1
|
Pan H, Wu X, Han R, He S, Li N, Yan H, Chen X, Zhu Z, Du Z, Wang H, Xu X. Nanoparticle-protein interactions: Spectroscopic probing of the adsorption of serum albumin to graphene oxide‑gold nanocomplexes surfaces. Int J Biol Macromol 2025; 284:138126. [PMID: 39608527 DOI: 10.1016/j.ijbiomac.2024.138126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Graphene oxide‑gold nanocomposites (GO-AuNCPs) are promising candidates in nanomedicine. They will inevitably bind with biomolecules such as serum albumin (SA) in the body while they enter the organism. The interaction between GO-AuNCPs and human serum albumin (HSA)/bovine serum albumin (BSA) were investigated by using multispectroscopic methods, elucidating the binding principles through molecular simulations. The results of ultraviolet-visible (UV-vis) absorption spectroscopy and steady-state fluorescence spectroscopy indicated that GO-AuNCPs interacted with HSA/BSA with different degrees of interaction. The binding of GO-AuNCPs and HSA/BSA was a spontaneous endothermic reaction, and the quenching mechanism is static quenching. The binding constant (Ka) value of BSA binding to GO-AuNCPs at the same temperature was greater than that for HSA, indicating a stronger affinity of BSA for GO-AuNCPs. Molecular simulation revealed that the binding sites of GO-AuNCPs on HSA/BSA were located within the slits of the subdomains IB and IIIA, rather than within any known binding regions. This significant finding was validated by using of site markers phenylbutazone (PB) and flufenamic acid (FA). Synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy, and circular dichroism (CD) spectroscopy showed that the conformation of HSA/BSA was altered upon the addition of GO-AuNCPs, resulting in slight structural changes of tryptophan and tyrosine residues. Although the secondary structure of HSA/BSA was changed, the α-helix remained dominant. The results provide a theoretical and experimental foundation for developing of safe and effective nanomaterials, which is of great theoretical significance.
Collapse
Affiliation(s)
- Hongshuo Pan
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Xinjie Wu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Ruyue Han
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Shuhao He
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Nianhe Li
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Hui Yan
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, Shandong Province, China
| | - Xinyun Chen
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Ziyu Zhu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Zhongyu Du
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China
| | - Hao Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, Shandong Province, China.
| | - Xiangyu Xu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China.
| |
Collapse
|
2
|
Constantinescu S, Niculescu AG, Hudiță A, Grumezescu V, Rădulescu D, Bîrcă AC, Dorcioman G, Gherasim O, Holban AM, Gălățeanu B, Vasile BȘ, Grumezescu AM, Bolocan A, Rădulescu R. Nanostructured Coatings Based on Graphene Oxide for the Management of Periprosthetic Infections. Int J Mol Sci 2024; 25:2389. [PMID: 38397066 PMCID: PMC10889398 DOI: 10.3390/ijms25042389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants.
Collapse
Affiliation(s)
- Sorin Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Dragoș Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, 77206 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandra Bolocan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Radu Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| |
Collapse
|
3
|
Constantinescu S, Niculescu AG, Hudiță A, Grumezescu V, Rădulescu D, Bîrcă AC, Irimiciuc SA, Gherasim O, Holban AM, Gălățeanu B, Oprea OC, Ficai A, Vasile BȘ, Grumezescu AM, Bolocan A, Rădulescu R. Silver/Graphene Oxide Nanostructured Coatings for Modulating the Microbial Susceptibility of Fixation Devices Used in Knee Surgery. Int J Mol Sci 2023; 25:246. [PMID: 38203420 PMCID: PMC10779033 DOI: 10.3390/ijms25010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Exploring silver-based and carbon-based nanomaterials' excellent intrinsic antipathogenic effects represents an attractive alternative for fabricating anti-infective formulations. Using chemical synthesis protocols, stearate-conjugated silver (Ag@C18) nanoparticles and graphene oxide nanosheets (nGOs) were herein obtained and investigated in terms of composition and microstructure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations revealed the formation of nanomaterials with desirable physical properties, while X-ray diffraction (XRD) analyses confirmed the high purity of synthesized nanomaterials. Further, laser-processed Ag@C18-nGO coatings were developed, optimized, and evaluated in terms of biological and microbiological outcomes. The highly biocompatible Ag@C18-nGO nanostructured coatings proved suitable candidates for the local modulation of biofilm-associated periprosthetic infections.
Collapse
Affiliation(s)
- Sorin Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Dragoș Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Stefan Andrei Irimiciuc
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, District 5, 77206 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Alexandra Bolocan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Radu Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| |
Collapse
|
4
|
Eskandari F, Ghahramani Y, Abbaszadegan A, Gholami A. The antimicrobial efficacy of nanographene oxide and double antibiotic paste per se and in combination: part II. BMC Oral Health 2023; 23:253. [PMID: 37131216 PMCID: PMC10155346 DOI: 10.1186/s12903-023-02957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Finding strategies to overcome the rising trends of antimicrobial resistance against currently available antimicrobial agents has become increasingly relevant. Graphene oxide has recently emerged as a promising material due to its outstanding physicochemical and biological properties. This study aimed to validate previous data on the antibacterial activity of nanographene oxide (nGO), double antibiotic paste (DAP), and their combination (nGO-DAP). METHODS The antibacterial evaluation was performed against a wide range of microbial pathogens. Synthesis of nGO was achieved using a modified Hummers' method, and loading it with ciprofloxacin and metronidazole resulted in nGO-DAP. The microdilution method was utilized to assess the antimicrobial efficacy of nGO, DAP, and nGO-DAP against two gram-positive bacteria (S. aureus and E. faecalis), two gram-negative bacteria (E. coli, and S. typhi), and an opportunistic pathogenic yeast (C. albicans). Statistical analysis was conducted using one-sample t-test and one-way ANOVA (α = 0.05). RESULTS All three antimicrobial agents significantly increased the killing percent of microbial pathogens compared to the control group (P < 0.05). Furthermore, the synthesized nGO-DAP exhibited higher antimicrobial activity than nGO and DAP per se. CONCLUSION The novel synthesized nGO-DAP can be used as an effective antimicrobial nanomaterial for use in dental, biomedical, and pharmaceutical fields against a range of microbial pathogens, including gram-negative and gram-positive bacteria, as well as yeasts.
Collapse
Affiliation(s)
- Fateme Eskandari
- Dentist, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasamin Ghahramani
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran
| | - Abbas Abbaszadegan
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Kharazmi A, Ghorbani-Vaghei R, Kharazmi A, Azadbakht R, Koolivand M, Karakaya I, Karimi-Nami R. Reduced graphene oxide/palladium nanoparticle bonded to N,N'-bis(2-aminophenyl)-1,2-ethanediamine: a new, highly efficient and recyclable heterogeneous catalyst for direct synthesis of 2-substituted benzimidazoles via acceptorless dehydrogenative coupling of alcohols and aromatic diamine. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-05003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Lazăr AI, Aghasoleimani K, Semertsidou A, Vyas J, Roșca AL, Ficai D, Ficai A. Graphene-Related Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1092. [PMID: 36985986 PMCID: PMC10051126 DOI: 10.3390/nano13061092] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the composition-structure-activity relationships that cause toxicity for these substances, and identifies the key parameters that determine the activation of their biological effects. GRMs are designed to offer the advantage of facilitating unique biomedical applications that impact different techniques in medicine, especially in neuroscience. Due to the increasing utilization of GRMs, there is a need to comprehensively assess the potential impact of these materials on human health. Various outcomes associated with GRMs, including biocompatibility, biodegradability, beneficial effects on cell proliferation, differentiation rates, apoptosis, necrosis, autophagy, oxidative stress, physical destruction, DNA damage, and inflammatory responses, have led to an increasing interest in these regenerative nanostructured materials. Considering the existence of graphene-related nanomaterials with different physicochemical properties, the materials are expected to exhibit unique modes of interactions with biomolecules, cells, and tissues depending on their size, chemical composition, and hydrophil-to-hydrophobe ratio. Understanding such interactions is crucial from two perspectives, namely, from the perspectives of their toxicity and biological uses. The main aim of this study is to assess and tune the diverse properties that must be considered when planning biomedical applications. These properties include flexibility, transparency, surface chemistry (hydrophil-hydrophobe ratio), thermoelectrical conductibility, loading and release capacity, and biocompatibility.
Collapse
Affiliation(s)
- Andreea-Isabela Lazăr
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | | | - Anna Semertsidou
- Charles River Laboratories, Margate, Manston Road, Kent CT9 4LT, UK
| | - Jahnavi Vyas
- Drug Development Solution, Newmarket road, Ely, CB7 5WW, UK
| | - Alin-Lucian Roșca
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050045 Bucharest, Romania
| |
Collapse
|
7
|
Eskandari F, Abbaszadegan A, Gholami A, Ghahramani Y. The antimicrobial efficacy of graphene oxide, double antibiotic paste, and their combination against Enterococcus faecalis in the root canal treatment. BMC Oral Health 2023; 23:20. [PMID: 36639767 PMCID: PMC9840282 DOI: 10.1186/s12903-023-02718-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Inter-appointment medication of the root canals with appropriate intracanal medicaments has been advocated to improve root canal disinfection. Graphene oxide (GO) has shown promising antimicrobial activity against a wide range of microorganisms, besides the capability of carrying antibiotics. The current study aimed to compare the antibacterial activity of double antibiotic paste (DAP) and GO per se and in combination (GO-DAP) against Enterococcus faecalis (E. faecalis). METHODS A total of 108 extracted human mandibular premolars were contaminated with three-week-old E. faecalis and subjected to a primary microbial assessment. The samples were categorized into 15 groups concerning the intracanal medicament (DAP, GO, GO-DAP, and control) and contact time (1, 7, and 14 days). Then, the root canals were medicated, incubated, and resubjected to a secondary antimicrobial evaluation. The colony-forming units (CFU) were counted to calculate the antimicrobial efficacy. The data were analyzed via the Kruskal-Wallis test (α = 0.05). RESULTS GO-DAP was the only medicament that completely eradicated E. faecalis in 1 day. The percentage reduction of CFU/ml in the GO-DAP and DAP groups was higher than that in the GO group at all allocated contact times. Furthermore, a significant decrease of the CFU/ml was seen in the GO and DAP groups after 7 and 14 days of being medicated (P < 0.05). CONCLUSION Since GO-DAP improved root canal disinfection, this novel material can be introduced as a promising intracanal medicament against E. faecalis even in the short run.
Collapse
Affiliation(s)
- Fateme Eskandari
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Abbaszadegan
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasamin Ghahramani
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran.
| |
Collapse
|
8
|
Petrisor G, Motelica L, Ficai D, Trusca RD, Surdu VA, Voicu G, Oprea OC, Ficai A, Andronescu E. New Mesoporous Silica Materials Loaded with Polyphenols: Caffeic Acid, Ferulic Acid and p-Coumaric Acid as Dietary Supplements for Oral Administration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15227982. [PMID: 36431468 PMCID: PMC9696098 DOI: 10.3390/ma15227982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 05/13/2023]
Abstract
In this study, two types of mesoporous silica with different pore structures and volumes were synthesized by the soft-templating method. The two types of mesoporous silica, type MCM-41 and MCM-48, were loaded with three polyphenols-caffeic acid, p-coumaric acid and trans-ferulic acid-in the same ratio of mesoporous silica:polyphenol (1:0.4 w/w). The materials obtained were characterized from a morphological and structural point of view through different analysis techniques. Through X-ray diffraction (XRD), the crystallization plane and the ordered structure of the mesoporous silica were observed. The difference between the two types of materials containing MCM-41 and MCM-48 was observed through the different morphologies of the silica particles through scanning electron microscopy (SEM) and also through the Brunauer-Emmet-Teller (BET) analysis, that the surface areas and volumes of pores was different between the two types of mesoporous silica, and, after loading with polyphenols, the values were reduced. The characteristic bands of silica and of polyphenols were easily observed by Fourier-transform infrared spectroscopy (FTIR), and, through thermogravimetric analysis (TGA), the residual mass was determined and the estimated amount of polyphenol in the materials and the efficient loading of mesoporous silica with polyphenols could be determined. The in vitro study was performed in two types of simulated biological fluids with different pH-simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The obtained materials could be used in various biomedical applications as systems with controlled release of natural polyphenols and the most suitable application could be as food supplements especially when a mixture of such materials is used or when the polyphenols are co-loaded within the mesoporous silica.
Collapse
Affiliation(s)
- Gabriela Petrisor
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Correspondence:
| | - Roxana Doina Trusca
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Georgeta Voicu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
9
|
Abdelhalim AO, Ageev SV, Petrov AV, Meshcheriakov AA, Luttsev MD, Vasina LV, Nashchekina IA, Murin IV, Molchanov OE, Maistrenko DN, Potanin AA, Semenov KN, Sharoyko VV. Graphene oxide conjugated with doxorubicin: Synthesis, bioactivity, and biosafety. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Functionalized graphene oxide based nanocarrier for enhanced cytotoxicity of Juniperus squamata root essential oil against breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Selepe CT, Gwebu SS, Matthews T, Mashola TA, Sikeyi LL, Zikhali M, Maxakato NW. Effect of Sn Doping on Pd Electro-Catalysts for Enhanced Electro-Catalytic Activity towards Methanol and Ethanol Electro-Oxidation in Direct Alcohol Fuel Cells. NANOMATERIALS 2021; 11:nano11102725. [PMID: 34685167 PMCID: PMC8537662 DOI: 10.3390/nano11102725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022]
Abstract
Carbon nano-onions (CNOs) were successfully synthesized by employing the flame pyrolysis (FP) method, using flaxseed oil as a carbon source. The alcohol reduction method was used to prepare Pd/CNOs and Pd-Sn/CNOs electro-catalysts, with ethylene glycol as the solvent and reduction agent. The metal-nanoparticles were supported on the CNO surface without adjusting the pH of the solution. High-resolution transmission electron microscopy (HRTEM) images reveal CNOs with concentric graphite ring morphology, and also PdSn nanoparticles supported on the CNOs. X-ray diffractometry (XRD) patterns confirm that CNOs are amorphous and show the characteristic diffraction peaks of Pd. There is a shifting of Pd diffraction peaks to lower angles upon the addition of Sn compared to Pd/CNOs. X-ray photoelectron spectroscopy (XPS) results also confirm the doping of Pd with Sn to form a PdSn alloy. Fourier transform infrared spectroscopy (FTIR) displays oxygen, hydroxyl, carboxyl, and carbonyl, which facilitates the dispersion of Pd and Sn nanoparticles. Raman spectrum displays two prominent peaks of carbonaceous materials which correspond to the D and G bands. The Pd-Sn/CNOs electro-catalyst demonstrates improved electro-oxidation of methanol and ethanol performance compared to Pd/CNOs and commercial Pd/C electro-catalysts under alkaline conditions.
Collapse
Affiliation(s)
- Cyril Tlou Selepe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
| | - Sandile Surprise Gwebu
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
| | - Thabo Matthews
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
| | - Tebogo Abigail Mashola
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
| | - Ludwe Luther Sikeyi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa;
| | - Memory Zikhali
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
| | - Nobanathi Wendy Maxakato
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
- Correspondence: ; Tel.: +27-(0)-11-559-6151
| |
Collapse
|
12
|
Croitoru AM, Karaçelebi Y, Saatcioglu E, Altan E, Ulag S, Aydoğan HK, Sahin A, Motelica L, Oprea O, Tihauan BM, Popescu RC, Savu D, Trusca R, Ficai D, Gunduz O, Ficai A. Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications. Pharmaceutics 2021; 13:pharmaceutics13070957. [PMID: 34201978 PMCID: PMC8309188 DOI: 10.3390/pharmaceutics13070957] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
The novel controlled and localized delivery of drug molecules to target tissues using an external electric stimulus makes electro-responsive drug delivery systems both feasible and desirable, as well as entailing a reduction in the side effects. Novel micro-scaffold matrices were designed based on poly(lactic acid) (PLA) and graphene oxide (GO) via electrospinning. Quercetin (Q), a natural flavonoid, was loaded into the fiber matrices in order to investigate the potential as a model drug for wound dressing applications. The physico-chemical properties, electrical triggering capacity, antimicrobial assay and biocompatibility were also investigated. The newly fabricated PLA/GO/Q scaffolds showed uniform and smooth surface morphologies, without any beads, and with diameters ranging from 1107 nm (10%PLA/0.1GO/Q) to 1243 nm (10%PLA). The in vitro release tests of Q from the scaffolds showed that Q can be released much faster (up to 8640 times) when an appropriate electric field is applied compared to traditional drug-release approaches. For instance, 10 s of electric stimulation is enough to ensure the full delivery of the loaded Q from the 10%PLA/1%GO/Q microfiber scaffold at both 10 Hz and at 50 Hz. The antimicrobial tests showed the inhibition of bacterial film growth. Certainly, these materials could be loaded with more potent agents for anti-cancer, anti-infection, and anti-osteoporotic therapies. The L929 fibroblast cells cultured on these scaffolds were distributed homogeneously on the scaffolds, and the highest viability value of 82.3% was obtained for the 10%PLA/0.5%GO/Q microfiber scaffold. Moreover, the addition of Q in the PLA/GO matrix stimulated the production of IL-6 at 24 h, which could be linked to an acute inflammatory response in the exposed fibroblast cells, as a potential effect of wound healing. As a general conclusion, these results demonstrate the possibility of developing graphene oxide-based supports for the electrically triggered delivery of biological active agents, with the delivery rate being externally controlled in order to ensure personalized release.
Collapse
Affiliation(s)
- Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
| | - Yasin Karaçelebi
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey;
| | - Elif Saatcioglu
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey; (E.S.); (E.A.)
| | - Eray Altan
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey; (E.S.); (E.A.)
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Department of Metallurgical and Materials Engineering, Institute of Pure and Applied Sciences, Marmara University, 34722 Istanbul, Turkey;
| | - Huseyin Kıvanc Aydoğan
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey;
| | - Ali Sahin
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34722 Istanbul, Turkey;
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
| | - Ovidiu Oprea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
| | - Bianca-Maria Tihauan
- Research and Development Department, The National Institute for Research & Development in Food Bioresources, Dinu Vintila St. 6, 021102 Bucharest, Romania; or
- Research Institute of the University of Bucharest—ICUB, Spl. Independentei 91-95, 50567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugareni, Romania
| | - Roxana-Cristina Popescu
- “Horia Hulubei” National Institute for Research & Development in Physics and Nuclear Engineering, Reactorului, No. 30, 077125 Magurele, Romania; (R.-C.P.); (D.S.)
| | - Diana Savu
- “Horia Hulubei” National Institute for Research & Development in Physics and Nuclear Engineering, Reactorului, No. 30, 077125 Magurele, Romania; (R.-C.P.); (D.S.)
| | - Roxana Trusca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey; (E.S.); (E.A.)
- Correspondence: (O.G.); (A.F.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (L.M.); (O.O.); (R.T.); (D.F.)
- Correspondence: (O.G.); (A.F.)
| |
Collapse
|
13
|
Sainz-Urruela C, Vera-López S, San Andrés MP, Díez-Pascual AM. Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review. Int J Mol Sci 2021; 22:3316. [PMID: 33804997 PMCID: PMC8037795 DOI: 10.3390/ijms22073316] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last years, different nanomaterials have been investigated to design highly selective and sensitive sensors, reaching nano/picomolar concentrations of biomolecules, which is crucial for medical sciences and the healthcare industry in order to assess physiological and metabolic parameters. The discovery of graphene (G) has unexpectedly impulsed research on developing cost-effective electrode materials owed to its unique physical and chemical properties, including high specific surface area, elevated carrier mobility, exceptional electrical and thermal conductivity, strong stiffness and strength combined with flexibility and optical transparency. G and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the area of optical and electrochemical sensors. The presence of oxygenated functional groups makes GO nanosheets amphiphilic, facilitating chemical functionalization. G-based nanomaterials can be easily combined with different types of inorganic nanoparticles, including metals and metal oxides, quantum dots, organic polymers, and biomolecules, to yield a wide range of nanocomposites with enhanced sensitivity for sensor applications. This review provides an overview of recent research on G-based nanocomposites for the detection of bioactive compounds, providing insights on the unique advantages offered by G and its derivatives. Their synthesis process, functionalization routes, and main properties are summarized, and the main challenges are also discussed. The antioxidants selected for this review are melatonin, gallic acid, tannic acid, resveratrol, oleuropein, hydroxytyrosol, tocopherol, ascorbic acid, and curcumin. They were chosen owed to their beneficial properties for human health, including antibiotic, antiviral, cardiovascular protector, anticancer, anti-inflammatory, cytoprotective, neuroprotective, antiageing, antidegenerative, and antiallergic capacity. The sensitivity and selectivity of G-based electrochemical and fluorescent sensors are also examined. Finally, the future outlook for the development of G-based sensors for this type of biocompounds is outlined.
Collapse
Affiliation(s)
- Carlos Sainz-Urruela
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
| | - Soledad Vera-López
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| | - María Paz San Andrés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| |
Collapse
|
14
|
Abdelhalim AO, Sharoyko VV, Meshcheriakov AA, Luttsev MD, Potanin AA, Iamalova NR, Zakharov EE, Ageev SV, Petrov AV, Vasina LV, Solovtsova IL, Nashchekin AV, Murin IV, Semenov KN. Synthesis, characterisation and biocompatibility of graphene–L-methionine nanomaterial. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Modrogan C, Pandele AM, Bobirică C, Dobrotǎ D, Dăncilă AM, Gârleanu G, Orbuleţ OD, Borda C, Gârleanu D, Orbeci C. Synthesis, Characterization and Sorption Capacity Examination for a Novel Hydrogel Composite Based on Gellan Gum and Graphene Oxide (GG/GO). Polymers (Basel) 2020; 12:polym12051182. [PMID: 32455787 PMCID: PMC7285009 DOI: 10.3390/polym12051182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
A novel hydrogel composite based on gellan gum and graphene oxide (GG/GO) was synthesized, characterized and tested for sorption capacity in this work. The microstructural, thermogravimetric and spectroscopic analysis confirmed the formation of the GG/GO composite. Comparative batch sorption experiments revealed a sorption capacity of the GG/GO composite for Zn (II) ions of approximately 2.3 higher than that of pure GG. The GG/GO composite exhibits a maximum sorption capacity of 272.57 mg/g at a pH of Zn (II) initial solution of 6. Generally, the sorption capacity of the sorbents is approximately 1.5 higher in slightly acidic conditions (pH 6) comparative with that for strong acidic conditions (pH 3). The sorption isotherms revealed that the sorption followed a monolayer/homogenous behavior. The sorption kinetic data were well fitted by the pseudo-second-order kinetic model, and were consistent with those derived from sorption isotherms. The intraparticle diffusion was considered to be the rate-determining step. Two main sorption mechanisms for Zn (II) were identified namely, ion exchange at low pH values, and both ion exchange and chemisorption in weekly acidic conditions.
Collapse
Affiliation(s)
- Cristina Modrogan
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu 1-7, 060042 Bucharest, Romania; (C.M.); (A.M.P.); (A.M.D.); (O.D.O.); (C.O.)
| | - Andreea Mădălina Pandele
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu 1-7, 060042 Bucharest, Romania; (C.M.); (A.M.P.); (A.M.D.); (O.D.O.); (C.O.)
| | - Constantin Bobirică
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu 1-7, 060042 Bucharest, Romania; (C.M.); (A.M.P.); (A.M.D.); (O.D.O.); (C.O.)
- Correspondence: (C.B.); (D.D.); Tel.: +40-214-023-820 (C.B.); +40-0722-446-082 (D.D.)
| | - Dan Dobrotǎ
- Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
- Correspondence: (C.B.); (D.D.); Tel.: +40-214-023-820 (C.B.); +40-0722-446-082 (D.D.)
| | - Annette Madelene Dăncilă
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu 1-7, 060042 Bucharest, Romania; (C.M.); (A.M.P.); (A.M.D.); (O.D.O.); (C.O.)
| | - Gabriel Gârleanu
- Faculty of Industrial Engineering and Robotics, Politehnica University of Bucharest, 060042 Bucharest, Romania; (G.G.); (C.B.); (D.G.)
| | - Oanamari Daniela Orbuleţ
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu 1-7, 060042 Bucharest, Romania; (C.M.); (A.M.P.); (A.M.D.); (O.D.O.); (C.O.)
| | - Claudia Borda
- Faculty of Industrial Engineering and Robotics, Politehnica University of Bucharest, 060042 Bucharest, Romania; (G.G.); (C.B.); (D.G.)
| | - Delia Gârleanu
- Faculty of Industrial Engineering and Robotics, Politehnica University of Bucharest, 060042 Bucharest, Romania; (G.G.); (C.B.); (D.G.)
| | - Cristina Orbeci
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu 1-7, 060042 Bucharest, Romania; (C.M.); (A.M.P.); (A.M.D.); (O.D.O.); (C.O.)
| |
Collapse
|
16
|
Chitosan/Graphene Oxide Nanocomposite Membranes as Adsorbents with Applications in Water Purification. MATERIALS 2020; 13:ma13071687. [PMID: 32260385 PMCID: PMC7178673 DOI: 10.3390/ma13071687] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022]
Abstract
The scope of this article is to develop composite membranes using chitosan (CS) and graphene oxide (GO) as adsorbents for the removal of inorganic pollutants such as heavy metal ions, particularly Pb2+, from aqueous solutions. GO was obtained by modified Hummers method and blended with CS solution. The introduction of ethylenediaminetetraacetic acid (EDTA) compound to CS/GO suspension lead to an increased adsorption capacity of CS/GO for the elimination of heavy metals by forming stable chelates with them. The synthesized membranes were examined by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and the adsorption behaviour of Pb2+ from aqueous solutions using CS/EDTA/GO membranes was evaluated using inductively coupled plasma mass spectrometry (ICP-MS). The adsorption performance of Pb2+ ions was studied by monitoring the concentration of Pb2+ against the adsorption period at an initial content of the adsorbent. The maximum adsorption efficiency of Pb2+ metal ions reached 767 mg·g−1 for CS/EDTA/GO 0.1%, 889 mg·g−1 for CS/EDTA/GO 0.3%, 970 mg·g−1 for CS/EDTA, 853 mg·g−1 for CS and 1526 mg·g−1 for GO. These findings show promising potential for CS/EDTA/GO membranes as effective adsorbent materials for the removal of heavy metal ions in water.
Collapse
|