1
|
Yang M, Lin W, Huang J, Mannucci A, Luo H. Novel immunotherapeutic approaches in gastric cancer. PRECISION CLINICAL MEDICINE 2024; 7:pbae020. [PMID: 39397869 PMCID: PMC11467695 DOI: 10.1093/pcmedi/pbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Wuhao Lin
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Emndoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope; Monrovia, CA 91016, USA
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
2
|
Yang H, Guo K, Ding P, Ning J, Zhang Y, Wang Y, Wang Z, Liu G, Shao C, Pan M, Ma Z, Yan X, Han J. Histone deacetylases: Regulation of vascular homeostasis via endothelial cells and vascular smooth muscle cells and the role in vascular pathogenesis. Genes Dis 2024; 11:101216. [PMID: 39281836 PMCID: PMC11396065 DOI: 10.1016/j.gendis.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 09/18/2024] Open
Abstract
Histone deacetylases (HDACs) are proteases that play a key role in chromosome structural modification and gene expression regulation, and the involvement of HDACs in cancer, the nervous system, and the metabolic and immune system has been well reviewed. Our understanding of the function of HDACs in the vascular system has recently progressed, and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases. However, few reviews have focused on the role of HDACs in the vascular system. In this study, the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates, and the role of HDACs in different vascular pathogenesis was summarized as well. Furthermore, the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
Collapse
Affiliation(s)
- Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
3
|
Wang X, Tang Y, Liu R, Li W, Liu S, Zhou X. Pan-cancer analysis of BRK1 as a potential immunotherapeutic target. Biotechnol Genet Eng Rev 2024; 40:1591-1613. [PMID: 36989393 DOI: 10.1080/02648725.2023.2196179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Increasing evidence supports the connection between the progression of several cancers and BRK1. However, the clinical significance of aberrant BRK1 gene expression in cancer is unknown. This study is conducted to investigate the possibility and effect of BRK1 as a potential immunotherapy target, to deliver a better option for liver cancer immunotherapy. We explored the predictive role of BRK1 expression in a variety of cancers from different bioinformatics, including differential expression in different cancers, tumor microenvironment (TME), microsatellite instability (MSI), tumor mutational burden (TMB), immune checkpoint molecules, immune-related and cell cycle-related signalling pathways, and drug response sensitivity. Finally, we verified the expression of BRK1 in hepatocellular carcinoma using immunohistochemistry. BRK1 is overexpressed in multiple cancers and displays a negative association with prognosis and progression of disease in a wide range of main cancer types. Additionally, the expression of BRK1 is related to MSI and TMB of tumors. There was also a remarkable correlation between the expression of BRK1 and immune score, immune infiltration, immune checkpoint molecules and a stromal score of tumors. In hepatocellular carcinoma, BRK1 is associated with several signaling pathways and immune cell infiltration may affect several key immune-related regulatory genes, making it an excellent biomarker and may be a sensitive target for immune drugs.Our research suggests that BRK1 may be a potential prognostic marker and target for immunotherapy and may be associated with poor prognosis in diverse malignancies, including hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Hepatobiliary Surgery, Xiantao First People 's Hospital of Yangtze University, Xiantao, Hubei, China
| | - Yanru Tang
- Department of Respiratory, Xiantao First People 's Hospital of Yangtze University, Xiantao, Hubei, China
| | - Rui Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wentao Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shiyue Liu
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinhong Zhou
- Department of Hepatobiliary Surgery, Xiantao First People 's Hospital of Yangtze University, Xiantao, Hubei, China
| |
Collapse
|
4
|
Yan T, Zhou W, Li C. Discovery of a T cell proliferation-associated regulator signature correlates with prognosis risk and immunotherapy response in bladder cancer. Int Urol Nephrol 2024; 56:3447-3462. [PMID: 38789872 DOI: 10.1007/s11255-024-04086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The efficacy of immunotherapy is heavily influenced by T cell activity. This study aimed to examine how T cell proliferation regulators can predict the prognosis and response to immunotherapy in patients with bladder cancer (BCa). METHODS T cell proliferation-related subtypes were determined by employing the non-negative matrix factorization (NMF) algorithm that analyzed the expression patterns of T cell proliferation regulators. Subtypes were assessed for variations in prognosis, immune infiltration, and functional behaviors. Subsequently, a risk model related to T cell proliferation was created through Cox and Lasso regression analyses in the TCGA cohort and then confirmed in two GEO cohorts and an immunotherapy cohort. RESULTS BCa patients were categorized into two subtypes (C1 and C2) according to the expression profiles of 31 T cell proliferation-related genes (TRGs) with distinct prognoses and immune landscapes. The C2 subtype had a shorter overall survival (OS), with higher levels of M2 macrophage infiltration, and the activation of cancer-related pathways than the C1 subtype. Following this, thirteen prognosis-related genes that were involved in T cell proliferation were utilized to create the prognostic signature. The model's predictive accuracy was confirmed by analyzing both internal and external datasets. Individuals in the high-risk category experienced a poorer prognosis, increased immunosuppressive factors in the tumor microenvironment, and diminished responses to immunotherapy. Additionally, the immunotherapeutic prediction efficacy of the model was further confirmed by an immunotherapy cohort (anti-PD-L1 in the IMvigor210 cohort). CONCLUSIONS Our study characterized two subtypes linked to T cell proliferation in BCa patients with distinct prognoses and tumor microenvironment (TME) patterns, providing new insights into the heterogeneity of T cell proliferation in BCa and its connection to the immune landscape. The signature has prospective clinical implications for predicting outcomes and may help physicians to select prospective responders who prioritize current immunotherapy.
Collapse
Affiliation(s)
- Ting Yan
- Department of Blood Purification Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, People's Republic of China
| | - Wei Zhou
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, People's Republic of China
| | - Chun Li
- Department of Blood Purification Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Parekh NM, Desai RS, Bansal SP, Shirsat PM, Prasad PS. The role of M1 (CD11c) and M2 (CD163) interplay in the pathogenesis of oral submucous fibrosis and its malignant transformation: An immunohistochemical analysis. Cytokine 2024; 183:156742. [PMID: 39217916 DOI: 10.1016/j.cyto.2024.156742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES The M1/M2 macrophage framework is crucial in organ fibrosis and its progression to malignancy. This study investigated the possible role of M1/M2 macrophage interplay in the pathogenesis of oral submucous fibrosis (OSF) and its malignant transformation by analysing immunohistochemical expression of CD11c (M1) and CD163 (M2) markers. METHODS Immunohistochemistry was performed using primary antibodies against CD11c and CD163 on ten formalin-fixed paraffin-embedded tissue blocks for each group: (i) Stage 1 OSF, (ii) Stage 2 OSF, (iii) Stage 3 OSF, (iv) Stage 4 OSF, (v) well-differentiated squamous cell carcinoma (WDSCC) with OSF, and (vi) WDSCC without OSF. Ten cases of healthy buccal mucosa (NOM) served as controls. RESULTS Epithelial quick scores of M1 (CD11c) in NOM, Stages 1-4 OSF, and WDSCC with and without OSF were 0, 1.8, 2.9, 0.4, 0, 0, and 0, while connective tissue scores were 0, 3.2, 4.3, 2.7, 0.5, 1.2, and 2.4, respectively. Epithelial scores for M2 (CD163) were 0, 0.8, 0.8, 2.1, 0.6, 0.8, and 0.2, and connective tissue scores were 0, 1.8, 2.6, 3.9, 2.2, 5, and 4.4, respectively. Stages 3 and 4 OSF, WDSCC with and without OSF exhibited higher M2/M1 ratios compared to NOM and Stages 1-2 OSF. CONCLUSION The interaction between M1 (CD11c) and M2 (CD163) macrophages, leading to M2 polarisation, plays a crucial role in the pathogenesis of OSF and its potential malignant transformation.
Collapse
Affiliation(s)
- Nishreen M Parekh
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| | - Rajiv S Desai
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India.
| | - Shivani P Bansal
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| | - Pankaj M Shirsat
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| | - Pooja S Prasad
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai 400008, India
| |
Collapse
|
6
|
Zhang Y, Rao Y, Lu J, Wang J, Ker DFE, Zhou J, Wang DM. The influence of biophysical niche on tumor-associated macrophages in liver cancer. Hepatol Commun 2024; 8:e0569. [PMID: 39470328 DOI: 10.1097/hc9.0000000000000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/30/2024] [Indexed: 10/30/2024] Open
Abstract
HCC, the most common type of primary liver cancer, is a leading cause of cancer-related mortality worldwide. Although the advancement of immunotherapies by immune checkpoint inhibitors (ICIs) that target programmed cell death 1 or programmed cell death 1-ligand 1 has revolutionized the treatment for HCC, the majority is still not beneficial. Accumulating evidence has pointed out that the potent immunosuppressive tumor microenvironment in HCC poses a great challenge to ICI therapeutic efficacy. As a key component in tumor microenvironment, tumor-associated macrophages (TAMs) play vital roles in HCC development, progression, and ICI low responsiveness. Mechanistically, TAM can promote cancer invasion and metastasis, angiogenesis, epithelial-mesenchymal transition, maintenance of stemness, and most importantly, immunosuppression. Targeting TAMs, therefore, represents an opportunity to enhance the ICI therapeutic efficacy in patients with HCC. While previous research has primarily focused on biochemical cues influencing macrophages, emerging evidence highlights the critical role of biophysical signals, such as substrate stiffness, topography, and external forces. In this review, we summarize the influence of biophysical characteristics within the tumor microenvironment that regulate the phenotype and function of TAMs in HCC pathogenesis and progression. We also explore the possible mechanisms and discuss the potential of manipulating biophysical cues in regulating TAM for HCC therapy. By gaining a deeper understanding of how macrophages sense and respond to mechanical forces, we may potentially usher in a path toward a curative approach for combinatory cancer immunotherapies.
Collapse
Affiliation(s)
- Ying Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jiahuan Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jiyu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Dai Fei Elmer Ker
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Jingying Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| |
Collapse
|
7
|
Xiong B, Li C, Hong G, Li J, Luo Q, Gong J, Lai X. HMGB1/TREM1 crosstalk between heat-injured hepatocytes and macrophages promotes HCC progression after RFA. J Cancer Res Clin Oncol 2024; 150:480. [PMID: 39465435 DOI: 10.1007/s00432-024-05996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE Tumor recurrence after radiofrequency ablation (RFA) affects the survival rate of patients and limits its clinical application. Tumor recurrence around the ablation area may be related to the thermal injury of hepatocytes (HCs) around the tumor, but the specific mechanism is still unclear. METHODS A liver cancer thermal injury mouse model was established via RFA in the C57BL/6 mice. Primary HCs and Kupffer cells (KCs) were isolated and cultured to assess their sensitivity to thermal injury via the MTT assay. Flow cytometry was used to assess macrophage polarization. Furthermore, Western blotting and co-immunoprecipitation (co-IP) were utilized to evaluate the protein expression of intracellular signaling pathway. Finally, Transwell and wound healing assays was conducted to evaluate the invasion potential of liver cancer cells. RESULTS Our findings revealed that RFA-induced liver thermal injury promoted the upregulation and secretion of HMGB1 in HCs. HMGB1 had a protective effect on HCs thermal injury, potentially mediated through autophagy regulation. Heat-injured HCs release HMGB1, which activates the TREM1/JAK2/STAT3 signaling pathway in KCs, thus fostering an immunosuppressive tumor microenvironment (TME). Moreover, HMGB1 secretion by heat-injured HCs exacerbates the migration and invasion of HCC cells by influencing macrophage polarization. CONCLUSION RFA-induced thermal injury triggers HMGB1 release from HCs, driving macrophage M2 polarization and increasing the invasion ability of liver cancer cells. These findings reveal a potential therapeutic target for combating liver cancer recurrence following thermal ablation.
Collapse
Affiliation(s)
- Bin Xiong
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China
- Chongqing Hospital of Traditional Chinese Medicine, Chongging, China
| | - Chunming Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Guoqing Hong
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China
| | - Junke Li
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China
| | - Qing Luo
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China
| | - Jianping Gong
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xing Lai
- Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongging, China.
- Chongqing Hospital of Traditional Chinese Medicine, Chongging, China.
| |
Collapse
|
8
|
Wu H, Jin M, Liu Y, Wang S, Liu C, Quan X, Jin M, Gao Z, Jin Y. A self-targeting MOFs nanoplatform for treating metastatic triple-negative breast cancer through tumor microenvironment remodeling and chemotherapy potentiation. Int J Pharm 2024; 664:124625. [PMID: 39182743 DOI: 10.1016/j.ijpharm.2024.124625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and fatal subtype of breast cancer with disappointing treatment and high mortality. Tumor microenvironment (TME) plays an important role in the invasion and metastasis of TNBC through multiple complex processes. Most anti-metastatic therapies only focus on cancer cells themselves or interfering with single factors of the metastasis process, which is often related to poor outcomes. Thus, effective TNBC treatment relies on regulating multiple key metastasis-related aspects of the TME. Herein, a self-targeting Metal-Organic Frameworks (MOFs) nanoplatform (named as MTX-PEG@TPL@ZIF-8) was designed to improve treatment of TNBC through tumor microenvironment remodeling and chemotherapy potentiation. The self-targeting MOF nanoplatform is consist of ZIF-8 nanoparticles loaded triptolide (TPL) and followed by the coating with methotrexate-polyethylene glycol conjugates (MTX-PEG). Due to MTX's affinity for the overexpressed folate receptor on tumor cell surfaces, MTX-PEG@TPL@ZIF-8 enables effective accumulation and deep penetration in the tumor area by an MTX-mediated self-targeting strategy. This MOF nanoplatform could promptly release the medication after penetrating the tumor cell, due to pH-triggered degradation. Its anti-metastasis mechanism is to inhibit tumor invasion and metastasis by down-regulating the expression of Vimentin, MMP-2 and MMP-9 and increasing the expression of E-cadherin, upregulation of cleaved caspase-3 and cleaved caspase-9 protein expression promote the apoptosis of tumor cells, thereby reducing their migration. It also downregulated the expression of VEGF and CD31 protein to inhibit the generation of neovascularization. Overall, these findings suggest the self-targeting MOF nanoplatform offers new insights into the treatment of metastatic TNBC by TME remodeling and potentiating chemotherapy.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Jin
- Department of Orthopedic Surgery, Yanbian University Hospital, Yanji, Jilin Province 133000, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiuquan Quan
- Department of Orthopedic Surgery, Yanbian University Hospital, Yanji, Jilin Province 133000, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ying Jin
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, China.
| |
Collapse
|
9
|
Wu M, Mao L, Zhai X, Liu J, Wang J, Li L, Duan J, Wang J, Lin S, Li J, Yu S. Microenvironmental alkalization promotes the therapeutic effects of MSLN-CAR-T cells. J Immunother Cancer 2024; 12:e009510. [PMID: 39433427 PMCID: PMC11499857 DOI: 10.1136/jitc-2024-009510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by high invasion, prone metastasis, frequent recurrence and poor prognosis. Unfortunately, the curative effects of current clinical therapies, including surgery, radiotherapy, chemotherapy and immunotherapy, are still limited in patients with TNBC. In this study, we showed that the heterogeneous expression at the protein level and subcellular location of mesothelin (MSLN), a potential target for chimeric antigen receptor-T (CAR-T) cell therapy in TNBC, which is caused by acidification of the tumor microenvironment, may be the main obstacle to therapeutic efficacy. Alkalization culture or sodium bicarbonate administration significantly promoted the membrane expression of MSLN and enhanced the killing efficiency of MSLN-CAR-T cells both in vitro and in vivo, and the same results were also obtained in other cancers with high MSLN expression, such as pancreatic and ovarian cancers. Moreover, mechanistic exploration revealed that the attenuation of autophagy-lysosome function caused by microenvironmental alkalization inhibited the degradation of MSLN. Hence, alkalization of the microenvironment improves the consistency and high expression of the target antigen MSLN and constitutes a routine method for treating diverse solid cancers via MSLN-CAR-T cells.
Collapse
Affiliation(s)
- Min Wu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| | - Ling Mao
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Xuejia Zhai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Deaprtment of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Jie Liu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Junhan Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Langhong Li
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Jiangjie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| | - Shuang Lin
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Jianjun Li
- Deaprtment of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| |
Collapse
|
10
|
Ferreira AL, Menezes A, Sandim V, Queiroz Monteiro RD, Nogueira FCS, Evaristo JAM, Abreu Pereira DD, Carneiro K. Histone deacetylase inhibition disrupts the molecular signature of the glioblastoma secretome related to extracellular vesicle-associated proteins and targets RAB7a and RAB14 in vitro. Biochem Biophys Res Commun 2024; 736:150847. [PMID: 39454304 DOI: 10.1016/j.bbrc.2024.150847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor with a poor prognosis. While Histone Deacetylase inhibitors have shown promising results in inhibiting cancer cell invasion and promoting apoptosis, their effects on GBM secretion, specifically focusing on extracellular vesicles (EVs) secretion, remain largely unexplored. Using label-free NANOLC-MS/MS methodology, we identified significant changes in the abundance of membrane traffic regulatory proteins in the secretome of U87MG cells after the treatment with the HDAC inhibitor Trichostatin A (TSA). In silico analysis showed that TSA treatment disrupted the secretion pattern of EVs-associated proteins and cellular signaling pathways, both qualitatively and quantitatively. Notably, RAB14/RAB7a interaction was only observed in the secretome of cells treated with TSA. In vitro assays revealed that TSA treatment of glioma cells increased EVs secretion and intracellular protein levels of RAB7a and RAB14 without affecting gene expression, suggesting a role of these two EVs-associated proteins in grade IV glioma cells. Additionally, an integrative approach using clinical data highlighted a correlation between DNA mutations affecting vesicle traffic coding-genes and clinical and phenotypic outcomes in glioma patients. These findings provide insights into the interplay between epigenetics and GBM intracellular trafficking, potentially leading to improved strategies for targeting and modifying the complex signaling network established between GBM cells and the tumor cell microenvironment.
Collapse
Affiliation(s)
- Ana Luiza Ferreira
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| | - Aline Menezes
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| | - Vanessa Sandim
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, UFRJ/RJ, Brazil.
| | - Robson de Queiroz Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, UFRJ/RJ, Brazil.
| | - Fábio César Sousa Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Laboratory of Proteomics (LabProt), LADETEC, Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, UFRJ/RJ, Brazil.
| | | | - Denise de Abreu Pereira
- Programa de Oncobiologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional Do Câncer, INCA/RJ, Brazil.
| | - Katia Carneiro
- Instituto de Ciências Biomédicas e Programa de Pós-graduação Em Medicina (Anatomia Patológica), UFRJ/RJ, Brazil.
| |
Collapse
|
11
|
Chen J, Cao W, Li Y, Zhu J. Comprehensive analysis of the expression level, prognostic value, and immune infiltration of cuproptosis-related genes in human breast cancer. Medicine (Baltimore) 2024; 103:e40132. [PMID: 39432636 PMCID: PMC11495725 DOI: 10.1097/md.0000000000040132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND As a novel cell death form, cuproptosis results from copper combining with lipidated proteins in the tricarboxylic acid cycle. To the best of our knowledge no study has yet comprehensively analyzed the relationship between cuproptosis-related genes and breast cancer. METHODS The expression, prognostic value, mutations, chemosensitivity, and immune infiltration of cuproptosis-related genes in breast carcinoma patients were analyzed, PPI networks were constructed, and enrichment analyses were performed based on these genes. TIMER, UALCAN, Kaplan-Meier plotter, Human Protein Atlas, cBioPortal, STRING, GeneMANIA, DAVID, and R program v4.0.3 were used to accomplish the analyses above. RESULTS Compared to normal breast tissues, FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, MTF1, and GLS were down-regulated in breast cancer tissues, while CDKN2A was up-regulated. High expression of FDX1, LIAS, DLD, DLAT, MTF1, GLS, and CDKN2A were associated with favorable overall survival. Cuproptosis-related genes showed a high alteration rate (51.3%) in breast cancer, contributing to worse clinical outcomes. The expression levels of FDX1, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A were associated positively with 1 or more immune cell infiltrations in breast cancer. Patients with high levels of B cell, CD4+ T cell, CD8+ T cell, and dendritic cell infiltration had a higher survival rate at 10 years. CONCLUSION This study comprehensively investigated relationships between cuproptosis and breast cancer by bioinformatic analyses. We found that cuproptosis-related genes were generally lowly expressed in breast carcinoma tissue. As the critical gene of cuproptosis, high expression of FDX1 was related to favorable prognoses in breast cancer patients; thus, it might be a potential prognostic marker. Moreover, genes associated with cuproptosis were linked to immune infiltration in breast cancer and this relationship affected the prognosis of breast cancer.
Collapse
Affiliation(s)
- Jian Chen
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Cao
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yingliang Li
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jia Zhu
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Mao Z, Gu Y, Tao G, Dai Q, Xu Y, Fei Z. The co-expression of Crohn's disease and colon cancer network was analyzed by bioinformatics-CXCL1 tumour microenvironment and prognosis-related gene CXCL1. Discov Oncol 2024; 15:557. [PMID: 39402186 PMCID: PMC11479648 DOI: 10.1007/s12672-024-01423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/03/2024] [Indexed: 10/17/2024] Open
Abstract
PURPOSE This study aimed to investigate the molecular links and mechanisms between Crohn's disease (CD) and colorectal cancer (CRC). METHODS This study used the Gene Expression Omnibus (GEO) database to identify Differentially expressed genes (DEGs) in CD (GSE112366) and CRC (GSE110224), analyzed by 'edgeR' and 'limma'. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes explored DEG functions, and the Search Tool for the Retrieval of Interacting Genes (STRING) informed the protein-protein interaction network construction visualized in Cytoscape (version 3.7.2). Cyto-Hubba identified key genes, whose biomarker potential for CD and CRC was evaluated. RESULTS The study discovered 61 DEGs, with 44 up- and 17 down-regulated, linked to immune responses and signaling pathways. CXCL1, highly expressed in colon cancer, correlated with better prognosis and lower staging. It also showed associations with immune infiltration and checkpoint molecules, suggesting a role in cancer progression and retreat. CONCLUSION CXCL1 may play a role in the development of colorectal cancer from inflammatory bowel disease.
Collapse
Affiliation(s)
- Zijuan Mao
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuyang Gu
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, No. 1882, Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Ganxue Tao
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiang Dai
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, 108 Wansong Road, Rui'an, 325200, China
| | - Yangjie Xu
- Department of Oncology, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China.
| | - Zhenghua Fei
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
13
|
Pisanu L, Mucaj K, Conio V, Bertuccio F, Giana I, Arlando L, Russo M, Montini S, Bortolotto C, Corsico AG, Stella GM. Lung bronchiectasisas a paradigm of the interplay between infection and colonization on plastic modulation of the pre-metastatic niche. Front Oncol 2024; 14:1480777. [PMID: 39469649 PMCID: PMC11513253 DOI: 10.3389/fonc.2024.1480777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
The lungs are most often a preferential target organ for malignant spreading and growth. It is well known that chronic parenchymal inflammation and prolonged injuries represents an independent risk factor for cancer onset. Growing evidence supports the implication of lung microbiota in the pathogenesis of lung cancer. However, the full interplay between chronic inflammation, bacterial colonization, pathologic condition as bronchiectasis and malignant growth deserves better clarification. We here aim at presenting and analyzing original data and discussing the state-of-the-art on the knowledge regarding how this complex milieu acts on the plasticity of the lung pre-metastatic niche to point out the rationale for early diagnosis and therapeutic targeting.
Collapse
Affiliation(s)
- Lucrezia Pisanu
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Klodjana Mucaj
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Valentina Conio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Francesco Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Ilaria Giana
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Arlando
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Marianna Russo
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Simone Montini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia Medical School, Pavia, Italy
- Radiology Institute, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, Fondazione Istituto di Ricovero e Cura a carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
14
|
Ding Q, Weng Y, Li Y, Lin W, Lin X, Lin T, Yang H, Xu W, Wang J, Ying H, Qiu S. Inhibition of PNCK inflames tumor microenvironment and sensitizes head and neck squamous cell carcinoma to immune checkpoint inhibitors. J Immunother Cancer 2024; 12:e009893. [PMID: 39395840 PMCID: PMC11474745 DOI: 10.1136/jitc-2024-009893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND The landscape of the tumor microenvironment (TME) is intricately linked to the development of head and neck squamous cell carcinoma (HNSCC) and significantly influences immunotherapy efficacy. Recent research has underscored the pivotal role of PNCK in cancer progression, yet its relationship with immunotherapy remains elusive. METHODS We leveraged sequencing data from our cohort and public databases to evaluate PNCK expression, prognostic significance, and immune efficacy prediction. In vitro and in vivo experiments explored the role of PNCK in HNSCC progression. Animal models assessed the therapeutic effects and survival benefits of PNCK knockdown combined with immune checkpoint inhibitors (ICIs). Single-cell transcriptomics analyzed the impact of PNCK on the TME, and proteomic studies elucidated the mechanisms. RESULTS PNCK exerts multifaceted critical roles in the progression of HNSCC. Lower PNCK expression is associated with improved prognosis, enhanced immune cell infiltration, and increased responsiveness to ICIs. Conversely, PNCK promotes HNSCC cell migration, invasion, proliferation, colony formation, zebrafish angiogenesis, and tumor growth in mice. Moreover, targeting PNCK enhances sensitivity to ICIs and leads to significant alterations in the T-cell and B-cell ratios within the TME. These changes are attributed to the inhibition of nuclear transcription of PNCK-phosphorylated ZEB1, which restricts cytokine release and inflames the immune microenvironment to regulate the TME. CONCLUSIONS Inhibition of PNCK may be a potential strategy for treating HNSCC, as it may activate the immune response and improve the TME, thereby enhancing the efficacy of immunotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Wanzun Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Xiaosan Lin
- Department of Stomatology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Tingting Lin
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, China
| | - Hanxuan Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Wenqian Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Jianming Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Sabit H, Arneth B, Abdel-Ghany S, Madyan EF, Ghaleb AH, Selvaraj P, Shin DM, Bommireddy R, Elhashash A. Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression. Cells 2024; 13:1666. [PMID: 39404428 PMCID: PMC11475877 DOI: 10.3390/cells13191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liver cancer represents a substantial global health challenge, contributing significantly to worldwide morbidity and mortality. It has long been understood that tumors are not composed solely of cancerous cells, but also include a variety of normal cells within their structure. These tumor-associated normal cells encompass vascular endothelial cells, fibroblasts, and various inflammatory cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and lymphocytes. Additionally, tumor cells engage in complex interactions with stromal cells and elements of the extracellular matrix (ECM). Initially, the components of what is now known as the tumor microenvironment (TME) were thought to be passive bystanders in the processes of tumor proliferation and local invasion. However, recent research has significantly advanced our understanding of the TME's active role in tumor growth and metastasis. Tumor progression is now known to be driven by an intricate imbalance of positive and negative regulatory signals, primarily influenced by specific growth factors produced by both inflammatory and neoplastic cells. This review article explores the latest developments and future directions in understanding how the TME modulates liver cancer, with the aim of informing the design of novel therapies that target critical components of the TME.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Engy F. Madyan
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Ashraf H. Ghaleb
- Department of Surgery, College of Medicine, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
- Department of Surgery, College of Medicine, Cairo University, Giza 12613, Egypt
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Ahmed Elhashash
- Department of Biology, Texas A&M University, 3258 TAMU I, College Station, TX 77843-3258, USA
| |
Collapse
|
16
|
Liang Y, Yin X, Yao Y, Wang Y. Development of biomarker signatures associated with anoikis to predict prognosis in patients with esophageal cancer: An observational study. Medicine (Baltimore) 2024; 103:e39745. [PMID: 39465737 DOI: 10.1097/md.0000000000039745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Anoikis, a form of programmed cell death linked to cancer, has garnered significant research attention. Esophageal cancer (ESCA) ranks among the most prevalent malignant tumors and represents a major global health concern. To ascertain whether anoikis-related genes (ARGs) can accurately predict ESCA prognosis, we evaluated the predictive value and molecular mechanisms of ARGs in ESCA and constructed an optimal model for prognostic prediction. Using the Cancer Genome Atlas (TCGA)-ESCA database, we identified ARGs with differences in ESCA. ARG signatures were generated using Cox regression. A predictive nomogram model was developed to forecast ARG signatures and patient outcomes in ESCA. Gene set enrichment analysis (GSEA) was employed to uncover potential biological pathways associated with ARG signatures. Estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) and cell-type identification by estimating relative subsets of RNA transcripts analyses were used to assess differences in the immune microenvironment of the ARG signature model. Based on ARGs, the patients with ESCA were divided into high and low groups, and the sensitivity of patients to drugs in the database of genomics of drug sensitivity in cancer was analyzed. Finally, the correlation between drug sensitivity and risk score was then evaluated based on the ARG signatures. Prognostic relevance was significantly linked to the ARG profiles of 5 genes: MYB binding protein 1a (MYBBP1A), plasminogen activator, urokinase (PLAU), budding uninhibited by benzimidazoles 3, HOX transcript antisense RNA, and euchromatic histone-lysine methyltransferase 2 (EHMT2). Using the risk score as an independent prognostic factor combined with clinicopathological features, the nomogram accurately predicted the overall survival (OS) of individual patients with ESCA. Gene ontology (GO) enrichment analysis indicated that the primary molecular roles included histone methyltransferase function, binding to C2H2 zinc finger domains, and histone-lysine N-methyltransferase activity. GSEA revealed that the high-risk cohort was connected to cytokine-cytokine receptor interaction, graft-versus-host disease, and hematopoietic cell lineage, whereas the low-risk cohort was related to arachidonic acid metabolism, drug metabolism via cytochrome P450 and fatty acid metabolism. Drug sensitivity tests showed that 16 drugs were positively correlated, and 3 drugs were negatively correlated with ARG characteristic scores. Our study developed 5 ARG signatures as biomarkers for patients with ESCA, providing an important reference for the individualized treatment of this disease.
Collapse
Affiliation(s)
- Yunwei Liang
- Department of Oncology, the Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xin Yin
- Chengde Academy of Agriculture and Forestry, Institute of Medicinal Animals and Plants, Chengde, China
| | - Yinhui Yao
- Department of Pharmacy, the Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ying Wang
- Department of Pharmacy, the Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
17
|
Zhang Y, Wu Y, Liu Z, Yang K, Lin H, Xiong K. Non-coding RNAs as potential targets in metformin therapy for cancer. Cancer Cell Int 2024; 24:333. [PMID: 39354464 PMCID: PMC11445969 DOI: 10.1186/s12935-024-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Metformin, a widely used oral hypoglycemic drug, has emerged as a potential therapeutic agent for cancer treatment. While initially known for its role in managing diabetes, accumulating evidence suggests that metformin exhibits anticancer properties through various mechanisms. Several cellular or animal experiments have attempted to elucidate the role of non-coding RNA molecules, including microRNAs and long non-coding RNAs, in mediating the anticancer effects of metformin. The present review summarized the current understanding of the mechanisms by which non-coding RNAs modulate the response to metformin in cancer cells. The regulatory roles of non-coding RNAs, particularly miRNAs, in key cellular processes such as cell proliferation, cell death, angiogenesis, metabolism and epigenetics, and how metformin affects these processes are discussed. This review also highlights the role of lncRNAs in cancer types such as lung adenocarcinoma, breast cancer, and renal cancer, and points out the need for further exploration of the mechanisms by which metformin regulates lncRNAs. In addition, the present review explores the potential advantages of metformin-based therapies over direct delivery of ncRNAs, and this review highlights the mechanisms of non-coding RNA regulation when metformin is combined with other therapies. Overall, the present review provides insights into the molecular mechanisms underlying the anticancer effects of metformin mediated by non-coding RNAs, offering novel opportunities for the development of personalized treatment strategies in cancer patients.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Yunhao Wu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Zixu Liu
- The First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Kangping Yang
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang, China
| | - Kai Xiong
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
18
|
Dave F, Herrera K, Lockley A, van de Weijer LL, Henderson S, Sofela AA, Hook L, Adams CL, Ercolano E, Hilton DA, Maze EA, Kurian KM, Ammoun S, Hanemann CO. Targeting MERTK on tumour cells and macrophages: a potential intervention for sporadic and NF2-related meningioma and schwannoma tumours. Oncogene 2024; 43:3049-3061. [PMID: 39179860 PMCID: PMC11458476 DOI: 10.1038/s41388-024-03131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Meningioma and schwannoma are common tumours of the nervous system. They occur sporadically or as part of the hereditary NF2-related schwannomatosis syndrome. There is an unmet need for new effective drug treatments for both tumour types. In this paper, we demonstrate overexpression/activation of TAM (TYRO3/AXL/MERTK) receptors (TAMs) and overexpression/release of ligand GAS6 in patient-derived meningioma tumour cells and tissue. For the first time, we reveal the formation of MERTK/TYRO3 heterocomplexes in meningioma and schwannoma tissue. We demonstrate the dependence of AXL and TYRO3 expression on MERTK in both tumour types, as well as interdependency of MERTK and AXL expression in meningioma. We show that MERTK and AXL contribute to increased proliferation and survival of meningioma and schwannoma cells, which we inhibited in vitro using the MERTK/FLT3 inhibitor UNC2025 and the AXL inhibitor BGB324. UNC2025 was effective in both tumour types with superior efficacy over BGB324. Finally, we found that TAMs are expressed by tumour-associated macrophages in meningioma and schwannoma tumours and that UNC2025 strongly depleted macrophages in both tumour types.
Collapse
Affiliation(s)
- Foram Dave
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Kevin Herrera
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Alex Lockley
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Laurien L van de Weijer
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Summer Henderson
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Agbolahan A Sofela
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Laura Hook
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Claire L Adams
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Emanuela Ercolano
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - David A Hilton
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, PL6 8DH, UK
| | - Emmanuel A Maze
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK
| | - Kathreena M Kurian
- University of Bristol Medical School & North Bristol Trust, Southmead Hospital, Bristol, BS1 0NB UK, Bristol, BS1 0NB, UK
| | - Sylwia Ammoun
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK.
| | - C Oliver Hanemann
- University of Plymouth, Faculty of Health, The John Bull Building, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK.
| |
Collapse
|
19
|
Tang L, Li X, Wang Y, Tong Y. Prognostic Study of Inflammatory Markers in Nasopharyngeal Carcinoma Patients Receiving Intensity-Modulated Radiotherapy. Cancer Manag Res 2024; 16:1321-1328. [PMID: 39372707 PMCID: PMC11451463 DOI: 10.2147/cmar.s481142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Inflammatory markers in the blood have been linked to tumor prognosis, but their specific prognostic significance in nasopharyngeal carcinoma (NPC) patients undergoing intensity-modulated radiotherapy (IMRT) is not well established. This study aims to evaluate the prognostic value of the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) in this patient population. Patients and Methods A total of 406 non-metastatic NPC patients were included in the study. NLR, PLR, and LMR were stratified according to their average values. The Kaplan-Meier method was used to estimate progression-free survival (PFS) and overall survival (OS). Cox multivariate regression analysis was performed to evaluate the associations of NLR, PLR, and LMR with PFS and OS. Results Patients with NLR > 2.78 had worse PFS (P = 0.008) and OS (P < 0.001); PLR > 162.48 was related to lower PFS (P = 0.018) but not OS (P = 0.29); LMR > 5.05 showed no significant difference in PFS and OS compared to LMR ≤ 5.05 (P values were 0.13 and 0.94, respectively). Multivariate analysis indicated that NLR was an independent prognostic factor for PFS (HR, 1.674; 95% CI, 1.006-2.784; P = 0.047) and OS (HR, 4.143; 95% CI, 2.111-8.129; P = 0.000), while PLR and LMR did not demonstrate significant associations with PFS and OS. Conclusion This study identifies NLR as a novel and independent prognostic indicator for NPC patients receiving IMRT, offering valuable insights that could inform future clinical decision-making. In contrast, PLR and LMR did not demonstrate significant prognostic value in this context.
Collapse
Affiliation(s)
- Linbo Tang
- Department of Radiation Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Xinjing Li
- Department of Pathology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Yongbin Wang
- Department of Radiation Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Yuanhe Tong
- Department of Radiation Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| |
Collapse
|
20
|
Cai T, Dai J, Lin Y, Bai Z, Li J, Meng W. N-acetyltransferase 10 affects the proliferation of intrahepatic cholangiocarcinoma and M2-type polarization of macrophages by regulating C-C motif chemokine ligand 2. J Transl Med 2024; 22:875. [PMID: 39350174 PMCID: PMC11440763 DOI: 10.1186/s12967-024-05664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND N-acetyltransferase 10 (NAT10) plays a crucial role in the occurrence and development of various tumors. However, the current regulatory mechanism of NAT10 in tumors is limited to its presence in tumor cells. Here, we aimed to reveal the role of NAT10 in intrahepatic cholangiocarcinoma (ICC) and investigate its effect on macrophage polarization in the tumor microenvironment (TME). METHODS The correlation between NAT10 and ICC clinicopathology was analyzed using tissue microarray (TMA), while the effect of NAT10 on ICC proliferation was verified in vitro and in vivo. Additionally, the downstream target of NAT10, C-C motif chemokine ligand 2 (CCL2), was identified by Oxford Nanopore Technologies full-length transcriptome sequencing, RNA immunoprecipitation-quantitative polymerase chain reaction, and coimmunoprecipitation experiments. It was confirmed by co-culture that ICC cells could polarize macrophages towards M2 type through the influence of NAT10 on CCL2 protein expression level. Through RNA-sequencing, molecular docking, and surface plasmon resonance (SPR) assays, it was confirmed that berberine (BBR) can specifically bind CCL2 to inhibit ICC development. RESULTS High expression level of NAT10 was associated with poor clinicopathological manifestations of ICC. In vitro, the knockdown of NAT10 inhibited the proliferative activity of ICC cells and tumor growth in vivo, while its overexpression promoted ICC proliferation. Mechanically, by binding to CCL2 messenger RNA, NAT10 increased CCL2 protein expression level in ICC and their extracellular matrix, thereby promoting the proliferation of ICC cells and M2-type polarization of macrophages. BBR can target CCL2, inhibit ICC proliferation, and reduce M2-type polarization of macrophages. CONCLUSIONS NAT10 promotes ICC proliferation and M2-type polarization of macrophages by up-regulating CCL2, whereas BBR inhibits ICC proliferation and M2-type polarization of macrophages by inhibiting CCL2.
Collapse
Affiliation(s)
- Teng Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yanyan Lin
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhongtian Bai
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China.
| | - Wenbo Meng
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Ding X, Zhang Y, You S. A novel prognostic model based on telomere-related lncRNAs in gastric cancer. Transl Cancer Res 2024; 13:4608-4624. [PMID: 39430825 PMCID: PMC11483442 DOI: 10.21037/tcr-24-295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024]
Abstract
Background Telomeres are specialized structures at the ends of chromosomes that are important for their protection. Over time, long non-coding RNAs (lncRNAs) have gradually come into the spotlight as essential biomarkers of proliferation, migration, and invasion of human malignant tumors. Nevertheless, the impact of telomere-related lncRNAs (TRLs) in gastric cancer is currently unknown. In the present study, we screen the TRLs and identify a prognostic TRLs signature in gastric cancer. Methods First, telomere-related genes (TRGs) were retrieved from the website, and RNA sequencing (RNA-seq) data and clinical data of stomach adenocarcinoma (STAD) patients were gathered from The Cancer Genome Atlas (TCGA) database. Gastric cancer patients' lncRNAs and overall survival (OS) were found to be related using univariate Cox regression analysis. Next, least absolute shrinkage and selection operator (LASSO) regression analysis and multifactorial Cox regression analysis were used to further screen telomere-related differentially expressed lncRNAs (TRDELs), and finally six lncRNAs were obtained, including LINC01537, CFAP61-AS1, DIRC1, RABGAP1L-IT1, DBH-AS1, and REPIN1-AS1. According to these six TRDELs, a prognostic model for gastric cancer was constructed. The samples were divided into the training group and the testing group at random, and the reliability of prognostic model was validated in both groups and overall samples. In addition, we performed Kaplan-Meier (K-M) survival curve analysis, independent prognostic analysis, and functional enrichment analysis to validate the predictive value and independence of the model, as well as immune cell correlation analysis, clustering analysis, and principal component analysis (PCA) to further explore the relationship between this model and the tumor cells. Finally, we performed the drug sensitivity analysis to identify a few small molecules that may have a therapeutic effect on gastric cancer. Results Finally, we constructed a prognostic model for gastric cancer consisting of six TRDELs. According to the K-M curve, the prognosis of the low-risk group was noticeably superior than that of the high-risk group. Multivariate Cox regression analysis suggested that risk score was an independent prognostic element. Receiver operating characteristic (ROC) curves, nomogram, and calibration curve indicated that the prognostic model had good predictive ability. Functional enrichment analysis demonstrated major pathways with high- and low-risk groups. Next, both tumor microenvironment (TME) and immune correlation analysis showed discrepancy in the high- and low-risk groups. Through drug sensitivity analysis, we screened four small molecules that might be beneficial for gastric cancer treatment. Conclusions A prognostic model consisting of these six TRDELs was capable to predict the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Xuetong Ding
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yi Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Shijie You
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
22
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
23
|
Mousa AM, Enk AH, Hassel JC, Reschke R. Immune Checkpoints and Cellular Landscape of the Tumor Microenvironment in Non-Melanoma Skin Cancer (NMSC). Cells 2024; 13:1615. [PMID: 39404378 PMCID: PMC11475876 DOI: 10.3390/cells13191615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Non-melanoma skin cancer (NMSC) is primarily categorized into basal cell carcinoma (BCC), the most prevalent form of skin cancer, and cutaneous squamous cell carcinoma (cSCC), the second most common type. Both BCC and cSCC represent a significant health burden, particularly in immunocompromised individuals and the elderly. The immune system plays a pivotal role in the development and progression of NMSC, making it a critical focus for therapeutic interventions. This review highlights key immunological targets in BCC and cSCC, with a focus on immune checkpoint molecules such as PD-1/PD-L1 and CTLA-4, which regulate T cell activity and contribute to immune evasion. This review also highlights anti-tumor immune cell subsets within the tumor microenvironment (TME), such as tumor-infiltrating lymphocytes (TILs) and dendritic cells. Additionally, it examines the immunosuppressive elements of the TME, including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and cancer-associated fibroblasts (CAFs), as well as their roles in NMSC progression and resistance to therapy. Emerging strategies targeting these immune elements, such as monoclonal antibodies, are also discussed for their potential to enhance anti-tumor immune responses and improve clinical outcomes. By elucidating the immunological landscape of BCC and cSCC and drawing comparisons to melanoma, this review highlights the transformative potential of immunotherapy in treating these malignancies.
Collapse
Affiliation(s)
- Ahmed M. Mousa
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Alexander H. Enk
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Robin Reschke
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Akla N, Veilleux C, Annabi B. The Chemopreventive Impact of Diet-Derived Phytochemicals on the Adipose Tissue and Breast Tumor Microenvironment Secretome. Nutr Cancer 2024:1-17. [PMID: 39300732 DOI: 10.1080/01635581.2024.2401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Cancer cells-derived extracellular vesicles can trigger the transformation of adipose-derived mesenchymal stem cells (ADMSC) into a pro-inflammatory, cancer-associated adipocyte (CAA) phenotype. Such secretome-mediated crosstalk between the adipose tissue and the tumor microenvironment (TME) therefore impacts tumor progression and metastatic processes. In addition, emerging roles of diet-derived phytochemicals, especially epigallocatechin-3-gallate (EGCG) among other polyphenols, in modulating exosome-mediated metabolic and inflammatory signaling pathways have been highlighted. Here, we discuss how selected diet-derived phytochemicals could alter the secretome signature as well as the crosstalk dynamics between the adipose tissue and the TME, with a focus on breast cancer. Their broader implication in the chemoprevention of obesity-related cancers is also discussed.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
25
|
Chen L, Li F, Li R, Zheng K, Zhang X, Ma H, Li K, Nie L. Thermo-Responsive Hydrogel Based on Lung Decellularized Extracellular Matrix for 3D Culture Model to Enhance Cancer Stem Cell Characteristics. Molecules 2024; 29:4385. [PMID: 39339380 PMCID: PMC11433703 DOI: 10.3390/molecules29184385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) are most likely the main cause of lung cancer formation, metastasis, drug resistance, and genetic heterogeneity. Three-dimensional (3D) ex vivo cell culture models can facilitate stemness improvement and CSC enrichment. Considering the critical role of extracellular matrix (ECM) on CSC properties, the present study developed a thermo-responsive hydrogel using the porcine decellularized lung for 3D cell culture, and the cell-laden hydrogel culturing model was used to explore the CSC characteristics and potential utilization in CSC-specific drug evaluation. Results showed that the lung dECM hydrogel (LEH) was composed of the main ECM components and displayed excellent cellular compatibility. In addition, lung cancer cells 3D cultured in LEH displayed the overexpression of metastasis-related genes and enhanced migration properties, as compared with those in two-dimensional (2D) conditions. Notably, the CSC features, including the expression level of stemness-associated genes, colony formation capability, drug resistance, and the proportion of cancer stem-like cells (CD133+), were also enhanced in 3D cells. Furthermore, the attenuation effect of epigallocatechin gallate (EGCG) on CSC properties in the 3D model was observed, confirming the potential practicability of the 3D culture on CSC-targeted drug screening. Overall, our results suggest that the fabricated LEH is an effective and facile platform for 3D cell culture and CSC-specific drug evaluation.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fanglu Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ruobing Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ke Zheng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xinyi Zhang
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Huijing Ma
- Library, Xinyang Normal University, Xinyang 464000, China
| | - Kaiming Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lei Nie
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
26
|
Mao Z, Han Y, Li Y, Bai L. CD206 accelerates hepatocellular carcinoma progression by regulating the tumour immune microenvironment and increasing M2-type polarisation of tumour-associated macrophages and inflammation factor expression. Discov Oncol 2024; 15:439. [PMID: 39269611 PMCID: PMC11399359 DOI: 10.1007/s12672-024-01309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVE This study aims to investigate the effect of CD206 on the progression of hepatocellular carcinoma (HCC) and the regulation of the tumour immune microenvironment. METHODS A subcutaneous mouse model of HCC was established and treated with CD206-overexpressing adenovirus by tail vein injection or CD206 antibody C068C2 by intratumoral injection. The hepatocarcinoma-bearing mice were divided into four groups (IgG+ tail vein adenovirus group, IgG group, C068C2+ tail vein adenovirus group and C068C2 group) to observe the changes in tumour weight and volume with different expression levels of CD206. The proportion of M2-type tumour-associated macrophages (TAMs) was detected by flow cytometry and immunofluorescence. The apoptosis of tumour cells was detected using terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining, and inflammatory factors in serum and tissues were detected using the ENZYME-LINKED IMMUNOSORBENT ASSAY. RESULTS Compared with the mice with low CD206 expression, the hepatocarcinoma-bearing mice with high CD206 expression in HCC exhibited faster tumour growth and more aggressive progression. Flow cytometry and immunofluorescence staining revealed that the expression level of CD206-positive M2-type TAMs was highest in the IgG + adenovirus group and lowest in the C068C2 group (p < 0.001). Compared with the IgG + adenovirus group, the proportion of TUNEL-positive cells in tumour cells was significantly reduced in the C068C2 group. The IgG + adenovirus group had the highest concentrations of transforming growth factor-β (TGF-β) and interleukin 6 (IL-6) in both serum and tumour tissues. CONCLUSION The overexpression of CD206 accelerates the progression of HCC and changes the tumour immune microenvironment. The high expression of CD206 in HCC increases the M2-type polarisation of TAMs and induces the expression of both TGF-β and IL-6 in tumour tissues and serum, thereby promoting HCC progression.
Collapse
Affiliation(s)
- Zhiyuan Mao
- Department of Oncology, Air Force Medical Center of Chinese PLA, Beijing, 100142, China
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Oncology, Medical School of Chinese PLA, Beijing, 100853, China
| | - Yalin Han
- Department of Oncology, PLA Rocket Force Characteristic Medical Centre, Beijing, 100088, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yinglin Li
- Department of Oncology, Air Force Medical Center of Chinese PLA, Beijing, 100142, China
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Li Bai
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
27
|
Vitkūnaitė E, Žymantaitė E, Mlynska A, Andrijec D, Limanovskaja K, Kaszynski G, Matulis D, Šakalys V, Jonušauskas L. Advancing 3D Spheroid Research through 3D Scaffolds Made by Two-Photon Polymerization. Bioengineering (Basel) 2024; 11:902. [PMID: 39329644 PMCID: PMC11429241 DOI: 10.3390/bioengineering11090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Three-dimensional cancer cell cultures have been a valuable research model for developing new drug targets in the preclinical stage. However, there are still limitations to these in vitro models. Scaffold-based systems offer a promising approach to overcoming these challenges in cancer research. In this study, we show that two-photon polymerization (TPP)-assisted printing of scaffolds enhances 3D tumor cell culture formation without additional modifications. TPP is a perfect fit for this task, as it is an advanced 3D-printing technique combining a μm-level resolution with complete freedom in the design of the final structure. Additionally, it can use a wide array of materials, including biocompatible ones. We exploit these capabilities to fabricate scaffolds from two different biocompatible materials-PEGDA and OrmoClear. Cubic spheroid scaffolds with a more complex architecture were produced and tested. The biological evaluation showed that the human ovarian cancer cell lines SKOV3 and A2780 formed 3D cultures on printed scaffolds without a preference for the material. The gene expression evaluation showed that the A2780 cell line exhibited substantial changes in CDH1, CDH2, TWIST, COL1A1, and SMAD3 gene expression, while the SKOV3 cell line had slight changes in said gene expression. Our findings show how the scaffold architecture design impacts tumor cell culture 3D spheroid formation, especially for the A2780 cancer cell line.
Collapse
Affiliation(s)
- Eglė Vitkūnaitė
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Eglė Žymantaitė
- Laboratory of Immunology, National Cancer Institute, P. Baublio g. 3B, LT-08406 Vilnius, Lithuania; (E.Ž.); (A.M.)
- Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, P. Baublio g. 3B, LT-08406 Vilnius, Lithuania; (E.Ž.); (A.M.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
| | - Dovilė Andrijec
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Karolina Limanovskaja
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Grzegorz Kaszynski
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania;
| | - Vidmantas Šakalys
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| | - Linas Jonušauskas
- Vital3D Technologies, Saulėtekio al. 15, LT-10224 Vilnius, Lithuania; (E.V.); (D.A.); (K.L.); (V.Š.)
| |
Collapse
|
28
|
Reese KL, Pantel K, Smit DJ. Multibiomarker panels in liquid biopsy for early detection of pancreatic cancer - a comprehensive review. J Exp Clin Cancer Res 2024; 43:250. [PMID: 39218911 PMCID: PMC11367781 DOI: 10.1186/s13046-024-03166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently detected in late stages, which leads to limited therapeutic options and a dismal overall survival rate. To date, no robust method for the detection of early-stage PDAC that can be used for targeted screening approaches is available. Liquid biopsy allows the minimally invasive collection of body fluids (typically peripheral blood) and the subsequent analysis of circulating tumor cells or tumor-associated molecules such as nucleic acids, proteins, or metabolites that may be useful for the early diagnosis of PDAC. Single biomarkers may lack sensitivity and/or specificity to reliably detect PDAC, while combinations of these circulating biomarkers in multimarker panels may improve the sensitivity and specificity of blood test-based diagnosis. In this narrative review, we present an overview of different liquid biopsy biomarkers for the early diagnosis of PDAC and discuss the validity of multimarker panels.
Collapse
Affiliation(s)
- Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
29
|
Hou L, Zhang S, Yu W, Yang X, Shen M, Hao X, Ren X, Sun Q. Single-cell transcriptomics reveals tumor-infiltrating B cell function after neoadjuvant pembrolizumab and chemotherapy in non-small cell lung cancer. J Leukoc Biol 2024; 116:555-564. [PMID: 37931147 DOI: 10.1093/jleuko/qiad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most pervasive lung cancer subtype. Recent studies have shown that immune checkpoint inhibitors achieved favorable clinical benefits in resectable NSCLC; however, the associated mechanism remains unclear. The role of T cells in antitumor immunity has received considerable attention, while the antitumor effects of tumor-infiltrating B cells (TIBs) in NSCLC remain poorly understood. Here, we conducted a single-cell RNA sequencing analysis of immune cells isolated from 12 patients with stage IIIA NSCLC to investigate B cell subtypes and their functions following neoadjuvant chemoimmunotherapy. We confirmed the simultaneous existence of the 4 B cell subtypes. Among them, memory B cells were found to be associated with a positive therapeutic effect to neoadjuvant chemoimmunotherapy. Furthermore, we found that G protein-coupled receptor 183 was most prevalent in memory B cells and associated with a positive therapeutic response. Multiplex immunofluorescence and flow cytometry experiments in an additional cohort of 22 treatment-naïve and 30 stage IIIA/IIIB NSCLC patients treated with neoadjuvant chemoimmunotherapy verified these findings. Overall, our analysis revealed the functions of TIBs and their potential effect on clinical treatment in NSCLC.
Collapse
Affiliation(s)
- Lingjie Hou
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Siyuan Zhang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Wenwen Yu
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Xuena Yang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Meng Shen
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Xishan Hao
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, No. 10 Yuexin Road, Binhai District, Tianjin 300450, China
| | - Xiubao Ren
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, No. 10 Yuexin Road, Binhai District, Tianjin 300450, China
| | - Qian Sun
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, No. 10 Yuexin Road, Binhai District, Tianjin 300450, China
| |
Collapse
|
30
|
Liu Z, Fan Y, Cui M, Wang X, Zhao P. Investigation of tumour environments through advancements in microtechnology and nanotechnology. Biomed Pharmacother 2024; 178:117230. [PMID: 39116787 DOI: 10.1016/j.biopha.2024.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer has a significant negative social and economic impact on both developed and developing countries. As a result, understanding the onset and progression of cancer is critical for developing therapies that can improve the well-being and health of individuals with cancer. With time, study has revealed, the tumor microenvironment has great influence on this process. Micro and nanoscale engineering techniques can be used to study the tumor microenvironment. Nanoscale and Microscale engineering use Novel technologies and designs with small dimensions to recreate the TME. Knowing how cancer cells interact with one another can help researchers develop therapeutic approaches that anticipate and counteract cancer cells' techniques for evading detection and fighting anti-cancer treatments, such as microfabrication techniques, microfluidic devices, nanosensors, and nanodevices used to study or recreate the tumor microenvironment. Nevertheless, a complicated action just like the growth and in cancer advancement, and their intensive association along the environment around it that has to be studied in more detail.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Radiology, Shengjing Hospital of China Medical University, China
| | - Yan Fan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyao Cui
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Pengfei Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
31
|
Bharadwaj D, Mandal M. Tumor microenvironment: A playground for cells from multiple diverse origins. Biochim Biophys Acta Rev Cancer 2024; 1879:189158. [PMID: 39032537 DOI: 10.1016/j.bbcan.2024.189158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Tumor microenvironment is formed by various cellular and non-cellular components which interact with one another and form a complex network of interactions. Some of these cellular components also attain a secretory phenotype and release growth factors, cytokines, chemokines etc. in the surroundings which are capable of inducing even greater number of signalling networks. All these interactions play a decisive role in determining the course of tumorigenesis. The treatment strategies against cancer also exert their impact on the local microenvironment. Such interactions and anticancer therapies have been found to induce more deleterious outcomes like immunosuppression and chemoresistance in the process of tumor progression. Hence, understanding the tumor microenvironment is crucial for dealing with cancer and chemoresistance. This review is an attempt to develop some understanding about the tumor microenvironment and different factors which modulate it, thereby contributing to tumorigenesis. Along with summarising the major components of tumor microenvironment and various interactions taking place between them, it also throws some light on how the existing and potential therapies exert their impact on these dynamics.
Collapse
Affiliation(s)
- Deblina Bharadwaj
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
32
|
Shen J, Wu W, Zhang X, Xie X, Shen W, Wang Q. Cancer-associated fibroblasts promote the malignant development of lung cancer through the FOXO1 protein/LIF signaling. Int J Biol Macromol 2024; 276:133987. [PMID: 39032875 DOI: 10.1016/j.ijbiomac.2024.133987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
This paper aims to investigate the current situation of cancer related fibroblasts promoting malignant development of cancer through FOXO1 protein/LIF signal, and explore the strategy of cancer treatment. Recent studies have shown that the expression of the protein forkhead box O1 (FOXO1) is increased in CAFsCAFs (Cancer-associated fibroblasts). This led researchers to investigate whether FOXO1 is involved in the role of CAFs in lung cancer. The results of the study revealed that FOXO1 is indeed upregulated in CAFs, and it positively regulates the transcription of another protein called LIF. Notably, LIF is also upregulated in both CAFs and lung cancer cells. These changes in protein expression were associated with the overexpression of FOXO1 in CAFs. Conversely, silencing FOXO1 in CAFs suppressed their effects on cancer cells and transplanted tumors. The study revealed that the downregulation of LIFR in cancer cells abolished the impact of CAFs overexpressing FOXO1 on cancer cell behavior. This suggests that the FOXO1/LIF signaling pathway is involved in mediating the malignant development of lung cancer induced by CAFs.
Collapse
Affiliation(s)
- Jiannan Shen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Wei Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Xing Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Xiaodong Xie
- CT Room, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Wenrong Shen
- CT Room, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Qianghu Wang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
33
|
Fattahi AS, Jafari M, Farahavar G, Abolmaali SS, Tamaddon AM. Expanding horizons in cancer therapy by immunoconjugates targeting tumor microenvironments. Crit Rev Oncol Hematol 2024; 201:104437. [PMID: 38977144 DOI: 10.1016/j.critrevonc.2024.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Immunoconjugates are promising molecules combining antibodies with different agents, such as toxins, drugs, radionuclides, or cytokines that primarily aim to target tumor cells. However, tumor microenvironment (TME), which comprises a complex network of various cells and molecular cues guiding tumor growth and progression, remains a major challenge for effective cancer therapy. Our review underscores the pivotal role of TME in cancer therapy with immunoconjugates, examining the intricate interactions with TME and recent advancements in TME-targeted immunoconjugates. We explore strategies for targeting TME components, utilizing diverse antibodies such as neutralizing, immunomodulatory, immune checkpoint inhibitors, immunostimulatory, and bispecific antibodies. Additionally, we discuss different immunoconjugates, elucidating their mechanisms of action, advantages, limitations, and applications in cancer immunotherapy. Furthermore, we highlight emerging technologies enhancing the safety and efficacy of immunoconjugates, such as antibody engineering, combination therapies, and nanotechnology. Finally, we summarize current advancements, perspectives, and future developments of TME-targeted immunoconjugates.
Collapse
Affiliation(s)
- Amir Saamaan Fattahi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Jafari
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| |
Collapse
|
34
|
Talib WH, Abed I, Raad D, Alomari RK, Jamal A, Jabbar R, Alhasan EOA, Alshaeri HK, Alasmari MM, Law D. Targeting Cancer Hallmarks Using Selected Food Bioactive Compounds: Potentials for Preventive and Therapeutic Strategies. Foods 2024; 13:2687. [PMID: 39272454 PMCID: PMC11395675 DOI: 10.3390/foods13172687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer continues to be a prominent issue in healthcare systems, resulting in approximately 9.9 million fatalities in 2020. It is the second most common cause of death after cardiovascular diseases. Although there are difficulties in treating cancer at both the genetic and phenotypic levels, many cancer patients seek supplementary and alternative medicines to cope with their illness, relieve symptoms, and reduce the side effects of cytotoxic drug therapy. Consequently, there is an increasing emphasis on studying natural products that have the potential to prevent or treat cancer. Cancer cells depend on multiple hallmarks to secure survival. These hallmarks include sustained proliferation, apoptosis inactivation, stimulation of angiogenesis, immune evasion, and altered metabolism. Several natural products from food were reported to target multiple cancer hallmarks and can be used as adjuvant interventions to augment conventional therapies. This review summarizes the main active ingredients in food that have anticancer activities with a comprehensive discussion of the mechanisms of action. Thymoquinone, allicin, resveratrol, parthenolide, Epigallocatechin gallate, and piperine are promising anticancer bioactive ingredients in food. Natural products discussed in this review provide a solid ground for researchers to provide effective anticancer functional food.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ilia Abed
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Daniah Raad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Raghad K Alomari
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Ayah Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rand Jabbar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eman Omar Amin Alhasan
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
35
|
Liu Y, Li H, Shen X, Liu Y, Zhong X, Zhong J, Cao R. PCMT1 confirmed as a pan-cancer immune biomarker and a contributor to breast cancer metastasis. Am J Cancer Res 2024; 14:3711-3732. [PMID: 39267673 PMCID: PMC11387850 DOI: 10.62347/tyll7952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Protein L-isoaspartyl (D-aspartyl) methyltransferase (PIMT, gene name PCMT1) is an enzyme that repairs proteins with altered aspartate residues by methylation, restoring their normal structure and function. This study conducted a comprehensive analysis of PCMT1 in pan-cancer. The Cancer Genome Atlas, Human Protein Atlas website, and the Genotype-Tissue Expression were utilized in analysis of PCMT1 expression. We examined the association between PCMT1 expression and various factors, including gene modifications, DNA methylation, immune cell infiltration, immunological checkpoints, drug susceptibility, tumor mutation burden (TMB), and microsatellite instability (MSI). Enrichment analyses determined the potential biological roles and pathways involving PCMT1. Our focus then shifted to the role of PCMT1 in breast invasive carcinoma (BRCA). We found that PCMT1 expression was aberrant in many tumors and significantly influenced the prognosis across several cancer types. Gene alterations in PCMT1 predominantly involved deep deletions and amplifications. A negative correlation was observed between DNA methylation and PCMT1 expression across all studied cancer types except thyroid carcinoma PCMT1 exhibited positive correlations with common lymphoid progenitor and CD4(+) T helper 2 cells, whereas it was inversely correlated with central and effector memory T cells, memory CD8(+) T cells, and CD4(+) T helper 1 cells. In many cancer types, PCMT1 expression closely correlated with immunological checkpoint inhibitors, TMB, and MSI. It was also significantly linked to pathways involved in epithelial-mesenchymal transition (EMT), highlighting its role in cancer metastasis. PCMT1 emerged as a significant predictor of breast cancer progression. In vitro experiments demonstrated that reducing PCMT1 expression decreased BRCA cell migration and invasiveness. Additionally, animal studies confirmed that inhibition of PCMT1 slowed tumor growth.
Collapse
Affiliation(s)
- Yiqi Liu
- The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421001, Hunan, China
| | - Haobing Li
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Xiangyu Shen
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
| | - Ying Liu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Xiaoxiao Zhong
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
- Department of General Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Renxian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| |
Collapse
|
36
|
Zhang Y, Ji S, Miao G, Du S, Wang H, Yang X, Li A, Lu Y, Wang X, Zhao X. The current role of dendritic cells in the progression and treatment of colorectal cancer. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0188. [PMID: 39177125 DOI: 10.20892/j.issn.2095-3941.2024.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Dendritic cells (DCs) constitute a heterogeneous group of antigen-presenting cells that are important for initiating and regulating both innate and adaptive immune responses. As a crucial component of the immune system, DCs have a pivotal role in the pathogenesis and clinical treatment of CRC. DCs cross-present tumor-related antigens to activate T cells and trigger an antitumor immune response. However, the antitumor immune function of DCs is impaired and immune tolerance is promoted due to the presence of the tumor microenvironment. This review systematically elucidates the specific characteristics and functions of different DC subsets, as well as the role that DCs play in the immune response and tolerance within the CRC microenvironment. Moreover, how DCs contribute to the progression of CRC and potential therapies to enhance antitumor immunity on the basis of existing data are also discussed, which will provide new perspectives and approaches for immunotherapy in patients with CRC.
Collapse
Affiliation(s)
- Yuanci Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Songtao Ji
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ge Miao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Shuya Du
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Haojia Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xiaohua Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Gastroenterology, the 988th Hospital of PLA Joint Logistics Support Force, Zhengzhou 450042, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
37
|
Vitorakis N, Gargalionis AN, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Precision Targeting Strategies in Pancreatic Cancer: The Role of Tumor Microenvironment. Cancers (Basel) 2024; 16:2876. [PMID: 39199647 PMCID: PMC11352254 DOI: 10.3390/cancers16162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer demonstrates an ever-increasing incidence over the last years and represents one of the top causes of cancer-associated mortality. Cells of the tumor microenvironment (TME) interact with cancer cells in pancreatic ductal adenocarcinoma (PDAC) tumors to preserve cancer cells' metabolism, inhibit drug delivery, enhance immune suppression mechanisms and finally develop resistance to chemotherapy and immunotherapy. New strategies target TME genetic alterations and specific pathways in cell populations of the TME. Complex molecular interactions develop between PDAC cells and TME cell populations including cancer-associated fibroblasts, myeloid-derived suppressor cells, pancreatic stellate cells, tumor-associated macrophages, tumor-associated neutrophils, and regulatory T cells. In the present review, we aim to fully explore the molecular landscape of the pancreatic cancer TME cell populations and discuss current TME targeting strategies to provide thoughts for further research and preclinical testing.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Clinical Biochemistry, 'Attikon' University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
38
|
Zhang W, Fu J, Du J, Liu X, Cheng J, Wei C, Xu Y, Fu J. A disintegrin and metalloproteinase domain 10 expression inhibition by the small molecules adenosine, cordycepin and N6, N6-dimethyladenosine and immune regulation in malignant cancers. Front Immunol 2024; 15:1434027. [PMID: 39211038 PMCID: PMC11357967 DOI: 10.3389/fimmu.2024.1434027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
A disintegrin and metalloproteinase domain 10 (ADAM10), a member of the ADAM family, is a cellular surface protein with potential adhesion and protease/convertase functions. The expression regulations in cancers by natural products [adenosine (AD) and its analogs, cordycepin (CD), and N6, N6-dimethyladenosine (m6 2A)], and immune regulation are unclear. As results, AD, CD, and m6 2A inhibited ADAM10 expression in various cancer cell lines, indicating their roles in anti-cancer agents. Further molecular docking with ADAM10 protein found the binding energies of all docking groups were <-7 kcal/mol for all small-molecules (AD, CD and m6 2A), suggesting very good binding activities. In addition, analysis of the immunomodulatory roles in cancer showed that ADAM10 was negatively correlated with immunomodulatory genes such as CCL27, CCL14, CCL25, CXCR5, HLA-B, HLA-DOB1, LAG3, TNFRSF18, and TNFRSF4 in bladder urothelial carcinoma, thymoma, breast invasive carcinoma, TGCT, kidney renal papillary cell carcinoma, SKCM and thyroid carcinoma, indicating the immune-promoting roles for ADAM10. LAG3 mRNA levels were reduced by both AD and CD in vivo. ADAM10 is also negatively associated with tumor immunosuppression and interrelated with the immune infiltration of tumors. Overall, the present study determined ADAM10 expression by AD, CD and m6 2A, and in AD or CD/ADAM10/LAG3 signaling in cancers, and suggested a potential method for immunotherapy of cancers by targeting ADAM10 using the small molecules AD, CD and m6 2A.
Collapse
Affiliation(s)
- Wenqian Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Youhua Xu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
39
|
Zhao J, Zhang K, Sui D, Wang S, Li Y, Tang X, Liu X, Song Y, Deng Y. Recent advances in sialic acid-based active targeting chemoimmunotherapy promoting tumor shedding: a systematic review. NANOSCALE 2024; 16:14621-14639. [PMID: 39023195 DOI: 10.1039/d4nr01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tumors have always been a major public health concern worldwide, and attempts to look for effective treatments have never ceased. Sialic acid is known to be a crucial element for tumor development and its receptors are highly expressed on tumor-associated immune cells, which perform significant roles in establishing the immunosuppressive tumor microenvironment and further boosting tumorigenesis, progression, and metastasis. Obviously, it is essential to consider sophisticated crosstalk between tumors, the immune system, and preparations, and understand the links between pharmaceutics and immunology. Sialic acid-based chemoimmunotherapy enables active targeting drug delivery via mediating the recognition between the sialic acid-modified nano-drug delivery system represented by liposomes and sialic acid-binding receptors on tumor-associated immune cells, which inhibit their activity and utilize their homing ability to deliver drugs. Such a "Trojan horse" strategy has remarkably improved the shortcomings of traditional passive targeting treatments, unexpectedly promoted tumor shedding, and persistently induced robust immunological memory, thus highlighting its prospective application potential for targeting various tumors. Herein, we review recent advances in sialic acid-based active targeting chemoimmunotherapy to promote tumor shedding, summarize the current viewpoints on the tumor shedding mechanism, especially the formation of durable immunological memory, and analyze the challenges and opportunities of this attractive approach.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Kunfeng Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| |
Collapse
|
40
|
Rehman M, Qaiser A, Khan HS, Manzoor S, Ashraf J. Enhancing CAR T cells function: role of immunomodulators in cancer immunotherapy. Clin Exp Med 2024; 24:180. [PMID: 39105978 PMCID: PMC11303469 DOI: 10.1007/s10238-024-01442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
CAR T-cell therapy is a promising immunotherapy, providing successful results for cancer patients who are unresponsive to standard and traditional therapeutic approaches. However, there are limiting factors which create a hurdle in the therapy performing its role optimally. CAR T cells get exhausted, produce active antitumor responses, and might even produce toxic reactions. Specifically, in the case of solid tumors, chimeric antigen receptor T (CAR-T) cells fail to produce the desired outcomes. Then, the need to use supplementary agents such as immune system modifying immunomodulatory agents comes into play. A series of the literature was studied to evaluate the role of immunomodulators including a phytochemical, Food and Drug Administration (FDA)-approved targeted drugs, and ILs in support of their achievements in boosting the efficiency of CAR-T cell therapy. Some of the most promising out of them are reported in this article. It is expected that by using the right combinations of immunotherapy, immunomodulators, and traditional cancer treatments, the best possible cancer defying results may be produced in the future.
Collapse
Affiliation(s)
- Maheen Rehman
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ariba Qaiser
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Hassan Sardar Khan
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sobia Manzoor
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javed Ashraf
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.
- Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
41
|
Li X, Jian J, Zhang A, Xiang JM, Huang J, Chen Y. The role of immune cells and immune related genes in the tumor microenvironment of papillary thyroid cancer and their significance for immunotherapy. Sci Rep 2024; 14:18125. [PMID: 39103463 PMCID: PMC11300445 DOI: 10.1038/s41598-024-69187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common pathological type of thyroid cancer (THCA) and shows a better prognosis than other types. However, further research is needed to determine the risk of PTC. We herein used the CIBERSORT algorithm to analyze the gene-expression profile obtained from TCGA, estimated the infiltration ratio of 22 immune cell types in tumor tissues and normal tissues, analyzed the differential expression of immune-related genes, and identified immune cells and immune-related genes related to clinical progress and prognosis. We uncovered 12 immune cell types and nine immune-related genes that were closely correlated with TNM staging, and two immune cell types (activated NK cells and γδT cells) and one immune-related gene (CD40LG) that were associated with prognosis. After evaluation, four immune cell types could be used to determine low-risk PTC, with six immune cell types and six immune-related genes closely associated with high-risk PTC. The type and quantity of infiltrating immune cells in the microenvironment of PTC, as well as immune-related genes, appear to be closely related to tumor progression and can therefore be used as important indicators for the evaluation of patient prognosis. We posit that the study of immune cells and immune-related genes in the tumor microenvironment will facilitate the determination of low-risk PTC more accurately, and that this will greatly promote the development of high-risk PTC immunotherapy.
Collapse
Affiliation(s)
- Xumei Li
- Department of Pathology, Chongqing Changshou District Maternal and Child Health Hospital, Chongqing, China
| | - Jie Jian
- Department of Pathology, Chongqing Changshou District Maternal and Child Health Hospital, Chongqing, China
| | - Anzhi Zhang
- Department of Pathology, Jiaxing University Affiliated Women and Children Hospital (Jiaxing Maternity and Child Health Care Hospital), Jiaxing University, Jiaxing, China
| | - Jiang Ming Xiang
- Department of Surgery, Chongqing Changshou District Maternal and Child Health Hospital, Chongqing, China
| | - Jingjing Huang
- Department of Surgery, Chongqing Changshou District Maternal and Child Health Hospital, Chongqing, China
| | - Yanlin Chen
- Department of Pathology, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing Medical University, Chongqing, China.
| |
Collapse
|
42
|
Liu Y, Li CB, Zhai YP, Zhang SK, Li DY, Gao ZQ, Liang RP. Identification and Validation of a Novel Tertiary Lymphoid Structures-Related Prognostic Gene Signature in Hepatocellular Carcinoma. World J Oncol 2024; 15:695-710. [PMID: 38993245 PMCID: PMC11236367 DOI: 10.14740/wjon1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors originating from the digestive system. Tertiary lymphoid structures (TLS), non-lymphoid tissues outside of the lymphoid organs, are closely connected to chronic inflammation and tumorigenesis. However, the detailed relationship between TLS and HCC prognosis remained unclear. In this study, we aimed to construct a TLS-related gene signature for predicting the prognosis of HCC patients. Methods The Cancer Genome Atlas (TCGA) clinical data from 369 HCC tissues and 50 normal liver tissues were utilized to examine the differential expression of TLS-related genes. Based on least absolute shrinkage and selection operator (LASSO) Cox regression analysis, the prognostic model was constructed using the TCGA cohort and validated in the GSE14520 cohort and International Cancer Genome Consortium (ICGC) cohort. The Kaplan-Meier (KM) and receiver operating characteristic (ROC) curves were employed to validate the predictive ability of the prognostic model. Furthermore, Cox regression analysis was applied to identify whether the TLS score could be employed as an independent prognosis factor. A nomogram was developed to predict the survival probability of HCC patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for TLS-related genes. Genetic mutation analysis, the CIBERSORT algorithm, and single-sample gene set enrichment analysis (ssGSEA) were used to assess the tumor mutation landscape and immune infiltration. Finally, the role of the TLS score in HCC therapy was investigated. Results Six genes were included in the construction of our prognostic model (CETP, DNASE1L3, PLAC8, SKAP1, C7, and VNN2), and we validated its accuracy. Survival analysis showed that patients in the high-TLS score group had a significantly better overall survival than those in the low-TLS score group. Univariate, multivariate Cox regression analysis and the establishment of a nomogram indicated that the TLS score could independently function as a potential prognostic marker. A significant association between TLS score and immunity was revealed by an analysis of gene alterations and immune cell infiltration. In addition, two subtypes of the TLS score could accurately predict the effectiveness of sorafenib, transcatheter arterial chemoembolization (TACE), and immunotherapy in HCC patients. Conclusion In this research, we conducted and validated a prognostic model associated with TLS that may be helpful for predicting clinical outcomes and treatment responsiveness for HCC patients.
Collapse
Affiliation(s)
- Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Yin Liu and Chao Bo Li contributed equally to this work
| | - Chao Bo Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Yin Liu and Chao Bo Li contributed equally to this work
| | - Yun Peng Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shao Kang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Yang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Qiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruo Peng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Li M, Sun P, Tu B, Deng G, Li D, He W. Hypoxia conduces the glioma progression by inducing M2 macrophage polarization via elevating TNFSF9 level in a histone-lactylation-dependent manner. Am J Physiol Cell Physiol 2024; 327:C487-C504. [PMID: 39010835 DOI: 10.1152/ajpcell.00124.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Hypoxia is a critical factor contributing to a poor prognosis and challenging glioma therapy. Previous studies have indicated that hypoxia drives M2 polarization of macrophages and promotes cancer progression in various solid tumors. However, the more complex and diverse mechanisms underlying this process remain to be elucidated. Here, we aimed to examine the functions of hypoxia in gliomas and preliminarily investigate the underlying mechanisms of M2 macrophage polarization caused by hypoxia. We found that hypoxia significantly enhances the malignant phenotypes of U87 and U251 cells by regulating glycolysis. In addition, hypoxia mediated accumulation of the glycolysis product [lactic acid (LA)], which is subsequently absorbed by macrophages to induce its M2 polarization, and this process is reverted by both the glycolysis inhibitor and silenced monocarboxylate transporter (MCT-1) in macrophages, indicating that M2 macrophage polarization is associated with the promotion of glycolysis by hypoxia. Interestingly, we also found that hypoxia mediated LA accumulation in glioma cells upon uptake by macrophages upregulates H3K18La expression and promotes tumor necrosis factor superfamily member 9 (TNFSF9) expression in a histone-lactylation-dependent manner based on the results of chromatin immunoprecipitation sequencing (ChIP seq) enrichment analysis. Subsequent in vitro and in vivo experiments further indicated that TNFSF9 facilitated glioma progression. Mechanistically, hypoxia-mediated LA accumulation in glioma cells is taken up by macrophages and then induces its M2 macrophage polarization by regulating TNFSF9 expression via MCT-1/H3K18La signaling, thus facilitating the malignant progression of gliomas.NEW & NOTEWORTHY Our study revealed that hypoxia induces the production of LA accumulation through glycolysis in glioma cells, which is subsequently absorbed by macrophages and leads to its M2 polarization via the MCT-1/H3K18La/TNFSF9 axis, ultimately significantly promoting the malignant progression of glioma cells. These findings are novel and noteworthy as they provide insights into the connection between energy metabolism and epigenetics in gliomas.
Collapse
Affiliation(s)
- Min Li
- Neurosurgery Department of Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Translational Research for Cancer, Nanchang, Jiangxi, People's Republic of China
| | - Pingfeng Sun
- Jiangxi Provincial Maternal and Child Health Care Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Binfeng Tu
- Neurosurgery Department of Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, People's Republic of China
| | - Guojun Deng
- Neurosurgery Department of Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, People's Republic of China
| | - Donghai Li
- Neurosurgery Department of Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, People's Republic of China
| | - Wei He
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
44
|
Gagneja S, Capalash N, Sharma P. Hyaluronic acid as a tumor progression agent and a potential chemotherapeutic biomolecule against cancer: A review on its dual role. Int J Biol Macromol 2024; 275:133744. [PMID: 38986990 DOI: 10.1016/j.ijbiomac.2024.133744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Hyaluronic acid is a major constituent of the extracellular matrix of vertebrate tissue that provides mechanical support to cells and acts as a mediator in regulation of necessary biochemical process essential for maintenance of tissue homeostasis. The variation in quantity of hyaluronic acid content in tissues is often associated with different pathological conditions. It is associated with tumor aggression and progression as it plays crucial role in regulating different aspects of tumorigenesis and several defined hallmarks of cancer. It assists in tumor progression by undergoing extracellular remodeling to establish tumor microenvironment which restricts the delivery of cytotoxic drugs to neoplastic cells due to increase in interstitial pressure. Hyaluronic acid catabolic and anabolic genes and low-molecular weight hyaluronic acid play significant role in the establishing tumor microenvironment by assisting in cell proliferation, metastasis and invasion. On the other hand, it is also used as an effective drug-delivery platform in cancer therapies as its biocompatibility and biodegradability lower the toxicity of chemotherapeutic drugs and increase drug retention. High-molecular weight hyaluronic acid-bioconjugates specifically bind with hyaladherins, facilitating targeted drug delivery and also exert anti-inflammatory properties. This review also highlights the market and patent trends in the development of effective chemotherapeutic hyaluronic acid formulations and the current scenario regarding clinical trials.
Collapse
Affiliation(s)
- Simran Gagneja
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
45
|
Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal 2024; 22:380. [PMID: 39069612 DOI: 10.1186/s12964-024-01760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| |
Collapse
|
46
|
Zhao R, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zheng Y, Gu H, Zhao D, Madhunapantula SV, Zhu X, Liu J, Fan R. Cuproptosis, the novel type of oxidation-induced cell death in thoracic cancers: can it enhance the success of immunotherapy? Cell Commun Signal 2024; 22:379. [PMID: 39068453 PMCID: PMC11282696 DOI: 10.1186/s12964-024-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Copper is an important metal micronutrient, required for the balanced growth and normal physiological functions of human organism. Copper-related toxicity and dysbalanced metabolism were associated with the disruption of intracellular respiration and the development of various diseases, including cancer. Notably, copper-induced cell death was defined as cuproptosis which was also observed in malignant cells, representing an attractive anti-cancer instrument. Excess of intracellular copper leads to the aggregation of lipoylation proteins and toxic stress, ultimately resulting in the activation of cell death. Differential expression of cuproptosis-related genes was detected in normal and malignant tissues. Cuproptosis-related genes were also linked to the regulation of oxidative stress, immune cell responses, and composition of tumor microenvironment. Activation of cuproptosis was associated with increased expression of redox-metabolism-regulating genes, such as ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), drolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), and pyruvate dehydrogenase E1 subunit beta (PDHB)). Accordingly, copper-activated network was suggested as an attractive target in cancer therapy. Mechanisms of cuproptosis and regulation of cuproptosis-related genes in different cancers and tumor microenvironment are discussed in this study. The analysis of current findings indicates that therapeutic regulation of copper signaling, and activation of cuproptosis-related targets may provide an effective tool for the improvement of immunotherapy regimens.
Collapse
Affiliation(s)
- Ruiwen Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Olga Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia.
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia Aleksandrova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yufei Zheng
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Gu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Deyao Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - SabbaRao V Madhunapantula
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Xiaorong Zhu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junqi Liu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruitai Fan
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
47
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
48
|
Zhang C, Zheng J, Liu J, Li Y, Xing G, Zhang S, Chen H, Wang J, Shao Z, Li Y, Jiang Z, Pan Y, Liu X, Xu P, Wu W. Pan-cancer analyses reveal the molecular and clinical characteristics of TET family members and suggests that TET3 maybe a potential therapeutic target. Front Pharmacol 2024; 15:1418456. [PMID: 39104395 PMCID: PMC11298443 DOI: 10.3389/fphar.2024.1418456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024] Open
Abstract
The Ten-Eleven Translocation (TET) family genes are implicated in a wide array of biological functions across various human cancers. Nonetheless, there is a scarcity of studies that comprehensively analyze the correlation between TET family members and the molecular phenotypes and clinical characteristics of different cancers. Leveraging updated public databases and employing several bioinformatics analysis methods, we assessed the expression levels, somatic variations, methylation levels, and prognostic values of TET family genes. Additionally, we explored the association between the expression of TET family genes and pathway activity, tumor microenvironment (TME), stemness score, immune subtype, clinical staging, and drug sensitivity in pan-cancer. Molecular biology and cytology experiments were conducted to validate the potential role of TET3 in tumor progression. Each TET family gene displayed distinct expression patterns across at least ten detected tumors. The frequency of Single Nucleotide Variant (SNV) in TET genes was found to be 91.24%, primarily comprising missense mutation types, with the main types of copy number variant (CNV) being heterozygous amplifications and deletions. TET1 gene exhibited high methylation levels, whereas TET2 and TET3 genes displayed hypomethylation in most cancers, which correlated closely with patient prognosis. Pathway activity analysis revealed the involvement of TET family genes in multiple signaling pathways, including cell cycle, apoptosis, DNA damage response, hormone AR, PI3K/AKT, and RTK. Furthermore, the expression levels of TET family genes were shown to impact the clinical staging of tumor patients, modulate the sensitivity of chemotherapy drugs, and thereby influence patient prognosis by participating in the regulation of the tumor microenvironment, cellular stemness potential, and immune subtype. Notably, TET3 was identified to promote cancer progression across various tumors, and its silencing was found to inhibit tumor malignancy and enhance chemotherapy sensitivity. These findings shed light on the role of TET family genes in cancer progression and offer insights for further research on TET3 as a potential therapeutic target for pan-cancer.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Jie Zheng
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jin Liu
- North China University of Science and Technology, Tangshan, Hebei, China
| | - Yanxia Li
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Guoqiang Xing
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Shupeng Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Hekai Chen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jian Wang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhijiang Shao
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Yongyuan Li
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Zhongmin Jiang
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yingzi Pan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Ping Xu
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
- Department of Pharmacy, Tianjin Fifth Central Hospital, Tianjin, China
| | - Wenhan Wu
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
49
|
Togni L, Furlani M, Belloni A, Riberti N, Giuliani A, Notarstefano V, Santoni C, Giorgini E, Rubini C, Santarelli A, Mascitti M. Biomolecular alterations temporally anticipate microarchitectural modifications of collagen in oral tongue squamous cell carcinoma. iScience 2024; 27:110303. [PMID: 39040062 PMCID: PMC11261445 DOI: 10.1016/j.isci.2024.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 06/16/2024] [Indexed: 07/24/2024] Open
Abstract
High resolution analysis of collagen bundles could provide information on tumor onset and evolution. This study was focused on the microarchitecture and biomolecular organization of collagen bundles in oral tongue squamous cell carcinoma (OTSCC). Thirty-five OTSCC biopsy samples were analyzed by synchrotron-based phase-contrast microcomputed tomography and Fourier transform infrared imaging (FTIRI) spectroscopy. PhC-microCT evidenced the presence of reduced and disorganized collagen in the tumor area compared to the extratumoral (ExtraT) one. FTIRI also revealed a reduction of folded secondary structures in the tumor area, and highlighted differences in the peritumoral (PeriT) areas in relation with the OTSCC stage, whereby a significantly lower amount of collagen with less organized fibers was found in the PeriT stroma of advanced-OTSCC stages. Interestingly, no significant morphometrical mismatches were detected in the same region by PhC-microCT analysis. These results suggest that biomolecular alterations in the OTSCC stroma temporally anticipate structural modifications of collagen bundle microarchitecture.
Collapse
Affiliation(s)
- Lucrezia Togni
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| | - Michele Furlani
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| | - Alessia Belloni
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Nicole Riberti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, via dei Vestini 31, 66013 Chieti, Italy
| | - Alessandra Giuliani
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Chiara Santoni
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, via Tronto 10, Ancona, Italy
| | - Andrea Santarelli
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, via Tronto 10, 60126 Ancona, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| |
Collapse
|
50
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|