1
|
Khalil MI, Helal M, El-Sayed AF, El Hajj R, Holail J, Houssein M, Waraky A, Pardo OE. S6K2 in Focus: Signaling Pathways, Post-Translational Modifications, and Computational Analysis. Int J Mol Sci 2024; 26:176. [PMID: 39796034 PMCID: PMC11719502 DOI: 10.3390/ijms26010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/13/2025] Open
Abstract
S6 Kinase 2 (S6K2) is a key regulator of cellular signaling and is crucial for cell growth, proliferation, and survival. This review is divided into two parts: the first focuses on the complex network of upstream effectors, downstream modulators, and post-translational modifications (PTMs) that regulate S6K2 activity. We emphasize the dynamic nature of S6K2 regulation, highlighting its critical role in cellular homeostasis and its potential as a therapeutic target in diseases like cancer. The second part utilizes in silico analyses, employing computational tools to model S6K2's three-dimensional structure and predict its interaction networks. Molecular dynamics simulations and docking studies reveal potential binding sites and interactions with novel known inhibitors. We also examine the effects of environmental contaminants that potentially disrupt S6K2 function and provide insights into the role of external factors that could impact its regulatory mechanisms. These computational findings provide a deeper understanding of the conformational dynamics of S6K2 and its interactions with its inhibitors. Together, this integrated biochemical and computational approach enhances our understanding of S6K2 regulation and identifies potential new therapeutic strategies targeting S6K2 in the oncology setting.
Collapse
Affiliation(s)
- Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon;
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Mohamed Helal
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark;
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Ahmed F. El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza 12622, Egypt;
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Rana El Hajj
- Department of Biological Sciences, Faculty of Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon;
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Marwa Houssein
- Scientific Support, HVD Life Sciences, Riyadh 11411, Saudi Arabia;
| | - Ahmed Waraky
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden;
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge University, Cambridge CB20AW, UK
- Department of Laboratory Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Olivier E. Pardo
- Division of Cancer, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
2
|
Teh YM, Mualif SA, Mohd Noh NI, Lim SK. The Potential of Naturally Derived Compounds for Treating Chronic Kidney Disease: A Review of Autophagy and Cellular Senescence. Int J Mol Sci 2024; 26:3. [PMID: 39795863 PMCID: PMC11719669 DOI: 10.3390/ijms26010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by irreversible progressive worsening of kidney function leading to kidney failure. CKD is viewed as a clinical model of premature aging and to date, there is no treatment to reverse kidney damage. The well-established treatment for CKD aims to control factors that may aggravate kidney progression and to provide kidney protection effects to delay the progression of kidney disease. As an alternative, Traditional Chinese Medicine (TCM) has been shown to have fewer adverse effects for CKD patients. However, there is a lack of clinical and molecular studies investigating the mechanisms by which natural products used in TCM can improve CKD. In recent years, autophagy and cellular senescence have been identified as key contributors to aging and age-related diseases. Exploring the potential of natural products in TCM to target these processes in CKD patients could slow disease progression. A better understanding of the characteristics of these natural products and their effects on autophagy and cellular senescence through clinical studies, coupled with the use of these products as complementary therapy alongside mainstream treatment, may maximize therapeutic benefits and minimize adverse effects for CKD patients. While promising, there is currently a lack of thorough research on the potential synergistic effects of these natural products. This review examines the use of natural products in TCM as an alternative treatment for CKD and discusses their active ingredients in terms of renoprotection, autophagy, and cellular senescence.
Collapse
Affiliation(s)
- Yoong Mond Teh
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Siti Aisyah Mualif
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - Soo Kun Lim
- Department of Medicine, Faculty of Medicine, University of Malaysia (UM), Kuala Lumpur 59100, Malaysia
| |
Collapse
|
3
|
Arab HH, Althobaiti MM, Alharthi AS, Almalki EO, Alsoubie SS, Qattan JM, Almalki SA, Ashour AM, Eid AH. Repurposing Dapagliflozin for Mitigation of the Kidney Injury Triggered by Cadmium in Rats: Role of Autophagy, Apoptosis, and the SIRT1/Nrf2/HO-1 Pathway. Pharmaceuticals (Basel) 2024; 17:1690. [PMID: 39770532 PMCID: PMC11678783 DOI: 10.3390/ph17121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The antioxidant/antiapoptotic features of dapagliflozin (DPG) have mediated its beneficial actions against several experimental models. However, no studies have been conducted to determine whether DPG mitigates the renal injury triggered by cadmium (Cd). Herein, DPG was studied for its potential to attenuate kidney damage in Cd-intoxicated rats, as well as to unravel the mechanisms involving oxidative events, autophagy, and apoptosis. Methods: Histopathological analysis, immunohistochemical staining, and ELISA were conducted on kidney tissue samples. Results: Cd administration (5 mg/kg/day; p.o.) prompted significant renal damage, as evidenced by histopathological changes, elevated kidney injury molecule-1 (KIM-1) expression, and increased serum creatinine and urea. Interestingly, DPG (1 mg/kg/day; p.o.) significantly mitigated these harmful effects without affecting renal Cd metal accumulation. Mechanistically, DPG curbed Cd-induced renal pro-oxidant response and stimulated the antioxidant sirtuin 1 (SIRT1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase 1 (HO-1) axis. Moreover, DPG restored autophagy by decreasing sequestosome-1/protein 62 (SQSTM-1/p62) accumulation and stimulating the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) pathway. In tandem, DPG suppressed Cd-induced apoptosis by lowering renal Bcl-2 associated-x protein (Bax) and cytochrome C (Cyt C) levels and caspase 3 activity. Conclusions: These findings indicate that DPG attenuates Cd-induced nephrotoxicity by enhancing the SIRT1/Nrf2/HO-1 antioxidant pathway, promoting AMPK/mTOR-directed autophagy, and inhibiting apoptotic cell death.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Musaad M. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Emad O. Almalki
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saif S. Alsoubie
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Jawad M. Qattan
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saeed A. Almalki
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ahmed H. Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| |
Collapse
|
4
|
Kurmangaliyeva S, Baktikulova K, Tkachenko V, Seitkhanova B, Shapambayev N, Rakhimzhanova F, Almagambetova A, Kurmangaliyev K. An Overview of Hexavalent Chromium-Induced Necroptosis, Pyroptosis, and Ferroptosis. Biol Trace Elem Res 2024:10.1007/s12011-024-04376-1. [PMID: 39287767 DOI: 10.1007/s12011-024-04376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Heavy metals are common environmental industrial pollutants. Due to anthropogenic activity, chromium, especially its hexavalent form [Cr(VI)], is a widespread environmental contaminant that poses a threat to human health. In this review paper, we summarize the currently reported molecular mechanisms involved in chromium toxicity with a focus on the induction of pro-inflammatory non-apoptotic cell death pathways such as necroptosis, pyroptosis, and ferroptosis. The review highlights the ability of chromium to induce necroptosis, pyroptosis, and ferroptosis revealing the signaling pathways involved. Cr(VI) can induce RIPK1/RIPK3-dependent necroptosis both in vitro and in vivo. Chromium toxicity is associated with pyroptotic NLRP3 inflammasome/caspase-1/gasdermin D-dependent secretion of IL-1β and IL-18. Furthermore, this review emphasizes the role of redox imbalance and intracellular iron accumulation in Cr(VI)-induced ferroptosis. Of note, the crosstalk between the investigated lethal subroutines in chromium-induced toxicity is primarily mediated by reactive oxygen species (ROS), which are suggested to act as a rheostat determining the cell death pathway in cells exposed to chromium. The current study provides novel insights into the pro-inflammatory effects of chromium, since necroptosis, pyroptosis, and ferroptosis affect inflammation owing to their immunogenic properties linked primarily with damage-associated molecular patterns. Inhibition of these non-apoptotic lethal subroutines can be considered a therapeutic strategy to reduce the toxicity of heavy metals, including chromium.
Collapse
Affiliation(s)
- Saulesh Kurmangaliyeva
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| | - Kristina Baktikulova
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan.
| | - Viktoriya Tkachenko
- State Institution "Republican Scientific and Practical Centre of Sports, " 8 Narochanskaya St, Minsk, Republic of Belarus
| | - Bibigul Seitkhanova
- Department of Microbiology, Virology and Immunology, South Kazakhstan Medical Academy, Al-Farabi Sq, Shymkent, Republic of Kazakhstan
| | - Nasriddin Shapambayev
- Department of General Practitioner - 1, Khoja Akhmet Yasawi International Kazakh-Turkish University, 7/7 Baitursynov St, Shymkent, Republic of Kazakhstan
| | - Farida Rakhimzhanova
- Department of Microbiology, NCJSC "Semey Medical University, " 103 Abay St, Semey, Republic of Kazakhstan
| | - Altyn Almagambetova
- Department of Phthisiology and Dermatovenerology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| | - Kairat Kurmangaliyev
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev St, Aktobe, Republic of Kazakhstan
| |
Collapse
|
5
|
Li Y, Cui H, Xu WX, Fu HY, Li JZ, Fan RF. Selenium represses microRNA-202-5p/MICU1 aixs to attenuate mercuric chloride-induced kidney ferroptosis. Poult Sci 2024; 103:103891. [PMID: 38878746 PMCID: PMC11227010 DOI: 10.1016/j.psj.2024.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
Mercuric chloride (HgCl2) is a nephrotoxic contaminant that is widely present in the environment. Selenium (Se) can effectively antagonize the biological toxicity caused by heavy metals. Here, in vivo and in vitro models of Se antagonism to HgCl2-induced nephrotoxicity in chickens were established, with the aim of exploring the specific mechanism. Morphological observation and kidney function analysis showed that Se alleviated HgCl2-induced kidney tissue injury and cytotoxicity. The results showed that ferroptosis was the primary mechanism for the toxicity of HgCl2, as indicated by iron overload and lipid peroxidation. On the one hand, Se significantly prevented HgCl2-induced iron overload. On the other hand, Se alleviated the intracellular reactive oxygen species (ROS) levels caused by HgCl2. Subsequently, we focused on the sources of ROS during HgCl2-induced ferroptosis. Mechanically, Se reduced ROS overproduction induced by HgCl2 through mitochondrial calcium uniporter (MCU)/mitochondrial calcium uptake 1 (MICU1)-mediated mitochondrial calcium ion (Ca2+) overload. Furthermore, a dual luciferase reporter assay demonstrated that MICU1 was the direct target of miR-202-5p. Overall, Se represses miR-202-5p/MICU1 axis to attenuate HgCl2-induced kidney ferroptosis.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Hong-Yu Fu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Jiu-Zhi Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
6
|
Ren M, Li J, Xu Z, Nan B, Gao H, Wang H, Lin Y, Shen H. Arsenic exposure induced renal fibrosis via regulation of mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3679-3693. [PMID: 38511876 DOI: 10.1002/tox.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Environmental arsenic exposure is one of the major global public health problems. Studies have shown that arsenic exposure can cause renal fibrosis, but the underlying mechanism is still unclear. Integrating the in vivo and in vitro models, this study investigated the potential molecular pathways for arsenic-induced renal fibrosis. In this study, SD rats were treated with 0, 5, 25, 50, and 100 mg/L NaAsO2 for 8 weeks via drinking water, and HK2 cells were treated with different doses of NaAsO2 for 48 h. The in vivo results showed that arsenic content in the rats' kidneys increased as the dose increased. Body weight decreased and kidney coefficient increased at 100 mg/L. As a response to the elevated NaAsO2 dose, inflammatory cell infiltration, renal tubular injury, glomerular atrophy, tubulointerstitial hemorrhage, and fibrosis became more obvious indicated by HE and Masson staining. The kidney transcriptome profiles further supported the protein-protein interactions involved in NaAsO2-induced renal fibrosis. The in vivo results, in together with the in vitro experiments, have revealed that exposure to NaAsO2 disturbed mitochondrial dynamics, promoted mitophagy, activated inflammation and the TGF-β1/SMAD signaling pathway, and finally resulted in fibrosis. In summary, arsenic exposure contributed to renal fibrosis via regulating the mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling axis. This study presented an adverse outcome pathway for the development of renal fibrosis due to arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Miaomiao Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zehua Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heng Wang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Chen RY, Li DW, Xie H, Liu XW, Zhuang SY, Wu HY, Wu JJ, Sun N, Qu JW, Miao JY, Zhong C, Huang YH, Yuan XD, Zhang M, Zhang WJ, Hou JQ. Gene signature and prediction model of the mitophagy-associated immune microenvironment in renal ischemia-reperfusion injury. Front Immunol 2023; 14:1117297. [PMID: 37056767 PMCID: PMC10086170 DOI: 10.3389/fimmu.2023.1117297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundRenal ischemia-reperfusion injury (IRI) is an inevitable occurrence during kidney transplantation. Mitophagy, ferroptosis, and the associated immune microenvironment (IME) have been shown to play important roles in renal IRI. However, the role of mitophagy-associated IME genes in IRI remains unclear. In this study, we aimed to construct a prediction model of IRI prognosis based on mitophagy-associated IME genes.MethodThe specific biological characteristics of the mitophagy-associated IME gene signature were comprehensively analyzed using public databases such as GEO, Pathway Unification, and FerrDb. Correlations between the expression of prognostic genes and immune-related genes and IRI prognosis were determined by Cox regression, LASSO analysis, and Pearson’s correlation. Molecular validation was performed using human kidney 2 (HK2) cells and culture supernatant as well as the serum and kidney tissues of mice after renal IRI. Gene expression was measured by PCR, and inflammatory cell infiltration was examined by ELISA and mass cytometry. Renal tissue damage was characterized using renal tissue homogenate and tissue sections.ResultsThe expression of the mitophagy-associated IME gene signature was significantly correlated with IRI prognosis. Excessive mitophagy and extensive immune infiltration were the primary factors affecting IRI. In particular, FUNDC1, SQSTM1, UBB, UBC, KLF2, CDKN1A, and GDF15 were the key influencing factors. In addition, B cells, neutrophils, T cells, and M1 macrophages were the key immune cells present in the IME after IRI. A prediction model for IRI prognosis was constructed based on the key factors associated with the mitophagy IME. Validation experiments in cells and mice indicated that the prediction model was reliable and applicable.ConclusionWe clarified the relationship between the mitophagy-related IME and IRI. The IRI prognostic prediction model based on the mitophagy-associated IME gene signature provides novel insights on the prognosis and treatment of renal IRI.
Collapse
Affiliation(s)
- Ruo-Yang Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Da-Wei Li
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hui Xie
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiao-Wen Liu
- Department of Institute of Molecular Medicine, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Shao-Yong Zhuang
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hao-Yu Wu
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jia-Jin Wu
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Nan Sun
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jun-Wen Qu
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jia-Yi Miao
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Chen Zhong
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yu-Hua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Dong Yuan
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- *Correspondence: Xiao-Dong Yuan, ; Ming Zhang, ; Wei-Jie Zhang, ; Jian-Quan Hou,
| | - Ming Zhang
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- *Correspondence: Xiao-Dong Yuan, ; Ming Zhang, ; Wei-Jie Zhang, ; Jian-Quan Hou,
| | - Wei-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Xiao-Dong Yuan, ; Ming Zhang, ; Wei-Jie Zhang, ; Jian-Quan Hou,
| | - Jian-Quan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
- *Correspondence: Xiao-Dong Yuan, ; Ming Zhang, ; Wei-Jie Zhang, ; Jian-Quan Hou,
| |
Collapse
|
8
|
Hu M, Han M, Zhang H, Li Z, Xu K, Kang H, Zong J, Zhao F, Liu Y, Liu W. Curcumin (CUMINUP60®) mitigates exercise fatigue through regulating PI3K/Akt/AMPK/mTOR pathway in mice. Aging (Albany NY) 2023; 15:2308-2320. [PMID: 36988546 PMCID: PMC10085593 DOI: 10.18632/aging.204614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Curcumin is a chemical constituent extracted from Curcuma longa L. Several clinical and preclinical studies have demonstrated that it can mitigate exercise fatigue, but the exact mechanism is still unknown. Therefore, we applied a mouse model of exercise fatigue to investigate the possible molecular mechanisms of curcumin's anti-fatigue effect. Depending on body mass, Kunming mice were randomly divided into control, caffeine (positive drug), and curcumin groups, and were given 28 days intragastric administration. Both the caffeine group and curcumin group showed significant improvement in exercise fatigue compared to the control group, as evidenced by the increase in time to exhaustion, as well as the higher quadriceps coefficient, muscle glycogen (MG) content, and increase in the expression of Akt, AMPK, PI3K, and mTOR proteins. While the curcumin group also significantly improved the exercise fatigue of the mice, demonstrating a lower AMP/ATP ratio and lactic acid (LA) content, and increased glycogen synthase (GS), and myonectin content compared to the caffeine group. Therefore, in the present study, we found that curcumin can exert a similar anti-fatigue effect to caffeine and may act by regulating energy metabolism through modulating the expression of the proteins in the PI3K/Akt/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Minghui Hu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Muxuan Han
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Kaiyong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Huaixing Kang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | | | - Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yuanxiang Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Wei Liu
- Department of Encephalopathy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, China
| |
Collapse
|
9
|
Kumar M, Singh S, Dwivedi S, Dubey I, Trivedi SP. Altered transcriptional levels of autophagy-related genes, induced by oxidative stress in fish Channa punctatus exposed to chromium. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1299-1313. [PMID: 36070034 DOI: 10.1007/s10695-022-01119-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Chromium has been detected in various water bodies as a harmful metallic stressor to aquatic organisms. This study aimed to investigate the mechanism associated with autophagy, oxidative stress, and genotoxicity after chromium (Cr6+) exposure (1/20th of 96 h-LC50, 1/10th of 96 h-LC50, and 1/5th of 96 h-LC50 of Cr6+) of common food fish Channa punctatus. The mRNA levels of autophagy-related genes ATG5, LC3, GABARAP, and mTOR were assessed in the liver and kidney tissue of fish. An upregulation of ATG5, LC3, and GABARAP was observed in both liver and kidney tissue samples, while mTOR showed transcriptional downregulation in both the tissue samples. This depicts autophagic vesicle formation due to stress signals. All the studied oxidative stress markers SOD, CAT, GSH, GR, and GPx showed an increase in the activity level of treated groups in a dose-dependent manner. Particularly, SOD and CAT have shown a significant elevation in activity level. ROS levels in blood cells increased significantly (p < 0.05) in all the treated groups (groups II, III, and IV) in a time-dependent manner as compared to the control (group I). There was a significant induction in MN frequency in all the treated groups. The highest frequency of micronuclei induced by Cr6+ was recorded in group IV after 28 days of exposure period. Collectively, it can be concluded that the information about Cr6+-induced oxidative stress-mediated autophagy in vital organs of fish Channa punctatus remains largely obscure hitherto; to fill the aforesaid gap, this study was undertaken, which gives a snapshot for the mechanisms of autophagy induced by Cr6+ in fish. HIGHLIGHTS: • Chronic exposure to Cr6+ induces eco-toxicological manifestations in a fish Channa punctatus. • Altered transcriptional profile of autophagy-related genes suggests autophagic vesicle formation due to stress signals. • Increased activity levels of oxidative stress biomarkers reveal that Cr6+ annihilates antioxidative defense system in fish. • Genotoxicity due to chromium exposure is evident by increased frequency of MN in red blood cells of fish. • The information presented in this study is helpful to get an insight into the mechanism of Cr6+-induced oxidative stress-mediated induction of autophagy in the liver and kidney of Channa punctatus.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Zoology, University of Lucknow, Lucknow-226007, India.
| | - Shefalee Singh
- Department of Zoology, University of Lucknow, Lucknow-226007, India
| | - Shikha Dwivedi
- Department of Zoology, University of Lucknow, Lucknow-226007, India
| | - Indrani Dubey
- Department of Zoology, DBS College, CSJM University, Kanpur, India
| | - Sunil P Trivedi
- Department of Zoology, University of Lucknow, Lucknow-226007, India
| |
Collapse
|
10
|
Ashkar F, Bhullar KS, Wu J. The Effect of Polyphenols on Kidney Disease: Targeting Mitochondria. Nutrients 2022; 14:nu14153115. [PMID: 35956292 PMCID: PMC9370485 DOI: 10.3390/nu14153115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial function, including oxidative phosphorylation (OXPHOS), mitochondrial biogenesis, and mitochondria dynamics, are essential for the maintenance of renal health. Through modulation of mitochondrial function, the kidneys are able to sustain or recover acute kidney injury (AKI), chronic kidney disease (CKD), nephrotoxicity, nephropathy, and ischemia perfusion. Therapeutic improvement in mitochondrial function in the kidneys is related to the regulation of adenosine triphosphate (ATP) production, free radicals scavenging, decline in apoptosis, and inflammation. Dietary antioxidants, notably polyphenols present in fruits, vegetables, and plants, have attracted attention as effective dietary and pharmacological interventions. Considerable evidence shows that polyphenols protect against mitochondrial damage in different experimental models of kidney disease. Mechanistically, polyphenols regulate the mitochondrial redox status, apoptosis, and multiple intercellular signaling pathways. Therefore, this review attempts to focus on the role of polyphenols in the prevention or treatment of kidney disease and explore the molecular mechanisms associated with their pharmacological activity.
Collapse
Affiliation(s)
| | | | - Jianping Wu
- Correspondence: ; Tel.: +1-780-492-6885; Fax: +1-780-492-8524
| |
Collapse
|
11
|
Sivani BM, Azzeh M, Patnaik R, Pantea Stoian A, Rizzo M, Banerjee Y. Reconnoitering the Therapeutic Role of Curcumin in Disease Prevention and Treatment: Lessons Learnt and Future Directions. Metabolites 2022; 12:metabo12070639. [PMID: 35888763 PMCID: PMC9320502 DOI: 10.3390/metabo12070639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Turmeric is a plant with a very long history of medicinal use across different cultures. Curcumin is the active part of turmeric, which has exhibited various beneficial physiological and pharmacological effects. This review aims to critically appraise the corpus of literature associated with the above pharmacological properties of curcumin, with a specific focus on antioxidant, anti-inflammatory, anticancer and antimicrobial properties. We have also reviewed the different extraction strategies currently in practice, highlighting the strengths and drawbacks of each technique. Further, our review also summarizes the clinical trials that have been conducted with curcumin, which will allow the reader to get a quick insight into the disease/patient population of interest with the outcome that was investigated. Lastly, we have also highlighted the research areas that need to be further scrutinized to better grasp curcumin’s beneficial physiological and medicinal properties, which can then be translated to facilitate the design of better bioactive therapeutic leads.
Collapse
Affiliation(s)
- Bala Mohan Sivani
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Mahmoud Azzeh
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Rajashree Patnaik
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90128 Palermo, Italy;
| | - Yajnavalka Banerjee
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: or ; Tel.: +971-527-873-636
| |
Collapse
|
12
|
Wu L, Yu Y, Hu H, Tao Y, Song P, Li D, Guan Y, Gao H, Sui X, Volodymyr T, Volodymyr V, Zhatova H, Li C. New SFT2-like Vesicle Transport Protein (SFT2L) Enhances Cadmium Tolerance and Reduces Cadmium Accumulation in Common Wheat Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5526-5540. [PMID: 35484643 DOI: 10.1021/acs.jafc.1c08021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal elements to the environment, which seriously threatens the safe production of food crops. In this study, we identified a novel function of the cytomembrane TaSFT2L protein in wheat (Triticum aestivum). Expression of the TaSFT2L gene in yeast showed no transport activities for Cd, which could explain the role of TaSFT2L in metal tolerance. It was observed that increased autophagic activity in roots caused by silencing of TaSFT2L enhanced Cd tolerance. Transgenic wheat revealed that RNA interference (RNAi) lines enhanced the wheat growth concerning the increased shoot or root elongation, dry weight, and chlorophyll accumulation. Furthermore, RNAi lines decreased root-to-grain Cd translocation in wheat by nearly 68% and Cd accumulation in wheat grains by 53%. Meanwhile, the overexpression lines displayed a compromised growth response and increased Cd accumulation in wheat tissues, compared to wild type. These findings show that TaSFT2L is a key gene involved in regulation of Cd translocation in wheat, and its silencing to form transgenic wheat can inhibit Cd accumulation. This has the ability to alleviate the food chain-associated impact of environmental pollution on human health.
Collapse
Affiliation(s)
- Liuliu Wu
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
- Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Yongang Yu
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haiyan Hu
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ye Tao
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
- Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Puwen Song
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dongxiao Li
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuanyuan Guan
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huanting Gao
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Sui
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | | | | | | | - Chengwei Li
- College of Life Science and Technology/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450000, China
| |
Collapse
|
13
|
Aparicio-Trejo OE, Aranda-Rivera AK, Osorio-Alonso H, Martínez-Klimova E, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E. Extracellular Vesicles in Redox Signaling and Metabolic Regulation in Chronic Kidney Disease. Antioxidants (Basel) 2022; 11:antiox11020356. [PMID: 35204238 PMCID: PMC8868440 DOI: 10.3390/antiox11020356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a world health problem increasing dramatically. The onset of CKD is driven by several mechanisms; among them, metabolic reprogramming and changes in redox signaling play critical roles in the advancement of inflammation and the subsequent fibrosis, common pathologies observed in all forms of CKD. Extracellular vesicles (EVs) are cell-derived membrane packages strongly associated with cell-cell communication since they transfer several biomolecules that serve as mediators in redox signaling and metabolic reprogramming in the recipient cells. Recent studies suggest that EVs, especially exosomes, the smallest subtype of EVs, play a fundamental role in spreading renal injury in CKD. Therefore, this review summarizes the current information about EVs and their cargos’ participation in metabolic reprogramming and mitochondrial impairment in CKD and their role in redox signaling changes. Finally, we analyze the effects of these EV-induced changes in the amplification of inflammatory and fibrotic processes in the progression of CKD. Furthermore, the data suggest that the identification of the signaling pathways involved in the release of EVs and their cargo under pathological renal conditions can allow the identification of new possible targets of injury spread, with the goal of preventing CKD progression.
Collapse
Affiliation(s)
- Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Elena Martínez-Klimova
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| |
Collapse
|
14
|
Cadmium-Induced Kidney Injury in Mice Is Counteracted by a Flavonoid-Rich Extract of Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, via the Enhancement of Different Defense Mechanisms. Biomedicines 2021; 9:biomedicines9121797. [PMID: 34944613 PMCID: PMC8698830 DOI: 10.3390/biomedicines9121797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is considered the kidney, where it accumulates. No effective treatment for Cd poisoning is available so that several therapeutic approaches were proposed to prevent damages after Cd exposure. We evaluated the effects of a flavonoid-rich extract of bergamot juice (BJe), alone or in association with curcumin (Cur) and resveratrol (Re), in the kidney of mice exposed to cadmium chloride (CdCl2). Male mice were administered with CdCl2 and treated with Cur, Re, or BJe alone or in combination for 14 days. The kidneys were processed for biochemical, structural and morphometric evaluation. Cd treatment significantly increased urea nitrogen and creatinine levels, along with tp53, Bax, Nos2 and Il1b mRNA, while reduced that of Bcl2, as well as glutathione (GSH) content and glutathione peroxidase (GPx) activity. Moreover, Cd caused damages to glomeruli and tubules, and increased Nrf2, Nqo1 and Hmox1 gene expression. Cur, Re and BJe at 40 mg/kg significantly improved all parameters, while BJe at 20 mg/kg showed a lower protective effect. After treatment with the associations of the three nutraceuticals, all parameters were close to normal, thus suggesting a new potential strategy in the protection of renal functions in subjects exposed to environmental toxicants.
Collapse
|
15
|
Yuan J, Zhao Y, Bai Y, Gu J, Yuan Y, Liu X, Liu Z, Zou H, Bian J. Cadmium induces endosomal/lysosomal enlargement and blocks autophagy flux in rat hepatocytes by damaging microtubules. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112993. [PMID: 34808507 DOI: 10.1016/j.ecoenv.2021.112993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Acute exposure to cadmium (Cd) causes vacuolar degeneration in buffalo rat liver 3 A (BRL 3 A) cells. The present study aimed to determine the relationship between Cd-induced microtubule damage and intracellular vacuolar degeneration. Western blotting results showed that Cd damaged the microtubule network and downregulated the expression of microtubule-associated proteins-kinesin-1 heavy chain (KIF5B), γ-tubulin, and acetylated α-tubulin in BRL 3 A cells. Immunofluorescence staining revealed that Cd inhibited interactions between α-tubulin and microtubule-associated protein 4 (MAP4) as well as KIF5B. Increasing Cd concentrations decreased the levels of the lipid kinase, PIKfyve, which regulates the activity of endosome-lysosome fission. Immunofluorescence and transmission electron microscopy revealed vacuole-like organelles that were late endosomes and lysosomes. The PIKfyve inhibitor, YM201636, and the microtubule depolymerizer, nocodazole, aggravated Cd-induced endosome-lysosome enlargement. Knocking down the kif5b gene that encodes KIF5B intensified the enlargement of endosome-lysosomes and expression of early endosome antigen 1 (EEA1), Ras-related protein Rab-7a (RAB7), and lysosome-associated membrane glycoprotein 2 (LAMP2). Nocodazole, YM201636, and the knockdown of kif5b blocked autophagic flux. We concluded that Cd-induced damage to the microtubule network is the main reason for endosome-lysosome enlargement and autophagic flux blockage in BRL 3 A cells, and kinesin-1 plays a critical role in this process.
Collapse
Affiliation(s)
- Junzhao Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yumeng Zhao
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yuni Bai
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
16
|
Kang J, Chen J, Dong Z, Chen G, Liu D. The negative effect of the PI3K inhibitor 3-methyladenine on planarian regeneration via the autophagy signalling pathway. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1941-1948. [PMID: 34403000 DOI: 10.1007/s10646-021-02439-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
As an important PI3K (VPS34) inhibitor, 3-methyladenine (3-MA) can block the formation of autophagic vesicles in animals. Most toxicological studies using 3-MA have shown that 3-MA leads to serious disorders via autophagy suppression in mammals. However, no toxicological research on 3-MA has been performed on individuals undergoing regeneration. The freshwater planarian has powerful regenerative capability, and it can regenerate a new brain in 5 days and undergo complete adult individual remodelling in approximately 14 days. Moreover, it is also an excellent model organism for studies on environmental toxicology due to its high chemical sensitivity and extensive distribution. Here, Dugesia japonica planarians were treated with 3-MA, and the results showed that autophagy was inhibited and Djvps34 expression levels were down-regulated. After exposure to 10 mM 3-MA for 18 h, all the controls showed normal phenotypes, while one-half of the planarians treated with 3-MA showed morphological defects. In most cases, an ulcer appeared in the middle of the body, and a normal phenotype was restored 7 days following 3-MA exposure. During regeneration, disproportionate blastemas with tissue regression were observed. Furthermore, 3-MA treatment suppressed stem cell proliferation in intact and regenerating worms. These findings demonstrate that autophagy is indispensable for tissue homeostasis and regeneration in planarians and that 3-MA treatment is detrimental to planarian regeneration via its effect on the autophagy pathway.
Collapse
Affiliation(s)
- Jing Kang
- College of Life Science, Henan Normal University, Xinxiang, China
- College of Life Science, Xingxiang Medical University, Xinxiang, China
| | - Jinzi Chen
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
17
|
Jia Q, Han L, Zhang X, Yang W, Gao Y, Shen Y, Li B, Wang S, Qin M, Lowe S, Qin J, Hao G. Tongluo Yishen Decoction Ameliorates Renal Fibrosis via Regulating Mitochondrial Dysfunction Induced by Oxidative Stress in Unilateral Ureteral Obstruction Rats. Front Pharmacol 2021; 12:762756. [PMID: 34712143 PMCID: PMC8545824 DOI: 10.3389/fphar.2021.762756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Tongluo Yishen (TLYS) decoction is an herb that is extensively applied for the treatment of chronic kidney disease (CKD) in traditional Chinese medicine. In this study, 37 different dominant chemical constituents of TLYS were identified. Rats with unilateral ureteral obstruction (UUO) were used as animal models, and TLYS decoction was administered orally for 14 days. TLYS decoction reduced the levels of renal function indicators, serum creatinine levels and blood urea nitrogen levels and alleviated renal pathological changes. Gene Ontology (GO) and KEGG pathway analyses of RNA sequencing data showed that TLYS decoction had significant effects on biological processes, cellular components and molecular functions in UUO rats and that the phagosome (a membrane source in the early stages of autophagy), lysosome (an important component of autolysosome), and oxidation pathways (which contribute to mitochondrial function) might be related to the antifibrotic effects of TLYS decoction. Moreover, we found significant mitochondrial function impairment, including a decreased mitochondrial membrane potential (MMP) and an imbalance in mitochondrial dynamics, excessive oxidative stress, and activation of Pink1/Parkin-mediated mitophagy in UUO rats. Treatment with TLYS decoction significantly increased the MMP, normalized mitochondrial dynamics and ameliorated renal injury. Moreover, TLYS alleviated the mitophagy clearance deficiency. In conclusion, our study showed that TLYS decoction can ameliorate mitochondrial dynamics by reducing oxidative stress and regulating mitophagy, thereby relieving renal injury, protecting renal function, and reducing renal fibrosis. This study provides support for the application of and further research on TLYS decoction.
Collapse
Affiliation(s)
- Qi Jia
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Han
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Shen
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shang Hai, China
| | - Bing Li
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Shuyan Wang
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhen Qin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Scott Lowe
- Kansas City University of Medicine and Biosciences, College of Osteopathic Medicine, Kansas City, MO, United States
| | - Jianguo Qin
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Tkachenko H, Kurhaluk N, Hetmański T, Włodarkiewicz A, Tomin V. Changes in energetic metabolism and lysosomal destruction in the skeletal muscle and cardiac tissues of pigeons (Columba livia f. urbana) from urban areas of the northern Pomeranian region (Poland). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1170-1185. [PMID: 34076799 PMCID: PMC8295091 DOI: 10.1007/s10646-021-02423-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2021] [Indexed: 05/05/2023]
Abstract
The aim of the present study was to evaluate the biochemical responses of the skeletal muscle and cardiac tissues of the urban pigeon as a bioindicator organism tested in diverse environments (Szpęgawa as a rural environment and Słupsk as an urban environment, Pomeranian Voivodeship, northern Poland), resulting in changes in the level of lipid peroxidation at the initial and final stages of this process and the activities of Krebs cycle enzymes (succinate dehydrogenase, pyruvate dehydrogenase, isocitrate dehydrogenase, and alfa-ketoglutarate dehydrogenase). Szpęgawa village was chosen due to the intensive use of the European motorway A1 with significant traffic and pollution levels. The concentration of Pb was higher in the soil and feathers of pigeons nesting in the polluted areas (Szpęgawa). Our studies have shown that the presence of lead in soil and feathers of the pigeons resulted in the activation of lipid peroxidation, destabilization and increased activity of lysosomal membranes, and activation of mitochondrial enzymes of the Krebs cycle with energy deficiency (reduction of ATP levels) in cardiac and skeletal muscle tissues simultaneously.
Collapse
Affiliation(s)
- Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland.
| | - Tomasz Hetmański
- Department of Earth Sciences, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Agnieszka Włodarkiewicz
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| | - Vladimir Tomin
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
19
|
Yap CK, Wong KW, Al-Shami SA, Nulit R, Cheng WH, Aris AZ, Sharifinia M, Bakhtiari AR, Okamura H, Saleem M, Chew W, Ismail MS, Al-Mutairi KA. Human Health Risk Assessments of Trace Metals on the Clam Corbicula javanica in a Tropical River in Peninsular Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010195. [PMID: 33383875 PMCID: PMC7794960 DOI: 10.3390/ijerph18010195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
This study aimed to analyse ten trace metal concentrations in the edible part of the freshwater clam Corbicula javanica and to provide a critical assessment of the potential risks to human health through consumption of this clam as food based on well-established indices and food safety guidelines. The clams were captured from a pristine original site and transplanted to other sites with different environmental qualities. The trace metal levels in the edible total soft tissue (TST) of the clam were below those of the food safety guidelines referred to except for Pb, which exceeded the permissible limit set by the European Commission (2006) and the US Food and Drug Administration/ Center for Food Safety and Applied Nutrition); Interstate Shellfish Sanitation Conference. (USFDA/CFSAN; ISSC) (2007). The estimated daily intake (EDI) values of the clam were found to be lower than the oral reference dose and the calculated target hazard quotient (THQ) and total THQ were found to be less than 1. Therefore, in conclusion, the human health risk for consumption of TST of C. javanica at both average and high-level were insignificant regardless of the environment it was exposed to.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.W.W.); (R.N.)
- Correspondence: or
| | - Koe Wei Wong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.W.W.); (R.N.)
| | - Salman Abdo Al-Shami
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL 34945, USA;
| | - Rosimah Nulit
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.W.W.); (R.N.)
| | - Wan Hee Cheng
- Faculty of Health and Life Sciences, Inti International University, Sembilan 71800, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 7516989177, Iran;
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Mazandaran 46417-76489, Iran;
| | - Hideo Okamura
- Faculty of Maritime Sciences, Graduate School of Maritime Sciences, Kobe University, Kobe 658-0022, Japan;
| | - Muhammad Saleem
- Department of Chemistry, Government Post Graduate College, Mirpur University of Science and Technology, Mirpur 10250, Pakistan;
| | - Weiyun Chew
- Centre for Pre-University Study, MAHSA University, Selangor 42610, Malaysia;
| | | | | |
Collapse
|
20
|
Transcription factor EB agonists from natural products for treating human diseases with impaired autophagy-lysosome pathway. Chin Med 2020; 15:123. [PMID: 33292395 PMCID: PMC7684757 DOI: 10.1186/s13020-020-00402-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved degradation process for long-lived intracellular proteins and organelles mediated by lysosomes. Deficits in the autophagy-lysosome pathway (ALP) have been linked to a variety of human diseases, including neurodegenerative diseases, lysosomal storage disorders, and cancers. Transcription factor EB (TFEB) has been identified as a major regulator of autophagy and lysosomal biogenesis. Increasing evidence has demonstrated that TFEB activation can promote the clearance of toxic protein aggregates and regulate cellular metabolism. Traditional Chinese medicine (TCM)-derived natural products as important sources for drug discovery have been widely used for the treatment of various diseases associated with ALP dysfunction. Herein, we review (1) the regulation of TFEB and ALP; (2) TFEB and ALP dysregulation in human diseases; (3) TFEB activators from natural products and their potential uses.
Collapse
|
21
|
Curcumin Improves the Renal Autophagy in Rat Experimental Membranous Nephropathy via Regulating the PI3K/AKT/mTOR and Nrf2/HO-1 Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7069052. [PMID: 33204708 PMCID: PMC7654212 DOI: 10.1155/2020/7069052] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Membranous nephropathy (MN, also known as membranous glomerulopathy) is one of the many glomerular diseases causing nephrotic syndrome. The literature indicates that autophagy is associated with the homeostasis of podocytes in glomeruli. Curcumin, the main active component in turmeric, has drawn attention for its effective bioactivities against chronic kidney disease. The current study was aimed at assessing the effects of curcumin and exploring the underlying mechanism that mediates autophagy in an animal model of passive Heymann nephritis (PHN) in rats. Passive Heymann nephritis (PHN) was induced in male SD rats by intraperitoneal injection of anti-Fx1A serum. The rats were divided into 3 groups: control (n = 10, normal diet), model group (n = 10, 0.5% sodium carboxymethylcellulose), and curcumin (n = 10, 300 mg/kg/d). The kidney function and oxidative stress indicators were measured using commercial diagnostic kits, and the histomorphology of renal tissues was observed. The number of podocytes was measured by immunohistochemistry. Meanwhile, the autophagosomes in podocyte were analyzed by transmission electron microscopy and the immunofluorescence assay pointing to p62, an autophagic marker. Western blot analyzed the levels of apoptosis, autophagy, PI3K/AKT/mTOR, and Nrf2/HO-1 pathway-associated proteins. The total cholesterol (TC), triglycerides (TG), creatinine (Scr), blood urea nitrogen (BUN), urine volume, and urine albumin of PHN rats were significantly reduced by the administration of curcumin and attenuated renal histomorphological changes in model rats. Meanwhile, curcumin improved the oxidative stress response by decreasing MDA and increasing SOD, GSH, and CAT levels in the kidney of PHN rats. Furthermore, curcumin significantly ameliorated the podocyte loss, along with the fusion, and increased the autophagic vacuoles compared to the PHN control rats. In addition, curcumin downregulated the expression of Bax, Caspase-3, p62, PI3K, p-AKT, and p-mTOR proteins and upregulated the Bcl-2, beclin1, LC3, Nrf2, and HO-1 levels in this animal model. The results provide a scientific basis that curcumin could significantly alleviate the development of MN by inducing autophagy and alleviating renal oxidative stress through the PI3K/AKT/mTOR and Nrf2/HO-1 pathways.
Collapse
|
22
|
Wei W, Ma N, Fan X, Yu Q, Ci X. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches. Free Radic Biol Med 2020; 158:1-12. [PMID: 32663513 DOI: 10.1016/j.freeradbiomed.2020.06.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome that is related to high morbidity and mortality. Oxidative stress, including the production of reactive oxygen species (ROS), appears to be the main element in the occurrence of AKI and the cause of the progression of chronic kidney disease (CKD) into end-stage renal disease (ESRD). Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant regulator of redox balance that has been shown to improve kidney disease by eliminating ROS. To date, researchers have found that the use of Nrf2-activated compounds can effectively reduce ROS, thereby preventing or retarding the progression of various types of AKI. In this review, we summarized the molecular mechanisms of Nrf2 and ROS in AKI and described the latest findings on the therapeutic potential of Nrf2 activators in various types of AKI.
Collapse
Affiliation(s)
- Wei Wei
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Ning Ma
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Xiaoye Fan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
23
|
Zhu Y, Costa M. Metals and molecular carcinogenesis. Carcinogenesis 2020; 41:1161-1172. [PMID: 32674145 PMCID: PMC7513952 DOI: 10.1093/carcin/bgaa076] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Many metals are essential for living organisms, but at higher doses they may be toxic and carcinogenic. Metal exposure occurs mainly in occupational settings and environmental contaminations in drinking water, air pollution and foods, which can result in serious health problems such as cancer. Arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr) and nickel (Ni) are classified as Group 1 carcinogens by the International Agency for Research on Cancer. This review provides a comprehensive summary of current concepts of the molecular mechanisms of metal-induced carcinogenesis and focusing on a variety of pathways, including genotoxicity, mutagenesis, oxidative stress, epigenetic modifications such as DNA methylation, histone post-translational modification and alteration in microRNA regulation, competition with essential metal ions and cancer-related signaling pathways. This review takes a broader perspective and aims to assist in guiding future research with respect to the prevention and therapy of metal exposure in human diseases including cancer.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
24
|
Martínez-Klimova E, Aparicio-Trejo OE, Gómez-Sierra T, Jiménez-Uribe AP, Bellido B, Pedraza-Chaverri J. Mitochondrial dysfunction and endoplasmic reticulum stress in the promotion of fibrosis in obstructive nephropathy induced by unilateral ureteral obstruction. Biofactors 2020; 46:716-733. [PMID: 32905648 DOI: 10.1002/biof.1673] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Obstructive nephropathy favors the progression to chronic kidney disease (CKD), a severe health problem worldwide. The unilateral ureteral obstruction (UUO) model is used to study the development of fibrosis. Impairment of renal mitochondria plays a crucial role in several types of CKD and has been strongly related to fibrosis onset. Nevertheless, in the UUO model, the impairment of mitochondria, their relationship with endoplasmic reticulum (ER) stress induction and the participation of both to induce the fibrotic process remain unclear. In this review, we summarize the current information about mitochondrial bioenergetics, redox dynamics, mitochondrial mass, and biogenesis alterations, as well as the relationship of these mitochondrial alterations with ER stress and their participation in fibrotic processes in UUO models. Early after obstruction, there is metabolic reprogramming related to mitochondrial fatty acid β-oxidation impairment, triggering lipid deposition, oxidative stress, (calcium) Ca2+ dysregulation, and a reduction in mitochondrial mass and biogenesis. Mitochondria and the ER establish a pathological feedback loop that promotes the impairment of both organelles by ER stress pathways and Ca2+ levels dysregulation. Preserving mitochondrial and ER function can prevent or at least delay the fibrotic process and loss of renal function. However, deeper understanding is still necessary for future clinically-useful therapies.
Collapse
Affiliation(s)
- Elena Martínez-Klimova
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Belen Bellido
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
25
|
Moore MN. Lysosomes, Autophagy, and Hormesis in Cell Physiology, Pathology, and Age-Related Disease. Dose Response 2020; 18:1559325820934227. [PMID: 32684871 PMCID: PMC7343375 DOI: 10.1177/1559325820934227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Autophagy has been strongly linked with hormesis, however, it is only relatively recently that the mechanistic basis underlying this association has begun to emerge. Lysosomal autophagy is a group of processes that degrade proteins, protein aggregates, membranes, organelles, segregated regions of cytoplasm, and even parts of the nucleus in eukaryotic cells. These degradative processes are evolutionarily very ancient and provide a survival capability for cells that are stressed or injured. Autophagy and autophagic dysfunction have been linked with many aspects of cell physiology and pathology in disease processes; and there is now intense interest in identifying various therapeutic strategies involving its regulation. The main regulatory pathway for augmented autophagy is the mechanistic target of rapamycin (mTOR) cell signaling, although other pathways can be involved, such as 5'-adenosine monophosphate-activated protein kinase. Mechanistic target of rapamycin is a key player in the many highly interconnected intracellular signaling pathways and is responsible for the control of cell growth among other processes. Inhibition of mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy and the search is on the find inhibitors that can induce hormetic responses that may be suitable for treating many diseases, including many cancers, type 2 diabetes, and age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Michael N. Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, United Kingdom
- Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom
- School of Biological & Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|