1
|
Wei Y, Guo X, Li L, Xue W, Wang L, Chen C, Sun S, Yang Y, Yao W, Wang W, Zhao J, Duan X. The role of N6-methyladenosine methylation in PAHs-induced cancers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118078-118101. [PMID: 37924411 DOI: 10.1007/s11356-023-30710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which are a wide range of environmental toxicants, may act on humans through inhalation, ingestion, and skin contact, resulting in a range of toxic reactions. Epidemiological studies showed that long-term exposure to PAHs in the occupational and living environment results in a substantial rise in the incidence rate of many cancers in the population, so the prevention and treatment of these diseases have become a major worldwide public health problem. N6-methyladenosine (m6A) modification greatly affects the metabolism of RNA and is implicated in the etiopathogenesis of many kinds of diseases. In addition, m6A-binding proteins have an important role in disease development. The abnormal expression of these can cause the malignant proliferation, migration, invasion, and metastasis of cancers. Furthermore, a growing number of studies revealed that environmental toxicants are one of the cancer risk factors and are related to m6A modifications. Exposure to environmental toxicants can alter the methylation level of m6A and the expression of the m6A-binding protein, thus promoting the occurrence and development of cancers through diverse mechanisms. m6A may serve as a biomarker for early environmental exposure. Through the study of m6A, we can find the health injury early, thus providing a new sight for preventing and curing environmental health-related diseases.
Collapse
Affiliation(s)
- Yujie Wei
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaona Guo
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan, China
| | - Lifeng Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Longhao Wang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Chengxin Chen
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shilong Sun
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqi Yang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China.
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Zhu Y, Li Z, Wang W, Jing L, Yu Q, Li Z, Chen X, Zhang J, Zhang P, Feng F, Zhang Q. LncRNA-ENST00000556926 regulates the proliferation, apoptosis and mRNA transcriptome of malignant-transformed BEAS-2B cells induced by coal tar pitch. Toxicol Res (Camb) 2021; 10:1144-1152. [PMID: 34956617 PMCID: PMC8692750 DOI: 10.1093/toxres/tfab097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/07/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
As a byproduct of coal tar distillation, coal tar pitch (CTP) has been proven to be carcinogenic to human. However, the mechanisms of lung cancer induced by CTP are still unclear. It has been shown that long non-coding RNAs (LncRNAs) play an important role in the development of human cancers. This study aims to investigate the effect of LncRNA-ENST00000556926 on malignant-transformed human bronchial epithelial (BAES-2B) cells induced by coal tar pitch extracts (CTPE). In this study, BEAS-2B cells were treated with 2.4 μg/ml of CTPE for 72 h and then passaged; and the cells were treated 4 times in the same procedure, then passaged until passage 30 (CTPE30). Cell counting kit-8 (CCK-8) assay was used to detect cell viability, then cell cycle and apoptosis were analyzed by flow cytometry, and transcriptome sequencing analysis was used to detect differentially expressed mRNAs after interference of ENST00000556926. The results indicated that the expression of ENST00000556926 in CTPE30 group was significantly higher compared with control group. Furthermore, after interfering the expression of ENST00000556926, cell viability was inhibited, and cell cycle was arrested while apoptosis of malignant-transformed BEAS-2B cells was promoted. Moreover, a total of 159 differentially expressed mRNAs were screened out after interference of ENST00000556926, including 62 up-regulated mRNAs and 97 down-regulated mRNAs. In addition, knockdown of ENST00000556926 decreased the expression of thioredoxin domain containing 5 (TXNDC5) and FOXD1. In conclusion, LncRNA-ENST00000556926 could regulate the proliferation, apoptosis and mRNA transcriptome of malignant-transformed BEAS-2B cells induced by CTP, which may provide a novel treatment strategy for lung cancer.
Collapse
Affiliation(s)
- Yonghang Zhu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Zhongqiu Li
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Weiguang Wang
- Department of Disease Control and Prevention, Rizhao Center for Disease Control and Prevention, Rizhao, Shandong Province 450001, China
| | - Linhao Jing
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 276800, China
| | - Qi Yu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Zhenkai Li
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xu Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 276800, China
| | - Jiatong Zhang
- Department of Disease Control and Prevention, Hospital of Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan Province 450001, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|