY 2019; 18:6-15. [DOI: 10.17650/1726-9784-2019-18-1-6-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The review presents modern ideas about the origin of tumor vessels and the features of their morphology. The various approaches to the classification of tumor vessel types and to the assessment of their clinical and prognostic significance are described. Also, the main problems associated with the use of angiogenesis blockers in the treatment of malignancies and their possible solutions are reflected in the review.
Collapse
Affiliation(s)
- M. A. Senchukova
- Orenburg State Medical University of the Ministry of Health of the Russian Federation; Orenburg Regional Clinical Oncology Dispensary
| | - E. V. Makarova
- Orenburg State Medical University of the Ministry of Health of the Russian Federation; Orenburg Regional Clinical Oncology Dispensary
| | | | | |
Collapse
|
46
|
Efficacy of a Selective Binder of α Vβ 3 Integrin Linked to the Tyrosine Kinase Inhibitor Sunitinib in Ovarian Carcinoma Preclinical Models. Cancers (Basel) 2019; 11:cancers11040531. [PMID: 31013908 PMCID: PMC6521192 DOI: 10.3390/cancers11040531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022] Open
Abstract
Ovarian carcinoma, the most lethal gynecological cancer, is characterized by late diagnosis, with drug resistance limiting the efficacy of platinum-based therapy. Since some integrins are upregulated in cancer, including ovarian carcinoma, they represent a potential target for drug delivery. Receptor tyrosine kinases are also deregulated in cancer and their expression has been associated with drug resistance. Here, the antitumor effects of three conjugates possessing a selective binder of the extracellular portion of integrin αVβ3 covalently linked to the tyrosine kinase inhibitor sunitinib were investigated in cisplatin-sensitive and -resistant ovarian carcinoma cells expressing both tyrosine kinase VEGFR2 and αVβ3 at different levels. We found that one of the three compounds was active in inhibiting the growth of both drug-sensitive and -resistant cells in the micromolar range with a slightly increased potency in resistant cells as compared to sunitinib. The same compound markedly impaired cell migratory and invasive abilities and reduced paxillin phosphorylation. Antitumor activity studies in IGROV-1/Pt1 cells xenografted in nude mice revealed a striking activity of this conjugate versus sunitinib. Taken together, our results support the interest of integrin-targeted sunitinib conjugates for the treatment of drug-resistant tumors.
Collapse
|
47
|
Wu XJ, Jing J, Lu ZF, Zheng M. VEGFR-2 Is in a State of Activation in Hair Follicles, Sebaceous Glands, Eccrine Sweat Glands, and Epidermis from Human Scalp: An In Situ Immunohistochemistry Study of Phosphorylated VEGFR-2. Med Sci Monit Basic Res 2019; 25:107-112. [PMID: 30918240 PMCID: PMC6450176 DOI: 10.12659/msmbr.914570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Recent research reports that VEGFR-2 is expressed in the whole hair follicle, sebaceous glands, eccrine sweat glands, and epidermis. However, phosphorylated VEGFR-2 was not found, and it could not be ascertained whether the activated form of VEGFR-2 actually participates in the biological control of epidermal appendages. In this study we aimed to determine whether the VEGFR-2 pathway is directly involved in the daily regulation of epidermal appendages biology. MATERIAL AND METHODS In this study, we investigated the expression of phosphorylation of VEGFR-2 by immunohistochemical analysis in the epidermis and epidermal appendages in normal human scalp skin. RESULTS Immunohistochemical analysis revealed phosphorylation of VEGFR-2 in a whole hair follicle, mainly in the infundibulum basal layer, hair cortex, and medulla in the isthmus, and matrix in the hair bulb. Phosphorylated VEGFR-2 also was found in the sebaceous glands, eccrine sweat glands, and epidermis. CONCLUSIONS Therefore, we suggest that VEGFR-2 activation is involved in routine regulation of human epidermal appendages.
Collapse
Affiliation(s)
- Xian-Jie Wu
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Jing Jing
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Zhong-Fa Lu
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
48
|
Rampogu S, Baek A, Park C, Son M, Parate S, Parameswaran S, Park Y, Shaik B, Kim JH, Park SJ, Lee KW. Discovery of Small Molecules that Target Vascular Endothelial Growth Factor Receptor-2 Signalling Pathway Employing Molecular Modelling Studies. Cells 2019; 8:E269. [PMID: 30901950 PMCID: PMC6468367 DOI: 10.3390/cells8030269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/08/2019] [Accepted: 03/16/2019] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is defined as the formation of new blood vessels and is a key phenomenon manifested in a host of cancers during which tyrosine kinases play a crucial role. Vascular endothelial growth factor receptor-2 (VEGFR-2) is pivotal in cancer angiogenesis, which warrants the urgency of discovering new anti-angiogenic inhibitors that target the signalling pathways. To obtain this objective, a structure-based pharmacophore model was built from the drug target VEGFR-2 (PDB code: 4AG8), complexed with axitinib and was subsequently validated and employed as a 3D query to retrieve the candidate compounds with the key inhibitory features. The model was escalated to molecular docking studies resulting in seven candidate compounds. The molecular docking studies revealed that the seven compounds displayed a higher dock score than the reference-cocrystallised compound. The GROningen MAchine for Chemical Simulations (GROMACS) package guided molecular dynamics (MD) results determined their binding mode and affirmed stable root mean square deviation. Furthermore, these compounds have preserved their key interactions with the residues Glu885, Glu917, Cys919 and Asp1046. The obtained findings deem that the seven compounds could act as novel anti-angiogenic inhibitors and may further assist as the prototype in designing and developing new inhibitors.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (A.B.); (C.P.); (M.S.); (S.P.); (S.P.)
| | - Ayoung Baek
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (A.B.); (C.P.); (M.S.); (S.P.); (S.P.)
| | - Chanin Park
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (A.B.); (C.P.); (M.S.); (S.P.); (S.P.)
| | - Minky Son
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (A.B.); (C.P.); (M.S.); (S.P.); (S.P.)
| | - Shraddha Parate
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (A.B.); (C.P.); (M.S.); (S.P.); (S.P.)
| | - Saravanan Parameswaran
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (A.B.); (C.P.); (M.S.); (S.P.); (S.P.)
| | - Yohan Park
- College of Pharmacy, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Korea;
| | - Baji Shaik
- Department of Chemistry (BK 21 plus), Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju, Gyeongnam 52828, Korea; (B.S.); (J.H.K.)
| | - Ju Hyun Kim
- Department of Chemistry (BK 21 plus), Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju, Gyeongnam 52828, Korea; (B.S.); (J.H.K.)
| | - Seok Ju Park
- Department of Internal Medicine, College of Medicine, Busan Paik Hospital, Inje University, Gyeongnam 47392, Korea
| | - Keun Woo Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (A.B.); (C.P.); (M.S.); (S.P.); (S.P.)
| |
Collapse
|